organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-(3-Bromo-4-meth­oxy­phen­yl)-1,5-di­phenyl­pentane-1,5-dione

aDepartment of Chemistry, Adam Mickiewicz University, Grunwaldzka 6, 60-780 Poznań, Poland, bDepartment of Studies in Chemistry, University of Mysore, Manasagangotri, Mysore 570 006, India, and cDepartment of Studies in Chemistry, Mangalore University, Manasagangotri, Mangalagangotri 574 199, India
*Correspondence e-mail: gdutkiew@amu.edu.pl

(Received 1 March 2010; accepted 5 March 2010; online 13 March 2010)

In the title compound, C24H21BrO3, the central bromo­methoxy­benzene ring forms dihedral angles of 63.6 (1) and 60.3 (1)° with the terminal phenyl rings, while the angle between the two phenyl rings is 25.8 (1)°. The crystal structure is stabilized by weak C—H⋯Br and C—H⋯O hydrogen bonds, and C—H⋯π and ππ stacking [centroid–centroid distance = 3.910 (3) Å] inter­actions.

Related literature

For 1,5-diketones, see: Hirsch & Bailey (1978[Hirsch, S. S. & Bailey, W. J. (1978). J. Org. Chem. 43, 4090-4094.]). For related structures, see: Das et al. (1994[Das, G. C., Hursthouse, M. B., Malik, K. M. A., Rahman, M. M., Rahman, M. T. & Olsson, T. (1994). J. Chem. Crystallogr. 24, 511-515.]); He et al. (2008[He, Q.-P., Qin, X.-Q., Wang, X., Shi, Q.-L. & Wang, Y. (2008). Acta Cryst. E64, o1652.]); Li et al. (2008[Li, K.-Z., Chen, Y.-T., Zhao, C.-W., Wei, G.-D. & He, Q.-P. (2008). Acta Cryst. E64, o1665.]); Teh et al. (2006[Teh, J. B.-J., Patil, P. S., Fun, H.-K., Dharmaprakash, S. M., Razak, I. A. & Kalluraya, B. (2006). Acta Cryst. E62, o5024-o5026.]). For a description of the Cambridge Structural Database, see: Allen (2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]).

[Scheme 1]

Experimental

Crystal data
  • C24H21BrO3

  • Mr = 437.32

  • Monoclinic, P 21 /c

  • a = 12.7305 (4) Å

  • b = 7.14024 (19) Å

  • c = 22.8133 (8) Å

  • β = 105.602 (3)°

  • V = 1997.28 (11) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.08 mm−1

  • T = 100 K

  • 0.5 × 0.5 × 0.3 mm

Data collection
  • Oxford Diffraction Xcalibur Eos CCD diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.471, Tmax = 0.536

  • 7645 measured reflections

  • 4094 independent reflections

  • 3289 reflections with I > 2σ(I)

  • Rint = 0.016

Refinement
  • R[F2 > 2σ(F2)] = 0.024

  • wR(F2) = 0.057

  • S = 1.00

  • 4094 reflections

  • 254 parameters

  • H-atom parameters constrained

  • Δρmax = 0.34 e Å−3

  • Δρmin = −0.36 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C31–C36 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C13—H13A⋯Br33i 0.95 2.76 3.613 (2) 149
C35—H35A⋯O1ii 0.95 2.37 3.245 (2) 153
C36—H36A⋯O5iii 0.95 2.56 3.493 (2) 168
C54—H54ACg1iv 0.95 2.60 3.489 (3) 155
Symmetry codes: (i) x+1, y, z; (ii) x, y+1, z; (iii) [-x+2, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iv) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].

Data collection: CrysAlis PRO (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SIR92 (Altomare et al., 1993[Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343-350.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: Stereochemical Workstation Operation Manual (Siemens, 1989[Siemens (1989). Stereochemical Workstation Operation Manual. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]) and SHELXL97.

Supporting information


Comment top

1,5-Diketones are important synthetic intermediates and starting materials in the synthesis of many heterocyclic compounds (e.g., Hirsch & Bailey, 1978). The related 3-aryl-derivatives of 1,5-diarylopentano-1,5-dione can be also regarded, due to the conformational flexibility and the relative easiness of introducing different substituents, as an interesting group of compounds for studying the factors influencing molecular conformation and intermolecular interactions. Several structures have been already determined, for instance the non-substituted 1,3,5-triphenyl-1,5-pentanedione (Das et al., 1994), 3-(4-dimethylaminophenyl)-1,5-diphenylpentane-1,5-dione (He et al., 2008) or 1,5-bis(4-chlorophenyl)-3-(2,5-dimethoxyphenyl)pentane-1,5-dione (Teh et al., 2006). We present here the crystal structure of another simple 1,5-diphenyl-1,5-diketone derivative, 3-(3-bromo-4-methoxyphenyl)-1,5-diphenylpentane-1,5-dione (I, Scheme 1).

The overall conformation of (I) might be described by the dihedral angles between the approximately planar aromatic fragments. The bromomethoxybenzene ring (A, Fig. 1) in (I) forms dihedral angles of 63.6 (1) and 60.3 (1)° with the terminal phenyl rings B and C, respectively, and the rings B and C, in turn, make the dihedral angle of 25.8 (1)°. In the similar structures found in the Cambridge Crystallographic Database (Allen, 2002) there is no clear preference for any type of overall conformation, the dihedral angles cover wide range of values. The same is true for the conformation of the central C5-chain which can be almost extended [as for instance in 1,5-bis(4-bromophenyl)-3-phenyl-pentane-1,5-dione; Li et al., 2008], or is more folded as in (I), where the torsion angles along the C5 chain are -70.7 (2), 174.7 (2), -74.4 (2) and 179.9 (1)°. The common feature for all similar structures, also observed in (I), is the coplanarity of the keto-O atoms with the adjacent phenyl rings. In (I) the deviations from the mean planes are 0.152 (3) Å for O1 and 0.050 (3) Å for O5.

In the crystal structure there is a weak C13—H13···Br33(1+x, y, z) contact [H···Br distance 2.81 (2) Å, C—H···Br angle 143 (2)°] that links molecules into infinite chains along the x direction. Two weak C—H···O contacts, C35—H35···O1(x, 1+y, z) and C36—H36···O5(2-x, 0.5+y, 0.5-z), with H···O distances of 2.37 and 2.56 Å, respectively, link molecules into infinite chains along the y direction. An additional weak C—H···π contact [C54—H54···Cg1(x, 0.5-y, 0.5+z); Cg1 is the centroid of ring A] and a ππ stacking interaction between rings B and C stabilize the packing. For this latter interaction, the centroid-centroid distance is 3.910 (3) Å, an interplanar distance is 3.505 Å with a relatively large offset (the overlap is partial only) - 1.73 Å.

Related literature top

For 1,5-diketones, see: Hirsch & Bailey (1978). For related structures, see: Das et al. (1994); He et al. (2008); Li et al. (2008); Teh et al. (2006). For a description of the Cambridge Structural Database, see: Allen (2002).

Experimental top

Acetophenone (2.40 g, 0.02 mol) was mixed with 3-bromo-4-methoxybezaldehyde (2.15 g, 0.01 mol) and dissolved in ethanol (50 ml). To this, 5 ml of KOH (50%) was added. The reaction mixture was stirred for 8 hours. The resulting crude solid was filtered, washed successively with distilled water and finally recrystallized from ethanol (95%) to give the pure compound. Crystals suitable for X-ray diffraction studies were grown by slow evaporation of an acetone solution (m.p. 381 K).

Refinement top

The H atoms were placed in idealized positions and constrained to ride on their parent atoms, with C—H = 0.95 Å with Uiso(H) = 1.2Ueq(C) for phenyl hydrogen; 0.98 Å with Uiso(H) = 1.5Ueq(C) for CH3 group; 0.99 Å with Uiso(H) = 1.2Ueq(C) for CH2 group; 1.00 Å with Uiso(H) = 1.2Ueq(C) for CH group.

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2009); cell refinement: CrysAlis PRO (Oxford Diffraction, 2009); data reduction: CrysAlis PRO (Oxford Diffraction, 2009); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2008); software used to prepare material for publication: Stereochemical Workstation Operation Manual (Siemens, 1989) and SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure of (I), showing 50% probability displacement ellipsoids and the atom-numbering scheme.
[Figure 2] Fig. 2. The crystal packing of (I) viewed along the b axis. Hydrogen bonds are shown as dashed lines.
3-(3-Bromo-4-methoxyphenyl)-1,5-diphenylpentane-1,5-dione top
Crystal data top
C24H21BrO3F(000) = 896
Mr = 437.32Dx = 1.454 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 5038 reflections
a = 12.7305 (4) Åθ = 3.0–28.0°
b = 7.14024 (19) ŵ = 2.08 mm1
c = 22.8133 (8) ÅT = 100 K
β = 105.602 (3)°Block, yellow
V = 1997.28 (11) Å30.5 × 0.5 × 0.3 mm
Z = 4
Data collection top
Oxford Diffraction Xcalibur Eos CCD
diffractometer
4094 independent reflections
Radiation source: fine-focus sealed tube3289 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.016
Detector resolution: 16.1544 pixels mm-1θmax = 28.1°, θmin = 3.0°
ω scanh = 1216
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
k = 88
Tmin = 0.471, Tmax = 0.536l = 2527
7645 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.024Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.057H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.0327P)2]
where P = (Fo2 + 2Fc2)/3
4094 reflections(Δ/σ)max = 0.001
254 parametersΔρmax = 0.34 e Å3
0 restraintsΔρmin = 0.36 e Å3
Crystal data top
C24H21BrO3V = 1997.28 (11) Å3
Mr = 437.32Z = 4
Monoclinic, P21/cMo Kα radiation
a = 12.7305 (4) ŵ = 2.08 mm1
b = 7.14024 (19) ÅT = 100 K
c = 22.8133 (8) Å0.5 × 0.5 × 0.3 mm
β = 105.602 (3)°
Data collection top
Oxford Diffraction Xcalibur Eos CCD
diffractometer
4094 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
3289 reflections with I > 2σ(I)
Tmin = 0.471, Tmax = 0.536Rint = 0.016
7645 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0240 restraints
wR(F2) = 0.057H-atom parameters constrained
S = 1.00Δρmax = 0.34 e Å3
4094 reflectionsΔρmin = 0.36 e Å3
254 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.91462 (13)0.0724 (2)0.35970 (8)0.0145 (4)
O10.86814 (9)0.01848 (17)0.39695 (5)0.0217 (3)
C20.85537 (13)0.0764 (2)0.29248 (7)0.0134 (4)
H2A0.78620.00600.28620.016*
H2B0.90060.01040.26980.016*
C30.82916 (13)0.2738 (2)0.26526 (8)0.0131 (4)
H3A0.89930.34450.27260.016*
C40.77919 (13)0.2605 (3)0.19628 (8)0.0145 (4)
H4A0.72160.16330.18800.017*
H4B0.74400.38150.18150.017*
O50.95755 (9)0.19514 (16)0.18610 (5)0.0191 (3)
C50.86066 (14)0.2138 (2)0.16057 (8)0.0145 (4)
C111.03092 (13)0.1341 (2)0.37984 (8)0.0149 (4)
C121.08947 (14)0.1805 (2)0.33810 (9)0.0185 (4)
H12A1.05490.17750.29570.022*
C131.19792 (14)0.2310 (3)0.35891 (10)0.0261 (5)
H13A1.23770.26220.33050.031*
C141.24952 (15)0.2366 (3)0.42059 (10)0.0296 (5)
H14A1.32410.27160.43440.035*
C151.19147 (15)0.1907 (2)0.46233 (10)0.0294 (5)
H15A1.22620.19450.50470.035*
C161.08349 (14)0.1398 (2)0.44186 (9)0.0209 (4)
H16A1.04420.10820.47050.025*
C310.75354 (13)0.3834 (2)0.29399 (7)0.0121 (4)
C320.64779 (13)0.3198 (2)0.28958 (7)0.0137 (4)
H32A0.62400.20310.27060.016*
C330.57781 (12)0.4268 (2)0.31288 (7)0.0125 (4)
Br330.435504 (13)0.33429 (2)0.306668 (9)0.01938 (6)
O340.53210 (9)0.69501 (16)0.36041 (6)0.0191 (3)
C340.60856 (13)0.5983 (2)0.34074 (8)0.0139 (4)
C350.71445 (13)0.6593 (2)0.34608 (8)0.0145 (4)
H35A0.73880.77460.36590.017*
C360.78462 (13)0.5528 (2)0.32272 (7)0.0138 (4)
H36A0.85640.59760.32660.017*
C510.81896 (14)0.1985 (2)0.09296 (8)0.0155 (4)
C520.70940 (15)0.2171 (2)0.06268 (8)0.0209 (4)
H52A0.65760.23640.08530.025*
C530.67473 (16)0.2080 (3)0.00028 (9)0.0266 (5)
H53A0.59950.22120.02070.032*
C540.75009 (16)0.1794 (2)0.03336 (8)0.0254 (4)
H54A0.72670.17560.07660.031*
C550.85911 (16)0.1566 (2)0.00367 (8)0.0238 (4)
H55A0.91030.13380.02640.029*
C560.89418 (15)0.1669 (2)0.05928 (8)0.0187 (4)
H56A0.96940.15250.07950.022*
C3410.55832 (15)0.8827 (2)0.38057 (10)0.0272 (5)
H34D0.49450.94170.38910.041*
H34A0.57950.95350.34880.041*
H34B0.61890.88170.41770.041*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0172 (9)0.0083 (8)0.0187 (9)0.0011 (7)0.0057 (7)0.0009 (7)
O10.0261 (7)0.0242 (7)0.0172 (7)0.0093 (6)0.0099 (5)0.0017 (6)
C20.0119 (8)0.0158 (9)0.0136 (9)0.0011 (7)0.0052 (7)0.0013 (7)
C30.0104 (8)0.0148 (8)0.0149 (9)0.0019 (7)0.0046 (7)0.0002 (7)
C40.0133 (8)0.0162 (9)0.0144 (9)0.0002 (8)0.0041 (7)0.0009 (8)
O50.0147 (6)0.0265 (7)0.0168 (6)0.0010 (6)0.0056 (5)0.0000 (5)
C50.0168 (9)0.0110 (8)0.0162 (9)0.0015 (7)0.0055 (7)0.0010 (7)
C110.0162 (9)0.0073 (8)0.0202 (9)0.0018 (7)0.0034 (7)0.0000 (7)
C120.0156 (9)0.0141 (9)0.0254 (10)0.0021 (8)0.0047 (7)0.0020 (8)
C130.0158 (9)0.0182 (10)0.0455 (13)0.0037 (8)0.0104 (9)0.0059 (10)
C140.0136 (9)0.0190 (10)0.0499 (14)0.0001 (9)0.0020 (9)0.0038 (10)
C150.0257 (11)0.0205 (11)0.0324 (12)0.0047 (9)0.0086 (9)0.0059 (9)
C160.0225 (10)0.0132 (9)0.0254 (10)0.0022 (8)0.0036 (8)0.0002 (8)
C310.0105 (8)0.0152 (9)0.0104 (8)0.0008 (7)0.0026 (6)0.0017 (7)
C320.0143 (8)0.0137 (8)0.0127 (8)0.0026 (8)0.0031 (7)0.0010 (7)
C330.0068 (8)0.0161 (9)0.0142 (9)0.0004 (7)0.0020 (6)0.0055 (7)
Br330.00941 (9)0.01879 (10)0.03102 (11)0.00150 (8)0.00730 (7)0.00147 (9)
O340.0175 (6)0.0152 (6)0.0267 (7)0.0022 (5)0.0098 (5)0.0034 (5)
C340.0131 (8)0.0156 (8)0.0131 (9)0.0035 (8)0.0040 (7)0.0037 (7)
C350.0157 (8)0.0118 (8)0.0150 (9)0.0011 (8)0.0028 (7)0.0003 (7)
C360.0094 (8)0.0177 (9)0.0141 (9)0.0036 (7)0.0028 (7)0.0021 (7)
C510.0200 (9)0.0114 (9)0.0152 (9)0.0009 (7)0.0050 (7)0.0003 (7)
C520.0222 (10)0.0206 (10)0.0197 (10)0.0000 (8)0.0051 (8)0.0015 (8)
C530.0266 (10)0.0266 (11)0.0215 (10)0.0019 (9)0.0025 (8)0.0014 (9)
C540.0420 (12)0.0200 (10)0.0118 (9)0.0052 (9)0.0030 (8)0.0007 (8)
C550.0344 (11)0.0216 (10)0.0184 (10)0.0075 (9)0.0125 (8)0.0036 (9)
C560.0227 (9)0.0169 (9)0.0177 (9)0.0036 (8)0.0075 (7)0.0013 (8)
C3410.0241 (10)0.0173 (10)0.0423 (13)0.0024 (8)0.0124 (9)0.0073 (9)
Geometric parameters (Å, º) top
C1—O11.2210 (19)C31—C321.399 (2)
C1—C111.494 (2)C32—C331.384 (2)
C1—C21.516 (2)C32—H32A0.9500
C2—C31.540 (2)C33—C341.387 (2)
C2—H2A0.9900C33—Br331.8975 (15)
C2—H2B0.9900O34—C341.3639 (19)
C3—C311.519 (2)O34—C3411.427 (2)
C3—C41.533 (2)C34—C351.390 (2)
C3—H3A1.0000C35—C361.384 (2)
C4—C51.518 (2)C35—H35A0.9500
C4—H4A0.9900C36—H36A0.9500
C4—H4B0.9900C51—C521.386 (2)
O5—C51.2214 (19)C51—C561.398 (2)
C5—C511.494 (2)C52—C531.386 (3)
C11—C161.394 (2)C52—H52A0.9500
C11—C121.398 (2)C53—C541.386 (3)
C12—C131.382 (2)C53—H53A0.9500
C12—H12A0.9500C54—C551.381 (3)
C13—C141.384 (3)C54—H54A0.9500
C13—H13A0.9500C55—C561.386 (2)
C14—C151.392 (3)C55—H55A0.9500
C14—H14A0.9500C56—H56A0.9500
C15—C161.376 (2)C341—H34D0.9800
C15—H15A0.9500C341—H34A0.9800
C16—H16A0.9500C341—H34B0.9800
C31—C361.382 (2)
O1—C1—C11120.32 (16)C36—C31—C3121.46 (14)
O1—C1—C2120.49 (15)C32—C31—C3120.72 (15)
C11—C1—C2119.20 (14)C33—C32—C31119.98 (15)
C1—C2—C3114.82 (13)C33—C32—H32A120.0
C1—C2—H2A108.6C31—C32—H32A120.0
C3—C2—H2A108.6C32—C33—C34122.15 (15)
C1—C2—H2B108.6C32—C33—Br33118.64 (12)
C3—C2—H2B108.6C34—C33—Br33119.20 (12)
H2A—C2—H2B107.5C34—O34—C341117.10 (13)
C31—C3—C4109.78 (13)O34—C34—C33117.34 (14)
C31—C3—C2113.04 (13)O34—C34—C35125.00 (15)
C4—C3—C2110.01 (14)C33—C34—C35117.66 (15)
C31—C3—H3A107.9C36—C35—C34120.34 (16)
C4—C3—H3A107.9C36—C35—H35A119.8
C2—C3—H3A107.9C34—C35—H35A119.8
C5—C4—C3114.18 (13)C31—C36—C35122.09 (15)
C5—C4—H4A108.7C31—C36—H36A119.0
C3—C4—H4A108.7C35—C36—H36A119.0
C5—C4—H4B108.7C52—C51—C56119.20 (16)
C3—C4—H4B108.7C52—C51—C5122.53 (15)
H4A—C4—H4B107.6C56—C51—C5118.26 (15)
O5—C5—C51121.14 (15)C51—C52—C53120.60 (17)
O5—C5—C4121.06 (15)C51—C52—H52A119.7
C51—C5—C4117.76 (14)C53—C52—H52A119.7
C16—C11—C12119.09 (16)C54—C53—C52119.80 (18)
C16—C11—C1119.11 (16)C54—C53—H53A120.1
C12—C11—C1121.77 (16)C52—C53—H53A120.1
C13—C12—C11119.63 (18)C55—C54—C53120.14 (17)
C13—C12—H12A120.2C55—C54—H54A119.9
C11—C12—H12A120.2C53—C54—H54A119.9
C12—C13—C14120.94 (18)C54—C55—C56120.20 (17)
C12—C13—H13A119.5C54—C55—H55A119.9
C14—C13—H13A119.5C56—C55—H55A119.9
C13—C14—C15119.63 (17)C55—C56—C51120.03 (17)
C13—C14—H14A120.2C55—C56—H56A120.0
C15—C14—H14A120.2C51—C56—H56A120.0
C16—C15—C14119.69 (19)O34—C341—H34D109.5
C16—C15—H15A120.2O34—C341—H34A109.5
C14—C15—H15A120.2H34D—C341—H34A109.5
C15—C16—C11121.02 (18)O34—C341—H34B109.5
C15—C16—H16A119.5H34D—C341—H34B109.5
C11—C16—H16A119.5H34A—C341—H34B109.5
C36—C31—C32117.75 (15)
O1—C1—C2—C3109.67 (17)C31—C32—C33—C340.3 (2)
C11—C1—C2—C370.76 (18)C31—C32—C33—Br33179.41 (12)
C1—C2—C3—C3162.13 (18)C341—O34—C34—C33170.80 (15)
C1—C2—C3—C4174.75 (13)C341—O34—C34—C358.7 (2)
C31—C3—C4—C5160.56 (14)C32—C33—C34—O34177.99 (15)
C2—C3—C4—C574.43 (17)Br33—C33—C34—O342.3 (2)
C3—C4—C5—O52.1 (2)C32—C33—C34—C351.5 (2)
C3—C4—C5—C51179.88 (14)Br33—C33—C34—C35178.17 (12)
O1—C1—C11—C163.8 (2)O34—C34—C35—C36177.85 (15)
C2—C1—C11—C16176.60 (15)C33—C34—C35—C361.6 (2)
O1—C1—C11—C12174.16 (15)C32—C31—C36—C350.7 (2)
C2—C1—C11—C125.4 (2)C3—C31—C36—C35176.29 (15)
C16—C11—C12—C130.1 (2)C34—C35—C36—C310.5 (3)
C1—C11—C12—C13177.90 (16)O5—C5—C51—C52179.37 (16)
C11—C12—C13—C140.2 (3)C4—C5—C51—C522.9 (2)
C12—C13—C14—C150.0 (3)O5—C5—C51—C561.6 (2)
C13—C14—C15—C160.2 (3)C4—C5—C51—C56176.14 (15)
C14—C15—C16—C110.2 (3)C56—C51—C52—C531.1 (3)
C12—C11—C16—C150.1 (3)C5—C51—C52—C53177.88 (16)
C1—C11—C16—C15178.16 (16)C51—C52—C53—C540.2 (3)
C4—C3—C31—C36115.94 (17)C52—C53—C54—C551.2 (3)
C2—C3—C31—C36120.81 (17)C53—C54—C55—C561.7 (3)
C4—C3—C31—C3261.0 (2)C54—C55—C56—C510.7 (3)
C2—C3—C31—C3262.3 (2)C52—C51—C56—C550.7 (3)
C36—C31—C32—C330.8 (2)C5—C51—C56—C55178.35 (15)
C3—C31—C32—C33176.20 (15)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C31–C36 ring.
D—H···AD—HH···AD···AD—H···A
C13—H13A···Br33i0.952.763.613 (2)149
C35—H35A···O1ii0.952.373.245 (2)153
C36—H36A···O5iii0.952.563.493 (2)168
C54—H54A···Cg1iv0.952.603.489 (3)155
Symmetry codes: (i) x+1, y, z; (ii) x, y+1, z; (iii) x+2, y+1/2, z+1/2; (iv) x, y+1/2, z1/2.

Experimental details

Crystal data
Chemical formulaC24H21BrO3
Mr437.32
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)12.7305 (4), 7.14024 (19), 22.8133 (8)
β (°) 105.602 (3)
V3)1997.28 (11)
Z4
Radiation typeMo Kα
µ (mm1)2.08
Crystal size (mm)0.5 × 0.5 × 0.3
Data collection
DiffractometerOxford Diffraction Xcalibur Eos CCD
diffractometer
Absorption correctionMulti-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
Tmin, Tmax0.471, 0.536
No. of measured, independent and
observed [I > 2σ(I)] reflections
7645, 4094, 3289
Rint0.016
(sin θ/λ)max1)0.662
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.024, 0.057, 1.00
No. of reflections4094
No. of parameters254
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.34, 0.36

Computer programs: CrysAlis PRO (Oxford Diffraction, 2009), SIR92 (Altomare et al., 1993), ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2008), Stereochemical Workstation Operation Manual (Siemens, 1989) and SHELXL97 (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C31–C36 ring.
D—H···AD—HH···AD···AD—H···A
C13—H13A···Br33i0.952.763.613 (2)149
C35—H35A···O1ii0.952.373.245 (2)153
C36—H36A···O5iii0.952.563.493 (2)168
C54—H54A···Cg1iv0.952.603.489 (3)155
Symmetry codes: (i) x+1, y, z; (ii) x, y+1, z; (iii) x+2, y+1/2, z+1/2; (iv) x, y+1/2, z1/2.
 

Acknowledgements

CSC thanks University of Mysore for research facilities.

References

First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationAltomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350.  CrossRef Web of Science IUCr Journals Google Scholar
First citationDas, G. C., Hursthouse, M. B., Malik, K. M. A., Rahman, M. M., Rahman, M. T. & Olsson, T. (1994). J. Chem. Crystallogr. 24, 511–515.  CSD CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationHe, Q.-P., Qin, X.-Q., Wang, X., Shi, Q.-L. & Wang, Y. (2008). Acta Cryst. E64, o1652.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHirsch, S. S. & Bailey, W. J. (1978). J. Org. Chem. 43, 4090–4094.  CrossRef CAS Web of Science Google Scholar
First citationLi, K.-Z., Chen, Y.-T., Zhao, C.-W., Wei, G.-D. & He, Q.-P. (2008). Acta Cryst. E64, o1665.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationOxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiemens (1989). Stereochemical Workstation Operation Manual. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar
First citationTeh, J. B.-J., Patil, P. S., Fun, H.-K., Dharmaprakash, S. M., Razak, I. A. & Kalluraya, B. (2006). Acta Cryst. E62, o5024–o5026.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds