research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of 2,7-dieth­­oxy-1,8-bis­­(4-nitro­benzo­yl)naphthalene

aDepartment of Organic and Polymer Materials Chemistry, Tokyo University of Agriculture & Technology (TUAT), Koganei, Tokyo 184-8588, Japan, and bInstrumentation Analysis Center, Tokyo University of Agriculture & Technology (TUAT), Koganei, Tokyo 184-8588, Japan
*Correspondence e-mail: aokamoto@cc.tuat.ac.jp

Edited by H. Ishida, Okayama University, Japan (Received 17 July 2014; accepted 18 August 2014; online 23 August 2014)

The title compound, C28H22N2O8, possesses crystallographically imposed twofold symmetry, with the two central carbon atoms of the naphthalene unit lying on the rotation axis. The two benzoyl groups in the mol­ecule are twisted away from the attached naphthalene unit with a C—C—C=O torsion angle of 49.05 (15)° between the naphthalene unit and the carbonyl group. The dihedral angle between the naphthalene ring system and the benzene ring is 77.17 (5)°. In the crystal, pairs of C—H⋯O=C hydrogen bonds link the mol­ecules into a double-column structure along the c axis. The mol­ecules are further linked by C—H⋯O=N hydrogen bonds, forming a three-dimensional network. C—H⋯π inter­actions between the methyl­ene group and the naphthalene unit and ππ inter­actions between the naphthalene ring systems [centroid–centroid distances of 3.7858 (7)–3.7860 (7) Å] are also observed.

1. Chemical context

Mol­ecules with non-coplanarly accumulated aromatic rings, such as biphenyl and binaphthyl derivatives, have been in the limelight as unique building blocks affording characteristic optical and electronic properties (Hatano et al., 2013[Hatano, S., Horino, T., Tokita, A., Oshima, T. & Abe, J. (2013). J. Am. Chem. Soc. 135, 3164-3172.]; Park et al., 2010[Park, J. K., Lee, K. H., Park, J. S., Seo, J. H., Kim, Y. K. & Yoon, S. S. (2010). Mol. Cryst. Liq. Cryst. 531, 55-64.]; Vaghi et al., 2013[Vaghi, L., Benincori, T., Cirilli, R., Alberico, E., Mussini, P., Romana, P., Marco, P. T., Rizzo, S. & Sannicolo, F. (2013). Eur. J. Org. Chem. pp. 8174-8184.]) and asymmetric mol­ecular environments (Bulman Page et al., 2012[Bulman Page, P. C., Bartlett, C. J., Chan, Y., Day, D., Parker, P., Buckley, B. R., Rassias, G. A., Slawin, A. M. Z., Allin, S. M. & Lacour, J. (2012). J. Org. Chem. 77, 6128-6138.]; Jayalakshmi et al., 2012[Jayalakshmi, V., Wood, T., Basu, R., Du, J., Blackburn, T., Rosenblatt, C., Crudden, C. M. & Lemieux, R. P. (2012). J. Mater. Chem. 22, 15255-15261.]; Kano et al., 2006[Kano, T., Tokuda, O. & Maruoka, K. (2006). Tetrahedron Lett. 47, 7423-7426.]; Wang et al., 2014[Wang, Y., McGonigal, P. R., Herle, B., Basora, M. & Echavarren, A. (2014). J. Am. Chem. Soc. 136, 801-809.]). peri-Substituted naphthalenes have also much attention as characteristic aromatic ring core compounds and the structural analyses have been actively performed (Cohen et al., 2004[Cohen, S., Thirumalaikumar, M., Pogodin, S. & Agranat, I. (2004). Struct. Chem. 15, 339-346.]; Jing et al., 2005[Jing, L.-H., Qin, D.-B., He, L., Gu, S.-J., Zhang, H.-X. & Lei, G. (2005). Acta Cryst. E61, o3595-o3596.]).

[Scheme 1]

In the course of our study on selective electrophilic aromatic aroylation of 2,7-di­meth­oxy­naphthalene, peri-aroyl­naphthalene compounds have proved to be formed regio­selectively with the aid of a suitable acidic mediator (Okamoto & Yonezawa, 2009[Okamoto, A. & Yonezawa, N. (2009). Chem. Lett. 38, 914-915.]; Okamoto et al., 2011[Okamoto, A., Mitsui, R., Oike, H. & Yonezawa, N. (2011). Chem. Lett. 40, 1283-1284.]). According to X-ray crystal analysis, the resulting 1,8-diaroyl­naphthalene and 1-monoaroyl­naphthalene compounds have non-coplanarly accumulated aromatic-ring structures in their crystals. The aroyl groups at the 1,8-positions (or 1-position) of the naphthalene ring system in the mol­ecules are situated in a perpendicular fashion to the naphthalene ring system, as shown in 1,8-dibenzoyl-2,7-di­meth­oxy­naphthalene (Nakaema et al., 2008[Nakaema, K., Watanabe, S., Okamoto, A., Noguchi, K. & Yonezawa, N. (2008). Acta Cryst. E64, o807.]), 1,8-dibenzoyl-2,7-di­eth­oxy­naphthalene (Isogai et al., 2013[Isogai, A., Tsumuki, T., Murohashi, S., Okamoto, A. & Yonezawa, N. (2013). Acta Cryst. E69, o71.]) and 1-(4-nitro­benzo­yl)-2,7-di­meth­oxy­naphthalene (Watanabe et al., 2010[Watanabe, S., Nakaema, K., Nishijima, T., Okamoto, A. & Yonezawa, N. (2010). Acta Cryst. E66, o615.]). As a part of our continuous study on the mol­ecular structures of this kind of mol­ecules, the X-ray crystal structure of the title compound is reported here.

2. Structural commentary

The title mol­ecule lies on a crystallographic twofold axis running through atoms C5 and C6 of the naphthalene unit so that the asymmetric unit consists of one half-mol­ecule (Fig. 1[link]). In the mol­ecule, two aroyl groups are non-coplanarly attached to the naphthalene ring system. The torsion angles of the benzene ring and the naphthalene ring system with the ketonic carbonyl moiety (O1—C7—C8—C13 and C6—C1—C7—O1) are 26.83 (17) and 49.05 (15)°, respectively. The dihedral angle between the benzene ring and the naphthalene ring system is 77.17 (5)°. The benzene ring and the nitro group are approximately coplanar with a dihedral angle of 5.0 (2)°.

[Figure 1]
Figure 1
The mol­ecular structure of the title compound with the atom numbering. The displacement ellipsoids are drawn at the 50% probability level.

3. Supra­molecular features

In the crystal, the mol­ecular packing of the title compound is mainly stabilized by a pair of C—H⋯O=C hydrogen bonds between the benzene ring and the ketonic carbonyl group (C13—H13⋯O1i; details and symmetry code in Table 1[link]), which make an R22(10) ring motif (Fig. 2[link]). The mol­ecules are stacked through these inter­actions in a double-column along the c axis. The mol­ecules are also linked by C—H⋯O=N inter­actions between the benzene ring and the nitro group (C10—H10⋯O3ii; Table 1[link]), forming a three-dimensional network and thus resulting in the inter­penetration of the naphthalene unit into the adjacent double-column. ππ inter­actions between the inter­penetrating naphthalene ring systems are observed; the inter­planar distance is 3.5326 (4) Å and the centroid–centroid distances are 3.7860 (7), 3.7859 (7) and 3.7858 (7) Å, respectively, for Cg1⋯Cg1vi, Cg1⋯Cg2vii and Cg2⋯Cg2viii, where Cg1 and Cg2 are the centroids of the six-membered C1–C6 and C1v–C4v/C5/C6 rings, respectively [symmetry codes: (v) −x + 1, y, −z + [{1\over 2}]; (vi) −x + 1, −y + 1, −z; (vii) x, −y + 1, z − [{1\over 2}]; (viii) −x + 1, −y + 1, −z + 1]. C—H⋯π inter­actions between the methyl­ene group and the naphthalene ring system (C14—H14BCg1iii and C14—H14BCg2iv; Table 1[link] and Fig. 3[link]) are also observed.

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of the six-membered C1–C6 and C1v–C4v/C5/C6 rings, respectively. [Symmetry code: (v) −x + 1, y, −z + [{1\over 2}].]

D—H⋯A D—H H⋯A DA D—H⋯A
C13—H13⋯O1i 0.95 2.50 3.2129 (17) 132
C10—H10⋯O3ii 0.95 2.59 3.360 (2) 138
C14—H14BCg1iii 0.99 2.81 3.6284 (15) 140
C14—H14BCg2iv 0.99 2.81 3.6284 (15) 140
Symmetry codes: (i) -x+1, -y, -z; (ii) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) [x, -y, z-{\script{1\over 2}}]; (iv) -x, -y, -z+1.
[Figure 2]
Figure 2
A crystal packing view of the title compound, showing the inter­molecular C—H⋯O=C and C—H⋯O=N inter­actions. [Symmetry codes: (i) 1 − x, −y, −z; (ii) [{3\over 2}] − x, [{1\over 2}] + y, [{1\over 2}] − z.]
[Figure 3]
Figure 3
A crystal packing view of the title compound, showing the inter­molecular C—H⋯π inter­actions (dashed lines) and ππ inter­actions (double dashed lines).

4. Database survey

A search of the Cambridge Structural Database (Version 5.35, last update May 2014; Allen, 2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]) showed 39 and 29 structures containing the 1,8-diaroyl­naphthalene (including 1,8-dialkanoyl­naphthalene) and 1,8-diaroyl-2,7-di­alk­oxy­naph­thal­ene units, respectively. The title compound has a non-coplanarly accumulated aromatic-rings structure, as found in the nitro group-free 1,8-di­benzoyl­naphthalene homologues and the nitro-group-bearing 1-benzoyl­naphthalene homologue, viz. 1,8-dibenzoyl-2,7-di­meth­oxy­naphthalene (Naka­ema et al., 2008[Nakaema, K., Watanabe, S., Okamoto, A., Noguchi, K. & Yonezawa, N. (2008). Acta Cryst. E64, o807.]) and 1,8-dibenzoyl-2,7-di­eth­oxy­naphthalene (Isogai et al., 2013[Isogai, A., Tsumuki, T., Murohashi, S., Okamoto, A. & Yonezawa, N. (2013). Acta Cryst. E69, o71.]), and 2,7-dimeth­oxy-1-(4-nitro­benzo­yl)naphthalene (Watanabe et al., 2010[Watanabe, S., Nakaema, K., Nishijima, T., Okamoto, A. & Yonezawa, N. (2010). Acta Cryst. E66, o615.]). The dihedral angle between the benzene ring and the naphthalene ring system [77.17 (5)°] is close to those of the three homologues [68.42 (5) and 71.69 (5)° for 1,8-dibenzoyl-2,7-di­eth­oxy­naphthalene; 83.59 (5)° for 1,8-dibenzoyl-2,7-di­meth­oxy­naphthalene; 61.97 (5)° for 1-(4-nitro­benzo­yl)-2,7-di­meth­oxy­naphthalene]. On the other hand, the torsion angle between the carbonyl group and the benzene ring is different from the homologues, i.e., the title compound [26.83 (17)°] > 1-(4-nitro­benzo­yl)-2,7-di­meth­oxy­naphthalene [−13.29 (17)°] >> 1,8-dibenzoyl-2,7-di­eth­oxy­naphthalene [1.58 (17)° and 1.44 (17)°] > 1,8-dibenzoyl-2,7-di­meth­oxy­naphthalene [0.4 (2)°]. Although the C—H⋯O=C inter­actions between the benzene ring and the ketonic carbonyl group are observed in all of four homologues, the C—H⋯O=N inter­action is observed only in the title compound.

5. Synthesis and crystallization

To a 10 ml flask, 4-nitro­benzoic acid (3.96 mmol, 735 mg), aluminium chloride (4.35 mmol, 580 mg) and methyl chloride (3.0 ml) were placed and stirred at 273 K. To reaction mixture thus obtained, 2,7-di­eth­oxy­naphthalene (0.6 mmol, 130 mg) was added. After the reaction mixture was stirred at 273 K for 48 h, it was poured into ice-cold water (10 ml). The aqueous layer was extracted with CHCl3 (10 ml×3). The combined extracts were washed with 2 M aqueous NaOH followed by washing with brine. The organic layers thus obtained were dried over anhydrous MgSO4. The solvent was removed under reduced pressure to give cake. The crude product was purified by reprecipitation (CHCl3/methanol) (isolated yield 27%). Finally, the isolated product was crystallized from CHCl3-hexane (v/v = 2:1) to give single crystals.

1H NMR (300 MHz, CDCl3): δ 0.91 (6H, t, J = 5.2 Hz), 3.98 (4H, q, J = 5.2 Hz), 7.18 (2H, d, J = 6.9 Hz), 7.91 (4H, d, J = 6.6 Hz), 8.00 (2H, d, J = 6.9 Hz), 8.26 (4H, d, J = 6.6 Hz); 13C NMR (75 MHz, CDCl3): δ 14.39, 64.90, 111.96, 119.88, 123.50, 125.48, 129.74, 130.82, 133.44, 144.19, 150.06, 156.77, 197.28; IR (KBr cm−1): 1662 (C=O), 1603, 1515, 1472 (Ar, naphthalene), 1229 (=C—O—C); HRMS (m/z): [M + H]+ Calculated for C28H22N2O8, 515.1410; found, 515.1449; m.p. = 556.4–568.5 K.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. All H atoms were located in a difference Fourier map and were subsequently refined as riding atoms, with C—H = 0.95 (aromatic), 0.98 (meth­yl) and 0.99 Å (methyl­ene), and with Uiso(H) = 1.2Ueq(C). The positions of methyl H atoms were rotationally optimized.

Table 2
Experimental details

Crystal data
Chemical formula C28H22N2O8
Mr 514.48
Crystal system, space group Monoclinic, C2/c
Temperature (K) 193
a, b, c (Å) 23.5359 (16), 10.2522 (5), 10.3605 (11)
β (°) 97.257 (14)
V3) 2479.9 (3)
Z 4
Radiation type Cu Kα
μ (mm−1) 0.86
Crystal size (mm) 0.50 × 0.40 × 0.20
 
Data collection
Diffractometer Rigaku R-AXIS RAPID
Absorption correction Numerical (NUMABS; Higashi, 1999[Higashi, T. (1999). NUMABS. Rigaku Corporation, Tokyo, Japan.])
Tmin, Tmax 0.674, 0.847
No. of measured, independent and observed [I > 2σ(I)] reflections 21420, 2272, 2118
Rint 0.044
(sin θ/λ)max−1) 0.602
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.101, 1.02
No. of reflections 2272
No. of parameters 175
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.21, −0.26
Computer programs: PROCESS-AUTO (Rigaku, 1998[Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.]), CrystalStructure (Rigaku, 2010[Rigaku (2010). CrystalStructure. Rigaku Corporation, Tokyo, Japan.]), SIR2004 (Burla et al., 2007[Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G., Siliqi, D. & Spagna, R. (2007). J. Appl. Cryst. 40, 609-613.]), SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and ORTEPIII (Burnett & Johnson, 1996[Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory. Tennessee, USA.]).

Supporting information


Chemical context top

Molecules with non-coplanarly accumulated aromatic rings, such as bi­phenyl and bi­naphthyl derivatives, have been in the limelight as unique building blocks affording characteristic optical and electronic properties (Hatano et al., 2013; Park et al., 2010; Vaghi et al., 2013) and asymmetric molecular environments (Bulman Page et al., 2012; Jayalakshmi et al., 2012; Kano et al., 2006; Wang et al., 2014). peri-Substituted naphthalenes have also much attention as characteristic aromatic ring core compounds and the structural analyses have been actively performed (Cohen et al., 2004; Jing et al., 2005).

In the course of our study on selective electrophilic aromatic aroylation of 2,7-di­meth­oxy­naphthalene, peri-aroyl­naphthalene compounds have proved to be formed regioselectively with the aid of suitable acidic mediator (Okamoto & Yonezawa, 2009; Okamoto et al., 2011). According to X-ray crystal analysis, the resulting 1,8-diaroyl­naphthalene and 1-monoaroyl­naphthalene compounds have non-coplanarly accumulated ring structures in their crystals. The aroyl groups at the 1,8-positions (or 1-position) of the naphthalene ring system in the molecules are situated in perpendicular fashion to the naphthalene ring system, as shown in 1,8-di­benzoyl-2,7-di­meth­oxy­naphthalene (Nakaema et al., 2008), 1,8-di­benzoyl-2,7-di­eth­oxy­naphthalene (Isogai et al., 2013) and 1-(4-nitro­benzoyl)-2,7-di­meth­oxy­naphthalene (Watanabe et al., 2010). As a part of our continuous study on the molecular structures of this kind of molecules, the X-ray crystal structure of the title compound is reported here.

Structural commentary top

The title molecule lies on a crystallographic twofold axis running through atoms C5 and C6 of the naphthalene unit so that the asymmetric unit consists of one half-molecule (Fig. 1). In the molecule, two aroyl groups are non-coplanarly attached to the naphthalene ring system. The torsion angles of the benzene ring and the naphthalene ring system with the ketonic carbonyl moiety (O1—C7—C8—C13 and C6—C1—C7—O1) are 26.83 (17) and 49.05 (15)°, respectively. The dihedral angle between the benzene ring and the naphthalene ring system is 77.17 (5)°. The benzene ring and the nitro group are approximately coplanar with a dihedral angle of 5.0 (2)°.

Supra­molecular features top

In the crystal, the molecular packing of the title compound is mainly stabilized by a pair of C—H···OC hydrogen bonds between the benzene ring and the ketonic carbonyl group (C13—H13···O1i; details and symmetry code in Table 1), which make an R22(10) ring motif (Fig. 2). The molecules are stacked through these inter­actions in a double-column along the c axis. The molecules are also linked by C—H···ON inter­actions between the benzene ring and the nitro group (C10—H10···O3ii; Table 1), forming a three-dimensional network and thus resulting in the inter­penetration of the naphthalene unit into the adjacent double-column. ππ inter­actions between the inter­penetrating naphthalene ring systems are observed; the inter­planar distance is 3.5326 (4) Å and the centroid–centroid distances are 3.7860 (7), 3.7859 (7) and 3.7858 (7) Å, respectively, for Cg1···Cg1vi, Cg1···Cg2vii and Cg2···Cg2viii, where Cg1 and Cg2 are the centroids of the six-membered C1–C6 and C1v–C4v/C5/C6 rings, respectively [symmetry codes: (v) -x+1, y, -z+1/2; (vi) -x+1, -y+1, -z; (vii) x, -y+1, z-1/2; (viii) -x+1, -y+1, -z+1]. C—H···π inter­actions between the methyl­ene group and the naphthalene ring system (C14—H14B···Cg1iii and C14—H14B···Cg2iv; Table 1 and Fig. 3) are also observed.

Database survey top

A search of the Cambridge Structural Database (Version 5.35, last update May 2014; Allen, 2002) showed 39 and 29 structures containing the 1,8-diaroyl­naphthalene (including 1,8-dialkanoyl­naphthalene) and 1,8-diaroyl-2,7-di­alk­oxy­naphthalene units, respectively. The title compound has a non-coplanarly accumulated aromatic-rings structure, as found in the nitro group-free 1,8-di­benzoyl­naphthalene homologues and the nitro-group-bearing 1-benzoyl­naphthalene homologue, viz. 1,8-di­benzoyl-2,7-di­meth­oxy­naphthalene (Nakaema et al., 2008) and 1,8-di­benzoyl-2,7-di­eth­oxy­naphthalene (Isogai et al., 2013), and 2,7-di­meth­oxy-1-(4-nitro­benzoyl)­naphthalene (Watanabe et al., 2010). The dihedral angle between the benzene ring and the naphthalene ring system [77.17 (5)°] is close to those of the three homologues [68.42 (5) and 71.69 (5)° for 1,8-di­benzoyl-2,7-di­eth­oxy­naphthalene; 83.59 (5)° for 1,8-di­benzoyl-2,7-di­meth­oxy­naphthalene; 61.97 (5)° for 1-(4-nitro­benzoyl)-2,7-di­meth­oxy­naphthalene]. On the other hand, the torsion angle between the carbonyl group and the benzene ring is different from the homologues, i.e., the title compound [26.83 (17)°] > 1-(4-nitro­benzoyl)-2,7-di­meth­oxy­naphthalene [-13.29 (17)°] >> 1,8-di­benzoyl-2,7-di­eth­oxy­naphthalene [1.58 (17)° and 1.44 (17)°] > 1,8-di­benzoyl-2,7-di­meth­oxy­naphthalene [0.4 (2)°]. Although the C—H···O C inter­actions between the benzene ring and the ketonic carbonyl group are observed in all of four homologues, the C—H···ON inter­action is observed only in the title compound.

Synthesis and crystallization top

To a 10 ml flask, 4-nitro­benzoic acid (3.96 mmol, 735 mg), aluminium chloride (4.35 mmol, 580 mg) and methyl chloride (3.0 ml) were placed and stirred at 273 K. To reaction mixture thus obtained, 2,7-di­eth­oxy­naphthalene (0.6 mmol, 130 mg) was added. After the reaction mixture was stirred at 273 K for 48 h, it was poured into ice-cold water (10 ml). The aqueous layer was extracted with CHCl3 (10 ml×3). The combined extracts were washed with 2 M aqueous NaOH followed by washing with brine. The organic layers thus obtained were dried over anhydrous MgSO4. The solvent was removed under reduced pressure to give cake. The crude product was purified by reprecipitation (CHCl3/methanol) (isolated yield 27%). Finally, the isolated product was crystallized from CHCl3-hexane (v/v = 2:1) to give single crystals.

1H NMR (300 MHz, CDCl3): δ 0.91 (6H, t, J = 5.2 Hz), 3.98 (4H, q, J = 5.2 Hz), 7.18 (2H, d, J = 6.9 Hz), 7.91 (4H, d, J = 6.6 Hz), 8.00 (2H, d, J = 6.9 Hz), 8.26 (4H, d, J = 6.6 Hz); 13C NMR (75 MHz, CDCl3): δ 14.39, 64.90, 111.96, 119.88, 123.50, 125.48, 129.74, 130.82, 133.44, 144.19, 150.06, 156.77, 197.28; IR (KBr cm-1): 1662 (CO), 1603, 1515, 1472 (Ar, naphthalene), 1229 (C—O—C); HRMS (m/z): [M + H]+ Calculated for C28H22N2O8, 515.1410; found, 515.1449; m.p. = 556.4–568.5 K.

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 2. All H atoms were located in a difference Fourier map and were subsequently refined as riding atoms, with C—H = 0.95 (aromatic), 0.98 (methyl) and 0.99 Å (methyl­ene), and with Uiso(H) = 1.2 Ueq(C). The positions of methyl H atoms were rotationally optimized.

Related literature top

For related literature, see: Bulman Page, Bartlett, Chan, Day, Parker, Buckley, Rassias, Slawin, Allin & Lacour (2012); Burnett & Johnson (1996); Cohen et al. (2004); Hatano et al. (2013); Isogai et al. (2013); Jayalakshmi et al. (2012); Jing et al. (2005); Kano et al. (2006); Nakaema et al. (2008); Okamoto & Yonezawa (2009); Okamoto et al. (2011); Park et al. (2010); Vaghi et al. (2013); Wang et al. (2014); Watanabe et al. (2010).

Computing details top

Data collection: PROCESS-AUTO (Rigaku, 1998); cell refinement: PROCESS-AUTO (Rigaku, 1998); data reduction: CrystalStructure (Rigaku, 2010); program(s) used to solve structure: SIR2004 (Burla et al., 2007); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atom numbering. The displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. A crystal packing view of the title compound, showing the intermolecular C—H···OC and C—H···ON interactions. [Symmetry codes: (i) 1 - x, -y, -z; (ii) 3/2 - x, 1/2 + y, 1/2 - z.]
[Figure 3] Fig. 3. A crystal packing view of the title compound, showing the intermolecular C—H···π interactions (dashed lines) and ππ interactions (double dashed lines).
2,7-Diethoxy-1,8-bis(4-nitrobenzoyl)naphthalene top
Crystal data top
C28H22N2O8F(000) = 1072
Mr = 514.48Dx = 1.378 Mg m3
Monoclinic, C2/cCu Kα radiation, λ = 1.54187 Å
Hall symbol: -C 2ycCell parameters from 1640 reflections
a = 23.5359 (16) Åθ = 3.8–67.5°
b = 10.2522 (5) ŵ = 0.86 mm1
c = 10.3605 (11) ÅT = 193 K
β = 97.257 (14)°Block, yellow
V = 2479.9 (3) Å30.50 × 0.40 × 0.20 mm
Z = 4
Data collection top
Rigaku R-AXIS RAPID
diffractometer
2272 independent reflections
Radiation source: rotating anode2118 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.044
Detector resolution: 10.000 pixels mm-1θmax = 68.2°, θmin = 3.8°
ω scansh = 2827
Absorption correction: numerical
(NUMABS; Higashi, 1999)
k = 1212
Tmin = 0.674, Tmax = 0.847l = 1212
21420 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.037H-atom parameters constrained
wR(F2) = 0.101 w = 1/[σ2(Fo2) + (0.0552P)2 + 1.320P]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max = 0.001
2272 reflectionsΔρmax = 0.21 e Å3
175 parametersΔρmin = 0.26 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0031 (2)
Crystal data top
C28H22N2O8V = 2479.9 (3) Å3
Mr = 514.48Z = 4
Monoclinic, C2/cCu Kα radiation
a = 23.5359 (16) ŵ = 0.86 mm1
b = 10.2522 (5) ÅT = 193 K
c = 10.3605 (11) Å0.50 × 0.40 × 0.20 mm
β = 97.257 (14)°
Data collection top
Rigaku R-AXIS RAPID
diffractometer
2272 independent reflections
Absorption correction: numerical
(NUMABS; Higashi, 1999)
2118 reflections with I > 2σ(I)
Tmin = 0.674, Tmax = 0.847Rint = 0.044
21420 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0370 restraints
wR(F2) = 0.101H-atom parameters constrained
S = 1.02Δρmax = 0.21 e Å3
2272 reflectionsΔρmin = 0.26 e Å3
175 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.48373 (3)0.18553 (8)0.10345 (8)0.0365 (2)
O20.60134 (4)0.37631 (9)0.01960 (9)0.0428 (3)
O30.72391 (7)0.19473 (16)0.10952 (14)0.0991 (6)
O40.76491 (5)0.08350 (14)0.27145 (16)0.0812 (4)
N10.72522 (6)0.10377 (14)0.18632 (14)0.0584 (4)
C10.53601 (5)0.37563 (12)0.16932 (11)0.0305 (3)
C20.57104 (5)0.44716 (13)0.09761 (11)0.0347 (3)
C30.57153 (5)0.58479 (13)0.10108 (12)0.0397 (3)
H30.59620.63270.05280.048*
C40.53620 (5)0.64790 (13)0.17435 (12)0.0396 (3)
H40.53590.74060.17460.048*
C50.50000.58029 (16)0.25000.0346 (4)
C60.50000.44053 (16)0.25000.0303 (4)
C70.53051 (5)0.23260 (12)0.14003 (11)0.0306 (3)
C80.58275 (5)0.14797 (11)0.15282 (11)0.0325 (3)
C90.63069 (5)0.17560 (12)0.24136 (12)0.0368 (3)
H90.63130.25220.29320.044*
C100.67737 (5)0.09281 (13)0.25474 (13)0.0415 (3)
H100.70990.11020.31640.050*
C110.67537 (6)0.01629 (13)0.17554 (14)0.0422 (3)
C120.62879 (6)0.04532 (13)0.08520 (14)0.0455 (3)
H120.62880.12040.03140.055*
C130.58214 (6)0.03741 (13)0.07495 (13)0.0410 (3)
H130.54940.01870.01430.049*
C140.64361 (6)0.43699 (15)0.04805 (14)0.0458 (3)
H14A0.66980.49130.01210.055*
H14B0.62520.49300.11930.055*
C150.67573 (7)0.32734 (18)0.10160 (18)0.0615 (4)
H15A0.69520.27560.02970.074*
H15B0.70410.36310.15350.074*
H15C0.64880.27170.15670.074*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0325 (5)0.0357 (5)0.0403 (5)0.0042 (3)0.0003 (3)0.0047 (4)
O20.0451 (5)0.0403 (5)0.0458 (5)0.0028 (4)0.0167 (4)0.0027 (4)
O30.1189 (12)0.1059 (12)0.0720 (9)0.0757 (10)0.0100 (8)0.0127 (8)
O40.0517 (7)0.0739 (9)0.1132 (11)0.0221 (6)0.0077 (7)0.0084 (8)
N10.0580 (8)0.0581 (8)0.0623 (8)0.0231 (6)0.0198 (7)0.0154 (7)
C10.0301 (6)0.0293 (6)0.0306 (6)0.0002 (4)0.0027 (5)0.0010 (4)
C20.0338 (6)0.0353 (7)0.0338 (6)0.0014 (5)0.0004 (5)0.0012 (5)
C30.0414 (7)0.0351 (7)0.0418 (7)0.0071 (5)0.0024 (5)0.0071 (5)
C40.0463 (7)0.0276 (6)0.0427 (7)0.0031 (5)0.0033 (6)0.0033 (5)
C50.0370 (9)0.0294 (9)0.0349 (8)0.0000.0050 (7)0.000
C60.0304 (8)0.0282 (8)0.0300 (8)0.0000.0047 (6)0.000
C70.0327 (6)0.0323 (6)0.0266 (5)0.0025 (5)0.0024 (4)0.0004 (5)
C80.0334 (6)0.0291 (6)0.0354 (6)0.0036 (5)0.0058 (5)0.0004 (5)
C90.0364 (6)0.0340 (7)0.0393 (6)0.0015 (5)0.0024 (5)0.0027 (5)
C100.0346 (7)0.0444 (8)0.0447 (7)0.0002 (5)0.0017 (5)0.0042 (6)
C110.0394 (7)0.0388 (7)0.0507 (7)0.0082 (5)0.0140 (6)0.0090 (6)
C120.0502 (8)0.0351 (7)0.0528 (8)0.0026 (6)0.0129 (6)0.0074 (6)
C130.0385 (7)0.0377 (7)0.0464 (7)0.0029 (5)0.0036 (5)0.0085 (6)
C140.0384 (7)0.0536 (8)0.0463 (7)0.0059 (6)0.0094 (6)0.0084 (6)
C150.0469 (8)0.0731 (11)0.0686 (10)0.0035 (7)0.0238 (7)0.0044 (8)
Geometric parameters (Å, º) top
O1—C71.2181 (14)C7—C81.4970 (16)
O2—C21.3546 (15)C8—C131.3903 (17)
O2—C141.4298 (15)C8—C91.3904 (17)
O3—N11.224 (2)C9—C101.3813 (18)
O4—N11.2188 (19)C9—H90.9500
N1—C111.4698 (17)C10—C111.385 (2)
C1—C21.3872 (17)C10—H100.9500
C1—C61.4278 (14)C11—C121.381 (2)
C1—C71.4997 (17)C12—C131.3809 (19)
C2—C31.4116 (19)C12—H120.9500
C3—C41.3584 (19)C13—H130.9500
C3—H30.9500C14—C151.500 (2)
C4—C51.4105 (15)C14—H14A0.9900
C4—H40.9500C14—H14B0.9900
C5—C4i1.4105 (15)C15—H15A0.9800
C5—C61.433 (2)C15—H15B0.9800
C6—C1i1.4278 (14)C15—H15C0.9800
C2—O2—C14120.70 (11)C10—C9—C8120.65 (12)
O4—N1—O3123.69 (14)C10—C9—H9119.7
O4—N1—C11118.84 (14)C8—C9—H9119.7
O3—N1—C11117.46 (15)C9—C10—C11118.03 (12)
C2—C1—C6120.28 (12)C9—C10—H10121.0
C2—C1—C7116.77 (10)C11—C10—H10121.0
C6—C1—C7122.12 (11)C12—C11—C10122.71 (12)
O2—C2—C1115.43 (11)C12—C11—N1118.54 (13)
O2—C2—C3123.23 (11)C10—C11—N1118.75 (13)
C1—C2—C3121.22 (12)C11—C12—C13118.37 (12)
C4—C3—C2119.13 (12)C11—C12—H12120.8
C4—C3—H3120.4C13—C12—H12120.8
C2—C3—H3120.4C12—C13—C8120.41 (12)
C3—C4—C5122.13 (12)C12—C13—H13119.8
C3—C4—H4118.9C8—C13—H13119.8
C5—C4—H4118.9O2—C14—C15105.65 (12)
C4i—C5—C4121.13 (16)O2—C14—H14A110.6
C4i—C5—C6119.43 (8)C15—C14—H14A110.6
C4—C5—C6119.43 (8)O2—C14—H14B110.6
C1—C6—C1i124.45 (15)C15—C14—H14B110.6
C1—C6—C5117.77 (7)H14A—C14—H14B108.7
C1i—C6—C5117.77 (7)C14—C15—H15A109.5
O1—C7—C1120.12 (10)C14—C15—H15B109.5
O1—C7—C8119.87 (11)H15A—C15—H15B109.5
C1—C7—C8120.00 (9)C14—C15—H15C109.5
C13—C8—C9119.81 (12)H15A—C15—H15C109.5
C13—C8—C7118.22 (11)H15B—C15—H15C109.5
C9—C8—C7121.96 (11)
C14—O2—C2—C1173.03 (10)C2—C1—C7—C858.11 (14)
C14—O2—C2—C310.93 (18)C6—C1—C7—C8132.34 (10)
C6—C1—C2—O2176.93 (8)O1—C7—C8—C1326.83 (17)
C7—C1—C2—O27.18 (14)C1—C7—C8—C13151.79 (11)
C6—C1—C2—C30.81 (16)O1—C7—C8—C9151.86 (12)
C7—C1—C2—C3168.94 (11)C1—C7—C8—C929.52 (17)
O2—C2—C3—C4174.63 (11)C13—C8—C9—C101.34 (19)
C1—C2—C3—C41.18 (18)C7—C8—C9—C10177.33 (11)
C2—C3—C4—C51.68 (18)C8—C9—C10—C111.42 (19)
C3—C4—C5—C4i179.81 (13)C9—C10—C11—C120.4 (2)
C3—C4—C5—C60.19 (13)C9—C10—C11—N1178.57 (12)
C2—C1—C6—C1i177.76 (11)O4—N1—C11—C12175.30 (14)
C7—C1—C6—C1i13.05 (7)O3—N1—C11—C123.6 (2)
C2—C1—C6—C52.24 (11)O4—N1—C11—C105.7 (2)
C7—C1—C6—C5166.95 (7)O3—N1—C11—C10175.35 (14)
C4i—C5—C6—C1178.24 (8)C10—C11—C12—C130.8 (2)
C4—C5—C6—C11.76 (8)N1—C11—C12—C13179.72 (12)
C4i—C5—C6—C1i1.76 (8)C11—C12—C13—C80.9 (2)
C4—C5—C6—C1i178.24 (8)C9—C8—C13—C120.2 (2)
C2—C1—C7—O1120.50 (12)C7—C8—C13—C12178.56 (12)
C6—C1—C7—O149.05 (15)C2—O2—C14—C15169.06 (11)
Symmetry code: (i) x+1, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the six-membered C1–C6 and C1v–C4v/C5/C6 rings, respectively. [Symmetry code: (v) -x+1, y, -z+1/2.]
D—H···AD—HH···AD···AD—H···A
C13—H13···O1ii0.952.503.2129 (17)132
C10—H10···O3iii0.952.593.360 (2)138
C14—H14B···Cg1iv0.992.813.6284 (15)140
C14—H14B···Cg2v0.992.813.6284 (15)140
Symmetry codes: (ii) x+1, y, z; (iii) x+3/2, y+1/2, z+1/2; (iv) x, y, z1/2; (v) x, y, z+1.
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the six-membered C1–C6 and C1v–C4v/C5/C6 rings, respectively. [Symmetry code: (v) -x+1, y, -z+1/2.]
D—H···AD—HH···AD···AD—H···A
C13—H13···O1i0.952.503.2129 (17)132
C10—H10···O3ii0.952.593.360 (2)138
C14—H14B···Cg1iii0.992.813.6284 (15)140
C14—H14B···Cg2iv0.992.813.6284 (15)140
Symmetry codes: (i) x+1, y, z; (ii) x+3/2, y+1/2, z+1/2; (iii) x, y, z1/2; (iv) x, y, z+1.

Experimental details

Crystal data
Chemical formulaC28H22N2O8
Mr514.48
Crystal system, space groupMonoclinic, C2/c
Temperature (K)193
a, b, c (Å)23.5359 (16), 10.2522 (5), 10.3605 (11)
β (°) 97.257 (14)
V3)2479.9 (3)
Z4
Radiation typeCu Kα
µ (mm1)0.86
Crystal size (mm)0.50 × 0.40 × 0.20
Data collection
DiffractometerRigaku R-AXIS RAPID
diffractometer
Absorption correctionNumerical
(NUMABS; Higashi, 1999)
Tmin, Tmax0.674, 0.847
No. of measured, independent and
observed [I > 2σ(I)] reflections
21420, 2272, 2118
Rint0.044
(sin θ/λ)max1)0.602
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.101, 1.02
No. of reflections2272
No. of parameters175
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.21, 0.26

Computer programs: PROCESS-AUTO (Rigaku, 1998), CrystalStructure (Rigaku, 2010), SIR2004 (Burla et al., 2007), SHELXL97 (Sheldrick, 2008), ORTEPIII (Burnett & Johnson, 1996).

 

Acknowledgements

This work was supported by the Ogasawara Foundation for the Promotion of Science Engineering, Tokyo, Japan.

References

First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBulman Page, P. C., Bartlett, C. J., Chan, Y., Day, D., Parker, P., Buckley, B. R., Rassias, G. A., Slawin, A. M. Z., Allin, S. M. & Lacour, J. (2012). J. Org. Chem. 77, 6128–6138.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationBurla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G., Siliqi, D. & Spagna, R. (2007). J. Appl. Cryst. 40, 609–613.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBurnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory. Tennessee, USA.  Google Scholar
First citationCohen, S., Thirumalaikumar, M., Pogodin, S. & Agranat, I. (2004). Struct. Chem. 15, 339–346.  Web of Science CSD CrossRef CAS Google Scholar
First citationHatano, S., Horino, T., Tokita, A., Oshima, T. & Abe, J. (2013). J. Am. Chem. Soc. 135, 3164–3172.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationHigashi, T. (1999). NUMABS. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationIsogai, A., Tsumuki, T., Murohashi, S., Okamoto, A. & Yonezawa, N. (2013). Acta Cryst. E69, o71.  CSD CrossRef IUCr Journals Google Scholar
First citationJayalakshmi, V., Wood, T., Basu, R., Du, J., Blackburn, T., Rosenblatt, C., Crudden, C. M. & Lemieux, R. P. (2012). J. Mater. Chem. 22, 15255–15261.  Web of Science CrossRef CAS Google Scholar
First citationJing, L.-H., Qin, D.-B., He, L., Gu, S.-J., Zhang, H.-X. & Lei, G. (2005). Acta Cryst. E61, o3595–o3596.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationKano, T., Tokuda, O. & Maruoka, K. (2006). Tetrahedron Lett. 47, 7423–7426.  Web of Science CrossRef CAS Google Scholar
First citationNakaema, K., Watanabe, S., Okamoto, A., Noguchi, K. & Yonezawa, N. (2008). Acta Cryst. E64, o807.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationOkamoto, A., Mitsui, R., Oike, H. & Yonezawa, N. (2011). Chem. Lett. 40, 1283–1284.  Web of Science CrossRef CAS Google Scholar
First citationOkamoto, A. & Yonezawa, N. (2009). Chem. Lett. 38, 914–915.  Web of Science CrossRef CAS Google Scholar
First citationPark, J. K., Lee, K. H., Park, J. S., Seo, J. H., Kim, Y. K. & Yoon, S. S. (2010). Mol. Cryst. Liq. Cryst. 531, 55–64.  CAS Google Scholar
First citationRigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (2010). CrystalStructure. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVaghi, L., Benincori, T., Cirilli, R., Alberico, E., Mussini, P., Romana, P., Marco, P. T., Rizzo, S. & Sannicolo, F. (2013). Eur. J. Org. Chem. pp. 8174–8184.  Web of Science CSD CrossRef Google Scholar
First citationWang, Y., McGonigal, P. R., Herle, B., Basora, M. & Echavarren, A. (2014). J. Am. Chem. Soc. 136, 801–809.  Web of Science CrossRef CAS PubMed Google Scholar
First citationWatanabe, S., Nakaema, K., Nishijima, T., Okamoto, A. & Yonezawa, N. (2010). Acta Cryst. E66, o615.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds