metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 2| February 2014| Pages m63-m64

Bis(n-do­decyl­ammonium) bis­­(chlor­anil­ato)di­ethano­lcuprate(II)

aDepartment of Chemistry, Faculty of Science, Fukuoka University, Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan
*Correspondence e-mail: kawata@fukuoka-u.ac.jp

(Received 11 January 2014; accepted 17 January 2014; online 22 January 2014)

In the title compound, (C12H25NH3)2[Cu(C6Cl2O4)2(C2H5OH)2], the CuII atom lies on a crystallographic inversion center and is coordinated in a distorted octa­hedral geometry by four O atoms of two chloranilate ligands and two O atoms of two ethanol mol­ecules which are trans to each other in the axial positions. In the crystal, the CuII mononuclear dianions are linked by O—H⋯O hydrogen bonds into a tape along the a-axis direction. The tapes are linked through N—H⋯O hydrogen bonds between the dianion and the n-do­decyl­ammonium cation, forming a two-dimensional network parallel to the ab plane.

Related literature

For metal complexes of chloranilic acid, see: Kawata & Kitagawa (2002[Kawata, S. & Kitagawa, S. (2002). Coord. Chem. Rev. 224, 11-34.]); Kawata et al. (2000[Kawata, S., Kumagai, H., Adachi, K. & Kitagawa, S. (2000). Dalton Trans. pp. 2409-2417.]); Luo et al. (2004[Luo, T., Liu, Y., Tsai, H., Su, C., Ueng, C. & Lu, K. (2004). Eur. J. Inorg. Chem. pp. 4253-4258.]); Abrahams et al. (2011[Abrahams, B. F., Grannas, M. J., Hudson, T. A., Hughes, S. A., Pranoto, N. H. & Robson, R. (2011). Dalton Trans. 40, 12242-12247.]); Nagayoshi et al. (2003[Nagayoshi, K., Kabir, M. K., Tobita, H., Honda, K., Kawahara, M., Katada, M., Adachi, K., Nishikawa, H., Ikemoto, I., Kumagai, H., Hosokoshi, Y., Inoue, K., Kitagawa, S. & Kawata, S. (2003). J. Am. Chem. Soc. 125, 221-232.]); Nishimura et al. (2013[Nishimura, Y., Himegi, A., Fuyuhiro, A., Hayami, S. & Kawata, S. (2013). Acta Cryst. E69, m119-m120.]).

[Scheme 1]

Experimental

Crystal data
  • (C12H28N)2[Cu(C6Cl2O4)2(C2H6O)2]

  • Mr = 942.34

  • Triclinic, [P \overline 1]

  • a = 9.2192 (15) Å

  • b = 9.4791 (13) Å

  • c = 15.162 (3) Å

  • α = 76.894 (9)°

  • β = 89.133 (10)°

  • γ = 63.110 (6)°

  • V = 1145.1 (4) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 0.76 mm−1

  • T = 100 K

  • 0.40 × 0.30 × 0.05 mm

Data collection
  • Rigaku Saturn724 diffractometer

  • Absorption correction: multi-scan (REQAB; Rigaku, 1998[Rigaku (1998). REQAB. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.868, Tmax = 0.962

  • 17151 measured reflections

  • 5207 independent reflections

  • 4796 reflections with I > 2σ(I)

  • Rint = 0.025

Refinement
  • R[F2 > 2σ(F2)] = 0.031

  • wR(F2) = 0.079

  • S = 1.09

  • 5207 reflections

  • 275 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.92 e Å−3

  • Δρmin = −0.34 e Å−3

Table 1
Selected bond lengths (Å)

Cu1—O1 1.9489 (10)
Cu1—O2 1.9657 (10)
Cu1—O5 2.4097 (13)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O5—H1⋯O3i 0.88 (3) 1.94 (3) 2.8145 (16) 172 (3)
N1—H2⋯O1ii 0.91 (3) 1.97 (2) 2.8562 (16) 167 (3)
N1—H3⋯O3 0.89 (3) 2.05 (3) 2.928 (2) 168.3 (17)
N1—H4⋯O3iii 0.87 (3) 2.12 (3) 2.9784 (19) 171 (3)
N1—H4⋯O4iii 0.87 (3) 2.50 (3) 2.9842 (19) 116.2 (13)
Symmetry codes: (i) x+1, y, z; (ii) -x+1, -y, -z+2; (iii) -x, -y, -z+2.

Data collection: CrystalClear (Rigaku, 2010[Rigaku (2010). CrystalStructure. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: Il Milione (Burla et al., 2007[Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G., Siliqi, D. & Spagna, R. (2007). J. Appl. Cryst. 40, 609-613.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: CrystalStructure (Rigaku, 2010[Rigaku (2010). CrystalStructure. Rigaku Corporation, Tokyo, Japan.]); software used to prepare material for publication: CrystalStructure.

Supporting information


Comment top

Chloranilic acid (H2CA = 2,5-dichloro-3,6-dihydroxy-1,4-benzoquinone) and its homologues, which contain two chelating coordination sites, are capable of bridging metal centers to form monomeric molecules, chains, sheets, or three-dimensional structures (Kawata & Kitagawa, 2002; Luo et al., 2004; Abrahams et al., 2011). In line with our study of metal-chloranilate complexes, we have been trying to develop metal-chloranilate hybrid materials and have found host–guest compounds (Kawata et al., 2000; Nagayoshi et al., 2003; Nishimura et al., 2013). We report here, a novel inorganic-organic hybrid system by using metal-chloranirate complexes as host layers and alkylamines as guests.

The title compound, (C12H25NH3)2[Cu(C6Cl2O4)2(C2H5OH)2], consists of the mononuclear [Cu(CA)2(EtOH)2]2- dianion and the protonated n-dodecylamine (Hda+). The CuII atom lies on a crystallographic inversion center. The geometry around the CuII atom is a distorted octahedron involving four O atoms of two CA2- anions and two O atoms from two ethanol molecules which are trans to each other. The axial bond distances are much longer than the equatorial ones (Table 1). The [Cu(CA)2(EtOH)2]2- anions make a tape structure running along the a axis (Fig. 2) via an intermolecular O—H···O hydrogen bond (Table 2) between the coordinated ethanol molecule and the terminal oxygen atom of CA2-. The tapes are linked through N—H···O hydrogen bonds (Table 2) between the dianion and the Hda+ cation, forming a two-dimensional network expanding parallel to the ab plane (Fig. 3).

Related literature top

For metal complexes of chloranilic acid, see: Kawata & Kitagawa (2002); Kawata et al. (2000); Luo et al. (2004); Abrahams et al. (2011); Nagayoshi et al. (2003); Nishimura et al. (2013).

Experimental top

An aqueous solution of copper sulfate pentahydrate (1 ml, 20 mmol L-1) was transferred to a glass tube, and then a mixture of n-dodecylamine (1 ml, 40 mmol L-1) in ethanol-water (1:1) solution and H2CA (1 ml, 60 mmol L-1) in ethanol solution was poured into the tube without mixing the two solutions. Violet crystals began to form at ambient temperature within two weeks. One of these crystals was used for X-ray crystallography.

Refinement top

The C-bound H atoms in the alkyl chain of Hda+ ion and the ethyl group of the ethanol molecule were placed at calculated positions with C—H = 0.99 (CH2) and C—H = 0.98 (CH3) Å, and were treated as riding on their parent atoms with Uiso(H) set to 1.2Ueq(C). The O-bound and N-bound H atoms were located in a difference Fourier map and refined freely.

Structure description top

Chloranilic acid (H2CA = 2,5-dichloro-3,6-dihydroxy-1,4-benzoquinone) and its homologues, which contain two chelating coordination sites, are capable of bridging metal centers to form monomeric molecules, chains, sheets, or three-dimensional structures (Kawata & Kitagawa, 2002; Luo et al., 2004; Abrahams et al., 2011). In line with our study of metal-chloranilate complexes, we have been trying to develop metal-chloranilate hybrid materials and have found host–guest compounds (Kawata et al., 2000; Nagayoshi et al., 2003; Nishimura et al., 2013). We report here, a novel inorganic-organic hybrid system by using metal-chloranirate complexes as host layers and alkylamines as guests.

The title compound, (C12H25NH3)2[Cu(C6Cl2O4)2(C2H5OH)2], consists of the mononuclear [Cu(CA)2(EtOH)2]2- dianion and the protonated n-dodecylamine (Hda+). The CuII atom lies on a crystallographic inversion center. The geometry around the CuII atom is a distorted octahedron involving four O atoms of two CA2- anions and two O atoms from two ethanol molecules which are trans to each other. The axial bond distances are much longer than the equatorial ones (Table 1). The [Cu(CA)2(EtOH)2]2- anions make a tape structure running along the a axis (Fig. 2) via an intermolecular O—H···O hydrogen bond (Table 2) between the coordinated ethanol molecule and the terminal oxygen atom of CA2-. The tapes are linked through N—H···O hydrogen bonds (Table 2) between the dianion and the Hda+ cation, forming a two-dimensional network expanding parallel to the ab plane (Fig. 3).

For metal complexes of chloranilic acid, see: Kawata & Kitagawa (2002); Kawata et al. (2000); Luo et al. (2004); Abrahams et al. (2011); Nagayoshi et al. (2003); Nishimura et al. (2013).

Computing details top

Data collection: CrystalClear (Rigaku, 2010); cell refinement: CrystalClear (Rigaku, 2010); data reduction: CrystalClear (Rigaku, 2010); program(s) used to solve structure: Il Milione (Burla et al., 2007); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: CrystalStructure (Rigaku, 2010); software used to prepare material for publication: CrystalStructure (Rigaku, 2010).

Figures top
[Figure 1] Fig. 1. An ORTEP drawing of the title complex compound, showing 50% probability displacement elipsoids.
[Figure 2] Fig. 2. A packing diagram showing tape structures of [Cu(CA)2(EtOH)2]2- ions. The dashed lines denote the O—H···O hydrogen bonds.
[Figure 3] Fig. 3. A packing diagram of the title compound, viewed along the b axis.
Bis(n-dodecylammonium) bis(chloranilato)diethanolcuprate(II) top
Crystal data top
(C12H28N)2[Cu(C6Cl2O4)2(C2H6O)2]Z = 1
Mr = 942.34F(000) = 499.00
Triclinic, P1Dx = 1.366 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71075 Å
a = 9.2192 (15) ÅCell parameters from 3320 reflections
b = 9.4791 (13) Åθ = 3.1–27.5°
c = 15.162 (3) ŵ = 0.76 mm1
α = 76.894 (9)°T = 100 K
β = 89.133 (10)°Platelet, violet
γ = 63.110 (6)°0.40 × 0.30 × 0.05 mm
V = 1145.1 (4) Å3
Data collection top
Rigaku Saturn724
diffractometer
4796 reflections with F2 > 2.0σ(F2)
Detector resolution: 7.111 pixels mm-1Rint = 0.025
ω scansθmax = 27.5°
Absorption correction: multi-scan
(REQAB; Rigaku, 1998)
h = 1111
Tmin = 0.868, Tmax = 0.962k = 1212
17151 measured reflectionsl = 1919
5207 independent reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.031Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.079H atoms treated by a mixture of independent and constrained refinement
S = 1.09 w = 1/[σ2(Fo2) + (0.037P)2 + 0.6543P]
where P = (Fo2 + 2Fc2)/3
5207 reflections(Δ/σ)max = 0.001
275 parametersΔρmax = 0.92 e Å3
0 restraintsΔρmin = 0.34 e Å3
Primary atom site location: structure-invariant direct methods
Crystal data top
(C12H28N)2[Cu(C6Cl2O4)2(C2H6O)2]γ = 63.110 (6)°
Mr = 942.34V = 1145.1 (4) Å3
Triclinic, P1Z = 1
a = 9.2192 (15) ÅMo Kα radiation
b = 9.4791 (13) ŵ = 0.76 mm1
c = 15.162 (3) ÅT = 100 K
α = 76.894 (9)°0.40 × 0.30 × 0.05 mm
β = 89.133 (10)°
Data collection top
Rigaku Saturn724
diffractometer
5207 independent reflections
Absorption correction: multi-scan
(REQAB; Rigaku, 1998)
4796 reflections with F2 > 2.0σ(F2)
Tmin = 0.868, Tmax = 0.962Rint = 0.025
17151 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0310 restraints
wR(F2) = 0.079H atoms treated by a mixture of independent and constrained refinement
S = 1.09Δρmax = 0.92 e Å3
5207 reflectionsΔρmin = 0.34 e Å3
275 parameters
Special details top

Geometry. ENTER SPECIAL DETAILS OF THE MOLECULAR GEOMETRY

Refinement. Refinement was performed using all reflections. The weighted R-factor (wR) and goodness of fit (S) are based on F2. R-factor (gt) are based on F. The threshold expression of F2 > 2.0 σ(F2) is used only for calculating R-factor (gt).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.50000.50001.00000.01636 (8)
Cl10.53483 (4)0.04086 (4)1.14542 (2)0.01736 (8)
Cl20.00556 (4)0.55604 (4)0.85100 (2)0.01622 (8)
O10.52991 (12)0.28029 (12)1.05403 (7)0.0178 (2)
O20.29500 (12)0.53156 (12)0.94162 (7)0.0165 (2)
O30.00228 (12)0.23827 (12)0.94210 (7)0.0169 (2)
O40.22249 (13)0.00706 (13)1.06624 (7)0.0198 (2)
O50.66424 (15)0.42290 (16)0.87749 (8)0.0302 (3)
N10.12545 (15)0.08274 (16)0.90253 (9)0.0157 (2)
C10.40568 (16)0.26123 (17)1.03371 (9)0.0135 (3)
C20.27283 (16)0.40582 (16)0.96559 (9)0.0135 (3)
C30.13943 (16)0.39417 (17)0.93232 (9)0.0139 (3)
C40.11687 (16)0.25682 (16)0.96583 (9)0.0135 (3)
C50.24721 (16)0.11209 (16)1.03867 (9)0.0139 (3)
C60.38592 (17)0.12498 (17)1.06779 (9)0.0141 (3)
C70.6455 (2)0.3845 (2)0.79473 (12)0.0291 (4)
H7A0.66550.26970.80720.035*
H7B0.72670.39660.75430.035*
C80.4764 (2)0.4956 (3)0.74834 (13)0.0372 (4)
H8A0.45750.60900.73520.045*
H8B0.39630.48260.78820.045*
H8C0.46480.46780.69130.045*
C90.08326 (18)0.09264 (18)0.80967 (10)0.0191 (3)
H9A0.03640.02890.79370.023*
H9B0.11530.20770.81050.023*
C100.16933 (18)0.02718 (18)0.73788 (10)0.0190 (3)
H10A0.15830.05830.68120.023*
H10B0.28730.08050.75900.023*
C110.10505 (18)0.15795 (18)0.71583 (10)0.0192 (3)
H11A0.01150.21230.69170.023*
H11B0.11210.19060.77260.023*
C120.20052 (18)0.21605 (19)0.64636 (10)0.0198 (3)
H12A0.31730.16020.67040.024*
H12B0.19250.18400.58960.024*
C130.13993 (19)0.40005 (19)0.62405 (11)0.0220 (3)
H13A0.14390.43270.68120.026*
H13B0.02440.45580.59790.026*
C140.23900 (19)0.45781 (19)0.55735 (11)0.0212 (3)
H14A0.35480.40150.58320.025*
H14B0.23400.42640.49990.025*
C150.17839 (19)0.64171 (19)0.53626 (11)0.0222 (3)
H15A0.17240.67410.59440.027*
H15B0.06620.69720.50510.027*
C160.28427 (19)0.70182 (19)0.47717 (11)0.0236 (3)
H16A0.29560.66470.42030.028*
H16B0.39480.65220.50980.028*
C170.2144 (2)0.88713 (19)0.45306 (11)0.0243 (3)
H17A0.10680.93570.41730.029*
H17B0.19590.92410.51020.029*
C180.3209 (2)0.9526 (2)0.39921 (12)0.0273 (4)
H18A0.34260.91370.34270.033*
H18B0.42720.90830.43560.033*
C190.2427 (2)1.1383 (2)0.37427 (13)0.0307 (4)
H19A0.14221.18170.33270.037*
H19B0.21001.17720.43020.037*
C200.3529 (3)1.2073 (2)0.32906 (15)0.0389 (5)
H20A0.38351.17220.27260.047*
H20B0.45161.16750.37030.047*
H20C0.29461.32680.31510.047*
H10.769 (3)0.374 (3)0.8970 (16)0.044 (6)*
H20.235 (3)0.131 (2)0.9169 (13)0.021 (5)*
H30.088 (2)0.020 (2)0.9063 (12)0.020 (4)*
H40.082 (2)0.129 (2)0.9432 (14)0.025 (5)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.01280 (12)0.01202 (12)0.02484 (14)0.00770 (10)0.00397 (9)0.00092 (10)
Cl10.01591 (16)0.01415 (16)0.01890 (16)0.00615 (13)0.00402 (12)0.00037 (12)
Cl20.01428 (15)0.01421 (16)0.01823 (16)0.00668 (12)0.00354 (12)0.00018 (12)
O10.0131 (5)0.0140 (5)0.0256 (6)0.0073 (4)0.0046 (4)0.0007 (4)
O20.0147 (5)0.0131 (5)0.0222 (5)0.0083 (4)0.0027 (4)0.0008 (4)
O30.0140 (5)0.0160 (5)0.0223 (5)0.0092 (4)0.0012 (4)0.0024 (4)
O40.0184 (5)0.0163 (5)0.0257 (6)0.0116 (5)0.0023 (4)0.0013 (5)
O50.0188 (6)0.0397 (7)0.0288 (7)0.0085 (6)0.0005 (5)0.0129 (6)
N10.0147 (6)0.0150 (6)0.0187 (6)0.0089 (5)0.0003 (5)0.0017 (5)
C10.0107 (6)0.0137 (7)0.0164 (7)0.0055 (5)0.0006 (5)0.0045 (5)
C20.0121 (6)0.0126 (7)0.0164 (7)0.0059 (5)0.0020 (5)0.0041 (5)
C30.0112 (6)0.0131 (7)0.0157 (7)0.0046 (5)0.0007 (5)0.0024 (5)
C40.0115 (6)0.0136 (7)0.0159 (7)0.0058 (5)0.0019 (5)0.0046 (5)
C50.0131 (7)0.0134 (7)0.0153 (7)0.0065 (6)0.0021 (5)0.0032 (5)
C60.0128 (6)0.0126 (6)0.0146 (6)0.0046 (5)0.0019 (5)0.0015 (5)
C70.0311 (9)0.0265 (9)0.0253 (8)0.0106 (8)0.0011 (7)0.0038 (7)
C80.0294 (10)0.0532 (12)0.0259 (9)0.0172 (9)0.0008 (7)0.0082 (9)
C90.0191 (7)0.0196 (7)0.0211 (7)0.0118 (6)0.0029 (6)0.0032 (6)
C100.0194 (7)0.0191 (7)0.0184 (7)0.0091 (6)0.0018 (6)0.0040 (6)
C110.0185 (7)0.0187 (7)0.0190 (7)0.0090 (6)0.0017 (6)0.0009 (6)
C120.0192 (7)0.0216 (8)0.0168 (7)0.0093 (6)0.0010 (6)0.0014 (6)
C130.0196 (7)0.0219 (8)0.0231 (8)0.0100 (6)0.0042 (6)0.0020 (6)
C140.0209 (8)0.0220 (8)0.0197 (7)0.0104 (6)0.0026 (6)0.0022 (6)
C150.0180 (7)0.0215 (8)0.0241 (8)0.0084 (6)0.0030 (6)0.0017 (6)
C160.0211 (8)0.0207 (8)0.0253 (8)0.0085 (6)0.0053 (6)0.0012 (6)
C170.0221 (8)0.0215 (8)0.0249 (8)0.0083 (7)0.0062 (6)0.0016 (6)
C180.0256 (8)0.0215 (8)0.0305 (9)0.0092 (7)0.0098 (7)0.0027 (7)
C190.0348 (10)0.0216 (9)0.0308 (9)0.0105 (8)0.0100 (8)0.0033 (7)
C200.0473 (12)0.0270 (10)0.0437 (11)0.0195 (9)0.0166 (9)0.0067 (8)
Geometric parameters (Å, º) top
Cu1—O1i1.9489 (11)C10—C111.530 (2)
Cu1—O11.9489 (10)C10—H10A0.9900
Cu1—O2i1.9657 (10)C10—H10B0.9900
Cu1—O21.9657 (10)C11—C121.528 (2)
Cu1—O5i2.4097 (13)C11—H11A0.9900
Cu1—O52.4097 (13)C11—H11B0.9900
Cl1—C61.7317 (14)C12—C131.525 (2)
Cl2—C31.7315 (14)C12—H12A0.9900
O1—C11.2893 (17)C12—H12B0.9900
O2—C21.2713 (17)C13—C141.526 (2)
O3—C41.2579 (17)C13—H13A0.9900
O4—C51.2322 (17)C13—H13B0.9900
O5—C71.417 (2)C14—C151.525 (2)
O5—H10.88 (3)C14—H14A0.9900
N1—C91.5005 (19)C14—H14B0.9900
N1—H20.90 (2)C15—C161.525 (2)
N1—H30.89 (2)C15—H15A0.9900
N1—H40.87 (2)C15—H15B0.9900
C1—C61.370 (2)C16—C171.525 (2)
C1—C21.5242 (19)C16—H16A0.9900
C2—C31.3950 (19)C16—H16B0.9900
C3—C41.3922 (19)C17—C181.521 (2)
C4—C51.5517 (19)C17—H17A0.9900
C5—C61.4241 (19)C17—H17B0.9900
C7—C81.499 (2)C18—C191.524 (2)
C7—H7A0.9900C18—H18A0.9900
C7—H7B0.9900C18—H18B0.9900
C8—H8A0.9800C19—C201.518 (3)
C8—H8B0.9800C19—H19A0.9900
C8—H8C0.9800C19—H19B0.9900
C9—C101.521 (2)C20—H20A0.9800
C9—H9A0.9900C20—H20B0.9800
C9—H9B0.9900C20—H20C0.9800
O1i—Cu1—O1180.00 (6)C11—C10—H10A108.6
O1i—Cu1—O2i84.09 (4)C9—C10—H10B108.6
O1—Cu1—O2i95.91 (4)C11—C10—H10B108.6
O1i—Cu1—O295.91 (4)H10A—C10—H10B107.6
O1—Cu1—O284.09 (4)C12—C11—C10112.43 (12)
O2i—Cu1—O2179.999 (1)C12—C11—H11A109.1
O1i—Cu1—O5i94.24 (5)C10—C11—H11A109.1
O1—Cu1—O5i85.76 (5)C12—C11—H11B109.1
O2i—Cu1—O5i96.70 (4)C10—C11—H11B109.1
O2—Cu1—O5i83.30 (4)H11A—C11—H11B107.9
O1i—Cu1—O585.76 (5)C13—C12—C11113.42 (12)
O1—Cu1—O594.24 (5)C13—C12—H12A108.9
O2i—Cu1—O583.30 (4)C11—C12—H12A108.9
O2—Cu1—O596.70 (4)C13—C12—H12B108.9
O5i—Cu1—O5179.999 (1)C11—C12—H12B108.9
C1—O1—Cu1112.48 (9)H12A—C12—H12B107.7
C2—O2—Cu1112.47 (9)C12—C13—C14113.58 (13)
C7—O5—Cu1136.61 (11)C12—C13—H13A108.9
C7—O5—H1108.8 (16)C14—C13—H13A108.9
Cu1—O5—H1110.5 (15)C12—C13—H13B108.9
C9—N1—H2111.6 (12)C14—C13—H13B108.9
C9—N1—H3111.9 (12)H13A—C13—H13B107.7
H2—N1—H3106.3 (17)C15—C14—C13113.12 (13)
C9—N1—H4110.2 (13)C15—C14—H14A109.0
H2—N1—H4109.3 (17)C13—C14—H14A109.0
H3—N1—H4107.4 (17)C15—C14—H14B109.0
O1—C1—C6125.59 (13)C13—C14—H14B109.0
O1—C1—C2115.10 (12)H14A—C14—H14B107.8
C6—C1—C2119.31 (12)C14—C15—C16114.58 (13)
O2—C2—C3124.12 (13)C14—C15—H15A108.6
O2—C2—C1115.58 (12)C16—C15—H15A108.6
C3—C2—C1120.29 (12)C14—C15—H15B108.6
C4—C3—C2121.21 (13)C16—C15—H15B108.6
C4—C3—Cl2119.01 (10)H15A—C15—H15B107.6
C2—C3—Cl2119.74 (11)C15—C16—C17113.00 (13)
O3—C4—C3125.49 (13)C15—C16—H16A109.0
O3—C4—C5115.72 (12)C17—C16—H16A109.0
C3—C4—C5118.79 (12)C15—C16—H16B109.0
O4—C5—C6124.97 (13)C17—C16—H16B109.0
O4—C5—C4116.59 (12)H16A—C16—H16B107.8
C6—C5—C4118.43 (12)C18—C17—C16115.02 (13)
C1—C6—C5121.74 (12)C18—C17—H17A108.5
C1—C6—Cl1120.25 (11)C16—C17—H17A108.5
C5—C6—Cl1117.98 (10)C18—C17—H17B108.5
O5—C7—C8110.19 (15)C16—C17—H17B108.5
O5—C7—H7A109.6H17A—C17—H17B107.5
C8—C7—H7A109.6C17—C18—C19112.76 (14)
O5—C7—H7B109.6C17—C18—H18A109.0
C8—C7—H7B109.6C19—C18—H18A109.0
H7A—C7—H7B108.1C17—C18—H18B109.0
C7—C8—H8A109.5C19—C18—H18B109.0
C7—C8—H8B109.5H18A—C18—H18B107.8
H8A—C8—H8B109.5C20—C19—C18114.12 (15)
C7—C8—H8C109.5C20—C19—H19A108.7
H8A—C8—H8C109.5C18—C19—H19A108.7
H8B—C8—H8C109.5C20—C19—H19B108.7
N1—C9—C10111.53 (12)C18—C19—H19B108.7
N1—C9—H9A109.3H19A—C19—H19B107.6
C10—C9—H9A109.3C19—C20—H20A109.5
N1—C9—H9B109.3C19—C20—H20B109.5
C10—C9—H9B109.3H20A—C20—H20B109.5
H9A—C9—H9B108.0C19—C20—H20C109.5
C9—C10—C11114.68 (12)H20A—C20—H20C109.5
C9—C10—H10A108.6H20B—C20—H20C109.5
O2i—Cu1—O1—C1175.55 (10)C2—C3—C4—C52.5 (2)
O2—Cu1—O1—C14.45 (10)Cl2—C3—C4—C5179.98 (9)
O5i—Cu1—O1—C179.23 (10)O3—C4—C5—O40.18 (18)
O5—Cu1—O1—C1100.77 (10)C3—C4—C5—O4179.84 (13)
O1i—Cu1—O2—C2178.08 (10)O3—C4—C5—C6179.43 (12)
O1—Cu1—O2—C21.92 (10)C3—C4—C5—C60.59 (19)
O5i—Cu1—O2—C284.49 (10)O1—C1—C6—C5177.45 (13)
O5—Cu1—O2—C295.51 (10)C2—C1—C6—C52.4 (2)
O1i—Cu1—O5—C7104.22 (16)O1—C1—C6—Cl10.2 (2)
O1—Cu1—O5—C775.77 (16)C2—C1—C6—Cl1179.89 (10)
O2i—Cu1—O5—C7171.24 (16)O4—C5—C6—C1179.66 (14)
O2—Cu1—O5—C78.76 (16)C4—C5—C6—C10.5 (2)
Cu1—O1—C1—C6174.25 (12)O4—C5—C6—Cl11.9 (2)
Cu1—O1—C1—C25.85 (15)C4—C5—C6—Cl1177.24 (9)
Cu1—O2—C2—C3178.16 (11)Cu1—O5—C7—C839.7 (2)
Cu1—O2—C2—C10.64 (15)N1—C9—C10—C1170.83 (16)
O1—C1—C2—O24.48 (18)C9—C10—C11—C12177.58 (12)
C6—C1—C2—O2175.61 (13)C10—C11—C12—C13179.36 (12)
O1—C1—C2—C3174.36 (13)C11—C12—C13—C14177.86 (13)
C6—C1—C2—C35.5 (2)C12—C13—C14—C15179.44 (13)
O2—C2—C3—C4175.74 (13)C13—C14—C15—C16174.36 (14)
C1—C2—C3—C45.5 (2)C14—C15—C16—C17176.68 (14)
O2—C2—C3—Cl21.7 (2)C15—C16—C17—C18176.30 (14)
C1—C2—C3—Cl2176.99 (10)C16—C17—C18—C19178.04 (15)
C2—C3—C4—O3177.46 (13)C17—C18—C19—C20174.00 (16)
Cl2—C3—C4—O30.0 (2)
Symmetry code: (i) x+1, y+1, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H1···O3ii0.88 (3)1.94 (3)2.8145 (16)172 (3)
N1—H2···O1iii0.91 (3)1.97 (2)2.8562 (16)167 (3)
N1—H3···O30.89 (3)2.05 (3)2.928 (2)168.3 (17)
N1—H4···O3iv0.87 (3)2.12 (3)2.9784 (19)171 (3)
N1—H4···O4iv0.87 (3)2.50 (3)2.9842 (19)116.2 (13)
Symmetry codes: (ii) x+1, y, z; (iii) x+1, y, z+2; (iv) x, y, z+2.
Selected bond lengths (Å) top
Cu1—O11.9489 (10)Cu1—O52.4097 (13)
Cu1—O21.9657 (10)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H1···O3i0.88 (3)1.94 (3)2.8145 (16)172 (3)
N1—H2···O1ii0.91 (3)1.97 (2)2.8562 (16)167 (3)
N1—H3···O30.89 (3)2.05 (3)2.928 (2)168.3 (17)
N1—H4···O3iii0.87 (3)2.12 (3)2.9784 (19)171 (3)
N1—H4···O4iii0.87 (3)2.50 (3)2.9842 (19)116.2 (13)
Symmetry codes: (i) x+1, y, z; (ii) x+1, y, z+2; (iii) x, y, z+2.
 

Acknowledgements

This work was supported by the fund Grant-in-Aids for Science Research (No. 25410078) from the Ministry of Education, Culture, Sports, Science and Technology of Japan.

References

First citationAbrahams, B. F., Grannas, M. J., Hudson, T. A., Hughes, S. A., Pranoto, N. H. & Robson, R. (2011). Dalton Trans. 40, 12242–12247.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationBurla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G., Siliqi, D. & Spagna, R. (2007). J. Appl. Cryst. 40, 609–613.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationKawata, S. & Kitagawa, S. (2002). Coord. Chem. Rev. 224, 11–34.  Google Scholar
First citationKawata, S., Kumagai, H., Adachi, K. & Kitagawa, S. (2000). Dalton Trans. pp. 2409–2417.  Web of Science CSD CrossRef Google Scholar
First citationLuo, T., Liu, Y., Tsai, H., Su, C., Ueng, C. & Lu, K. (2004). Eur. J. Inorg. Chem. pp. 4253–4258.  Web of Science CSD CrossRef Google Scholar
First citationNagayoshi, K., Kabir, M. K., Tobita, H., Honda, K., Kawahara, M., Katada, M., Adachi, K., Nishikawa, H., Ikemoto, I., Kumagai, H., Hosokoshi, Y., Inoue, K., Kitagawa, S. & Kawata, S. (2003). J. Am. Chem. Soc. 125, 221–232.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationNishimura, Y., Himegi, A., Fuyuhiro, A., Hayami, S. & Kawata, S. (2013). Acta Cryst. E69, m119–m120.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationRigaku (1998). REQAB. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (2010). CrystalStructure. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 2| February 2014| Pages m63-m64
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds