organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Tetra­kis(2,6-di­amino­pyridinium) diphthalate 2,6-di­amino­pyridine

aSchool of Pharmaceutical Sciences, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, bSchool of Chemical Sciences, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and cX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: nornisah@usm.my, hkfun@usm.my

(Received 15 October 2009; accepted 26 October 2009; online 31 October 2009)

In the title compound, 4C5H8N3+·2C8H4O42−·C5H7N3, the asymmetric unit consists of two protonated diamino­pyridine cations, one phthalate anion and one half of a diamino­pyridine mol­ecule, which has twofold rotation symmetry and is disordered over two positions with a site-occupancy ratio of 0.534 (3):0.466 (3). In the disordered structure, both pyridine rings are essentially planar, with maximum deviations of 0.011 (2) and 0.006 (2) Å, and these two rings are inclined to one another at a dihedral angle of 79.86 (10)°. In the crystal structure, inter­molecular N—H⋯O and C—H⋯O hydrogen bonds link the ions and mol­ecules into a three-dimensional network. The structure is further stabilized by C—H⋯π inter­actions.

Related literature

For background to 2,6-diamino­pyridines, see: Abu Zuhri & Cox (1989[Abu Zuhri, A. Z. & Cox, J. A. (1989). Mikrochim. Acta, 11, 277-283.]); Inuzuka & Fujimoto (1990[Inuzuka, K. & Fujimoto, A. (1990). Bull. Chem. Soc. Jpn, 63, 216-220.]). For background and the biological activity of phthalic acid, see: Brike et al. (2002[Brike, G., Hirsch, M. & Franz, V. (2002). US Patent No. 636 838 9B1.]); Yamamoto et al. (1990[Yamamoto, S., Nakadate, T., Aizu, E. & Kato, R. (1990). Carcinogenesis, 11, 749-754.]). For the preparation of polymer complexes, see: El-Mossalamy (2001[El-Mossalamy, E. H. (2001). Pigm. Resin Technol. 30, 164-168.]). For a related structure: see: Büyükgüngör & Odabąsoğlu (2006[Büyükgüngör, O. & Odabąsoğlu, M. (2006). Acta Cryst. E62, o3816-o3818.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • 4C5H8N3+·2C8H4O42−·C5H7N3

  • Mr = 877.94

  • Monoclinic, C 2/c

  • a = 29.7011 (6) Å

  • b = 15.2183 (3) Å

  • c = 9.7666 (2) Å

  • β = 101.670 (1)°

  • V = 4323.25 (15) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 100 K

  • 0.65 × 0.19 × 0.08 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.939, Tmax = 0.992

  • 28159 measured reflections

  • 6403 independent reflections

  • 3722 reflections with I > 2σ(I)

  • Rint = 0.037

Refinement
  • R[F2 > 2σ(F2)] = 0.064

  • wR(F2) = 0.153

  • S = 1.05

  • 6403 reflections

  • 368 parameters

  • 138 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.41 e Å−3

  • Δρmin = −0.29 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N1⋯O1i 0.93 (3) 1.78 (3) 2.697 (2) 170 (2)
N2—H1N2⋯O2ii 1.01 (3) 1.89 (3) 2.889 (3) 167 (3)
N2—H2N2⋯O1i 0.83 (3) 2.48 (2) 3.144 (3) 138 (2)
N3—H1N3⋯O2 0.86 (3) 2.56 (3) 3.090 (2) 120 (2)
N3—H1N3⋯O3 0.86 (3) 2.18 (3) 3.005 (3) 161 (3)
N3—H2N3⋯O2i 0.89 (3) 2.02 (3) 2.892 (2) 168 (2)
N4—H1N4⋯O3 0.96 (3) 1.69 (3) 2.641 (2) 169 (3)
N5—H1N5⋯O3 0.88 (3) 2.53 (3) 3.208 (3) 135 (2)
N5—H2N5⋯O1iii 0.91 (3) 2.00 (3) 2.886 (3) 166 (2)
N6—H1N6⋯O4 0.92 (3) 1.96 (3) 2.866 (2) 169 (2)
N6—H2N6⋯O4iv 0.87 (3) 2.02 (3) 2.824 (2) 155 (3)
N8—H8A⋯O4ii 0.86 2.35 3.196 (4) 170
C15—H15A⋯O3iii 0.93 2.58 3.422 (3) 151
C10—H10ACg1v 0.93 2.48 3.379 (3) 163
Symmetry codes: (i) [-x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+1]; (ii) [x, -y+1, z+{\script{1\over 2}}]; (iii) [x, -y, z+{\script{1\over 2}}]; (iv) [-x, y, -z+{\script{1\over 2}}]; (v) [-x+{\script{1\over 2}}, y+{\script{3\over 2}}, -z+{\script{1\over 2}}]. Cg1 is the centroid of the C1–C6 ring.

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

2,6-Diaminopyridinium and diaminopyridine in general have an important role in the preparation of aromatic azo dyes, the subject of many polarographic investigations (Abu Zuhri & Cox, 1989). It has amino-imino tautomerization property (Inuzuka & Fujimoto, 1990) and it can be used to prepare polymer complexes with lead(II), cadmium(II) and zinc(II) (El-Mossalamy, 2001). Phthalic acid is an aromatic dicarboxylic acid and can be used in its anhydride form to produce other chemicals such as dyes, perfumes, phthalates and many others. It can be prepared from the catalytic oxidation of naphthalene in a new production method (Brike et al., 2002). Some of its derivatives have anti-tumor promoting action (Yamamoto et al., 1990). The crystal structure of this molecule can be helpful in future experimental and theoretical studies.

The asymmetric unit of the title salt (Fig. 1) contains two 2,6-diaminopyridine cations, one phthalate anion and a half 2,6-diaminopyridine molecule. The 2,6-diaminopyridine molecule has a twofold rotation symmetry. Atom N7 and C21 of the major component and N7A and C21A of the minor component lie across the crystallographic twofold rotation symmetry [suffix A corresponds to the symmetry code = -x, y, 1/2 - z]. Two protons are transferred from the carboxyl groups of the phthalic acid to atoms N1 and N4 of the 2,6-diaminopyridine moieties resulting in the formation of organic salts. The 2,6-diamionopyridine molecule is disordered over two positions with a site-occupancy ratio of 0.534 (3):0.466 (3). Both the N1/C9–C13 and N4/C14–C18 pyridine rings are essentially planar, with maximum deviations of 0.011 (2) Å at C12 and 0.006 (2) Å at C14, respectively. These two rings are inclined to one another with a dihedral angle of 79.86 (10)°. In the phthalate anion, the torsion angles of C1–C6–C8–O2 and C4–C5–C7–O3 are 88.3 (2) and -178.9 (2)°, respectively. The bond lengths (Allen et al., 1987) and angles are within normal ranges and are comparable to a related structure (Büyükgüngör & Odabąsoǧlu, 2006).

This crystal structure is mainly stabilized by a network of N—H···O and C—H···O hydrogen bonds. The N atoms of the diaminopyridine cations provide the most extensive part as donors. In the crystal structure (Fig. 2), intermolecular N1—H1N1···O1, N2—H1N2···O2, N2—H2N2···O1, N3—H1N3···O2, N3—H1N3···O3, N3—H2N3···O2, N4—H1N4···O3, N5—H1N5···O3, N5—H2N5···O1, N6—H1N6···O4, N6—H2N6···O4, N8—H8A···O4 and C15—H15A···O3 hydrogen bonds (Table 1) link the structure into a three-dimensional network. This structure is further stabilized by weak intermolecular C—H···π (Table 1) interactions involving the C1–C6 (Centroid Cg1) ring.

Related literature top

For background to 2,6-diaminopyridines, see: Abu Zuhri & Cox (1989); Inuzuka & Fujimoto (1990). For background and the biological activity of phthalic acid, see: Brike et al. (2002); Yamamoto et al. (1990). For the preparation of polymer complexes, see: El-Mossalamy (2001). For a related structure: see: Büyükgüngör & Odabąsoǧlu (2006). For bond-length data, see: Allen et al. (1987). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986). Cg1 is the centroid of the C1–C6 ring.

Experimental top

In order to prepare the title crystal, phthalic acid (0.01 mol, 1.75 g) was dissolved in 25 ml of THF in a round bottom flask. In a separating funnel, 2,6-diaminopyridine (0.03 mol, 3.75 g) was dissolved in 20 ml of THF. 2,6-Diaminopyridine solution was added in drops to the flask of phthalic acid solution with stirring. The reaction mixture was left stirring for 3 h at room temperature. Colourless crystals were separated, washed with THF and dried at 80°C.

Refinement top

Hydrogen atoms attached to nitrogen atoms (excepting for H8A, H8B, H8AA and H8AB) were located in a difference Fourier map. H8A, H8B, H8AA, H8AB and all the hydrogen atoms attached to carbon atoms were positioned geometrically [N–H = 0.86 Å, C–H = 0.93 Å] and were refined using a riding model, with Uiso(H) = 1.2 Ueq(N, C). Rigid, similarity and simulation restraints were applied to the disordered diaminopyridine ring.

Structure description top

2,6-Diaminopyridinium and diaminopyridine in general have an important role in the preparation of aromatic azo dyes, the subject of many polarographic investigations (Abu Zuhri & Cox, 1989). It has amino-imino tautomerization property (Inuzuka & Fujimoto, 1990) and it can be used to prepare polymer complexes with lead(II), cadmium(II) and zinc(II) (El-Mossalamy, 2001). Phthalic acid is an aromatic dicarboxylic acid and can be used in its anhydride form to produce other chemicals such as dyes, perfumes, phthalates and many others. It can be prepared from the catalytic oxidation of naphthalene in a new production method (Brike et al., 2002). Some of its derivatives have anti-tumor promoting action (Yamamoto et al., 1990). The crystal structure of this molecule can be helpful in future experimental and theoretical studies.

The asymmetric unit of the title salt (Fig. 1) contains two 2,6-diaminopyridine cations, one phthalate anion and a half 2,6-diaminopyridine molecule. The 2,6-diaminopyridine molecule has a twofold rotation symmetry. Atom N7 and C21 of the major component and N7A and C21A of the minor component lie across the crystallographic twofold rotation symmetry [suffix A corresponds to the symmetry code = -x, y, 1/2 - z]. Two protons are transferred from the carboxyl groups of the phthalic acid to atoms N1 and N4 of the 2,6-diaminopyridine moieties resulting in the formation of organic salts. The 2,6-diamionopyridine molecule is disordered over two positions with a site-occupancy ratio of 0.534 (3):0.466 (3). Both the N1/C9–C13 and N4/C14–C18 pyridine rings are essentially planar, with maximum deviations of 0.011 (2) Å at C12 and 0.006 (2) Å at C14, respectively. These two rings are inclined to one another with a dihedral angle of 79.86 (10)°. In the phthalate anion, the torsion angles of C1–C6–C8–O2 and C4–C5–C7–O3 are 88.3 (2) and -178.9 (2)°, respectively. The bond lengths (Allen et al., 1987) and angles are within normal ranges and are comparable to a related structure (Büyükgüngör & Odabąsoǧlu, 2006).

This crystal structure is mainly stabilized by a network of N—H···O and C—H···O hydrogen bonds. The N atoms of the diaminopyridine cations provide the most extensive part as donors. In the crystal structure (Fig. 2), intermolecular N1—H1N1···O1, N2—H1N2···O2, N2—H2N2···O1, N3—H1N3···O2, N3—H1N3···O3, N3—H2N3···O2, N4—H1N4···O3, N5—H1N5···O3, N5—H2N5···O1, N6—H1N6···O4, N6—H2N6···O4, N8—H8A···O4 and C15—H15A···O3 hydrogen bonds (Table 1) link the structure into a three-dimensional network. This structure is further stabilized by weak intermolecular C—H···π (Table 1) interactions involving the C1–C6 (Centroid Cg1) ring.

For background to 2,6-diaminopyridines, see: Abu Zuhri & Cox (1989); Inuzuka & Fujimoto (1990). For background and the biological activity of phthalic acid, see: Brike et al. (2002); Yamamoto et al. (1990). For the preparation of polymer complexes, see: El-Mossalamy (2001). For a related structure: see: Büyükgüngör & Odabąsoǧlu (2006). For bond-length data, see: Allen et al. (1987). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986). Cg1 is the centroid of the C1–C6 ring.

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 30% probability displacement ellipsoids and the atom-numbering scheme. Open bonds indicate the minor disordered component.
[Figure 2] Fig. 2. The crystal packing of the title compound, viewed along the c axis, showing the three-dimensional network. Only major components are shown. H atoms not involved in intermolecular interactions (dashed lines) have been omitted for clarity.
Tetrakis(2,6-diaminopyridinium) diphthalate 2,6-diaminopyridine top
Crystal data top
4C5H8N3+·2C8H4O42·C5H7N3F(000) = 1848
Mr = 877.94Dx = 1.349 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 8039 reflections
a = 29.7011 (6) Åθ = 2.5–29.2°
b = 15.2183 (3) ŵ = 0.10 mm1
c = 9.7666 (2) ÅT = 100 K
β = 101.670 (1)°Plate, colourless
V = 4323.25 (15) Å30.65 × 0.19 × 0.08 mm
Z = 4
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
6403 independent reflections
Radiation source: fine-focus sealed tube3722 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.037
φ and ω scansθmax = 30.3°, θmin = 2.5°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 4133
Tmin = 0.939, Tmax = 0.992k = 1821
28159 measured reflectionsl = 1313
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.064Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.153H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0492P)2 + 4.6062P]
where P = (Fo2 + 2Fc2)/3
6403 reflections(Δ/σ)max = 0.001
368 parametersΔρmax = 0.41 e Å3
138 restraintsΔρmin = 0.29 e Å3
Crystal data top
4C5H8N3+·2C8H4O42·C5H7N3V = 4323.25 (15) Å3
Mr = 877.94Z = 4
Monoclinic, C2/cMo Kα radiation
a = 29.7011 (6) ŵ = 0.10 mm1
b = 15.2183 (3) ÅT = 100 K
c = 9.7666 (2) Å0.65 × 0.19 × 0.08 mm
β = 101.670 (1)°
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
6403 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
3722 reflections with I > 2σ(I)
Tmin = 0.939, Tmax = 0.992Rint = 0.037
28159 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.064138 restraints
wR(F2) = 0.153H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.41 e Å3
6403 reflectionsΔρmin = 0.29 e Å3
368 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cyrosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O10.21274 (4)0.08852 (11)0.21602 (15)0.0440 (4)
O20.22943 (4)0.23084 (10)0.25406 (14)0.0387 (4)
O30.13432 (4)0.19360 (12)0.30278 (14)0.0515 (5)
O40.06579 (4)0.23383 (10)0.18270 (14)0.0388 (4)
C10.18725 (7)0.19537 (15)0.0669 (2)0.0423 (5)
H1A0.21770.18100.06720.051*
C20.15801 (8)0.21910 (16)0.1906 (2)0.0456 (6)
H2A0.16890.22100.27340.055*
C30.11279 (7)0.23982 (14)0.1911 (2)0.0405 (5)
H3A0.09320.25580.27420.049*
C40.09662 (6)0.23687 (14)0.0685 (2)0.0348 (5)
H4A0.06600.25060.06980.042*
C50.12550 (6)0.21362 (13)0.05745 (18)0.0300 (4)
C60.17151 (6)0.19283 (14)0.05818 (18)0.0325 (5)
C70.10699 (6)0.21365 (14)0.18992 (19)0.0342 (5)
C80.20650 (6)0.16996 (16)0.18790 (19)0.0347 (5)
N30.19685 (7)0.30697 (15)0.5108 (2)0.0480 (5)
N10.20894 (5)0.44706 (13)0.59887 (17)0.0355 (4)
N20.22822 (6)0.58214 (16)0.7028 (2)0.0431 (5)
C90.20034 (6)0.53472 (15)0.6039 (2)0.0369 (5)
C100.16395 (7)0.56915 (17)0.5066 (2)0.0475 (6)
H10A0.15720.62890.50590.057*
C110.13800 (7)0.51321 (17)0.4111 (2)0.0497 (6)
H11A0.11370.53630.34580.060*
C120.14655 (7)0.42488 (17)0.4086 (2)0.0447 (6)
H12A0.12800.38840.34440.054*
C130.18370 (6)0.39106 (16)0.50433 (19)0.0384 (5)
N40.09366 (6)0.11944 (16)0.49015 (18)0.0464 (5)
N50.16327 (6)0.04646 (18)0.5394 (2)0.0502 (6)
N60.02842 (7)0.20371 (18)0.4271 (2)0.0634 (7)
C140.12044 (6)0.05699 (17)0.5647 (2)0.0448 (6)
C150.10308 (7)0.00880 (16)0.6624 (2)0.0455 (6)
H15A0.12090.03380.71630.055*
C160.05859 (7)0.02544 (17)0.6783 (2)0.0467 (6)
H16A0.04660.00710.74330.056*
C170.03147 (7)0.08875 (16)0.6008 (2)0.0453 (6)
H17A0.00160.09850.61250.054*
C180.04969 (6)0.13754 (17)0.5051 (2)0.0456 (6)
N70.00000.5548 (4)0.75000.0334 (16)0.534 (5)
N80.05683 (11)0.5598 (2)0.6223 (3)0.0411 (11)0.534 (5)
H8A0.05630.61620.62940.049*0.534 (5)
H8B0.07560.53520.57760.049*0.534 (5)
C190.0278 (2)0.5094 (5)0.6826 (7)0.0349 (15)0.534 (5)
C200.0267 (4)0.4174 (5)0.6760 (14)0.049 (2)0.534 (5)
H20A0.04400.38720.62190.059*0.534 (5)
C210.00000.3734 (7)0.75000.051 (3)0.534 (5)
H21A0.00000.31230.75000.061*0.534 (5)
N7A0.00000.4041 (6)0.75000.044 (2)0.466 (5)
N8A0.04699 (18)0.4030 (5)0.5906 (6)0.102 (2)0.466 (5)
H8AA0.04570.34660.59130.122*0.466 (5)
H8AB0.06290.42930.53840.122*0.466 (5)
C19A0.0240 (4)0.4504 (6)0.6714 (13)0.050 (2)0.466 (5)
C20A0.0241 (4)0.5423 (6)0.6703 (13)0.081 (3)0.466 (5)
H20B0.04080.57290.61480.097*0.466 (5)
C21A0.00000.5853 (10)0.75000.093 (5)0.466 (5)
H21B0.00000.64640.75000.111*0.466 (5)
H1N10.2349 (8)0.4278 (15)0.662 (3)0.055 (7)*
H1N20.2239 (10)0.648 (2)0.711 (3)0.084 (10)*
H2N20.2508 (8)0.5584 (15)0.754 (3)0.046 (7)*
H1N30.1847 (9)0.2727 (17)0.443 (3)0.057 (8)*
H2N30.2216 (8)0.2915 (15)0.574 (3)0.046 (6)*
H1N40.1058 (10)0.1524 (19)0.422 (3)0.078 (9)*
H1N50.1696 (8)0.0712 (16)0.464 (3)0.053 (8)*
H2N50.1805 (10)0.0010 (18)0.582 (3)0.069 (9)*
H1N60.0413 (9)0.2208 (17)0.353 (3)0.062 (7)*
H2N60.0011 (9)0.2076 (16)0.419 (3)0.059 (7)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0227 (7)0.0637 (11)0.0404 (9)0.0031 (7)0.0057 (6)0.0151 (8)
O20.0254 (6)0.0651 (10)0.0233 (7)0.0144 (7)0.0008 (5)0.0041 (7)
O30.0221 (6)0.1140 (14)0.0178 (7)0.0141 (8)0.0020 (5)0.0077 (8)
O40.0169 (6)0.0635 (10)0.0354 (8)0.0058 (6)0.0042 (5)0.0088 (7)
C10.0341 (10)0.0693 (16)0.0254 (10)0.0190 (10)0.0105 (8)0.0004 (10)
C20.0552 (13)0.0645 (16)0.0183 (10)0.0146 (11)0.0105 (9)0.0021 (10)
C30.0463 (12)0.0493 (13)0.0200 (10)0.0113 (10)0.0078 (8)0.0049 (9)
C40.0244 (9)0.0490 (13)0.0261 (10)0.0089 (8)0.0067 (7)0.0089 (9)
C50.0206 (8)0.0492 (12)0.0185 (9)0.0091 (8)0.0002 (7)0.0075 (8)
C60.0250 (9)0.0527 (13)0.0192 (9)0.0120 (8)0.0034 (7)0.0010 (8)
C70.0198 (8)0.0584 (14)0.0231 (9)0.0049 (8)0.0014 (7)0.0111 (9)
C80.0152 (8)0.0696 (16)0.0195 (9)0.0125 (9)0.0041 (7)0.0045 (10)
N30.0394 (10)0.0767 (16)0.0229 (9)0.0302 (10)0.0055 (8)0.0076 (10)
N10.0186 (7)0.0658 (13)0.0223 (8)0.0113 (8)0.0044 (6)0.0089 (8)
N20.0203 (8)0.0636 (14)0.0411 (11)0.0034 (8)0.0041 (8)0.0173 (10)
C90.0190 (8)0.0614 (15)0.0307 (10)0.0044 (9)0.0062 (8)0.0125 (10)
C100.0280 (10)0.0582 (15)0.0502 (14)0.0066 (10)0.0063 (10)0.0122 (12)
C110.0271 (10)0.0734 (18)0.0424 (13)0.0163 (11)0.0076 (9)0.0089 (12)
C120.0295 (10)0.0721 (17)0.0286 (11)0.0187 (10)0.0030 (8)0.0025 (11)
C130.0264 (9)0.0711 (16)0.0184 (9)0.0164 (10)0.0063 (8)0.0009 (10)
N40.0241 (8)0.0920 (16)0.0210 (8)0.0174 (9)0.0002 (7)0.0105 (9)
N50.0266 (9)0.0893 (17)0.0310 (10)0.0215 (10)0.0029 (8)0.0127 (11)
N60.0260 (9)0.133 (2)0.0329 (11)0.0320 (11)0.0098 (8)0.0162 (12)
C140.0260 (9)0.0796 (17)0.0239 (10)0.0151 (10)0.0068 (8)0.0214 (11)
C150.0350 (11)0.0620 (16)0.0349 (12)0.0106 (10)0.0042 (9)0.0145 (11)
C160.0337 (11)0.0639 (16)0.0404 (12)0.0016 (10)0.0023 (9)0.0155 (11)
C170.0235 (9)0.0747 (17)0.0361 (12)0.0056 (10)0.0023 (9)0.0184 (11)
C180.0217 (9)0.0897 (18)0.0231 (10)0.0156 (10)0.0009 (8)0.0139 (11)
N70.025 (3)0.032 (4)0.037 (3)0.0000.006 (2)0.000
N80.0274 (17)0.056 (2)0.040 (2)0.0022 (15)0.0074 (14)0.0074 (16)
C190.021 (2)0.039 (4)0.037 (3)0.002 (3)0.0130 (19)0.002 (3)
C200.041 (3)0.032 (4)0.066 (5)0.005 (3)0.012 (3)0.012 (4)
C210.032 (4)0.031 (6)0.073 (6)0.0000.030 (3)0.000
N7A0.044 (4)0.035 (6)0.047 (4)0.0000.002 (3)0.000
N8A0.060 (3)0.188 (7)0.061 (4)0.063 (4)0.020 (3)0.054 (4)
C19A0.036 (4)0.055 (6)0.050 (4)0.008 (6)0.016 (3)0.014 (6)
C20A0.062 (6)0.063 (6)0.091 (6)0.028 (5)0.048 (4)0.048 (5)
C21A0.083 (8)0.038 (8)0.120 (10)0.0000.070 (6)0.000
Geometric parameters (Å, º) top
O1—C81.275 (3)N4—H1N40.96 (3)
O2—C81.250 (3)N5—C141.353 (3)
O3—C71.267 (2)N5—H1N50.88 (3)
O4—C71.250 (2)N5—H2N50.91 (3)
C1—C21.386 (3)N6—C181.341 (3)
C1—C61.394 (2)N6—H1N60.92 (3)
C1—H1A0.9300N6—H2N60.87 (3)
C2—C31.379 (3)C14—C151.384 (3)
C2—H2A0.9300C15—C161.385 (3)
C3—C41.378 (3)C15—H15A0.9300
C3—H3A0.9300C16—C171.380 (3)
C4—C51.396 (3)C16—H16A0.9300
C4—H4A0.9300C17—C181.387 (3)
C5—C61.401 (2)C17—H17A0.9300
C5—C71.505 (2)N7—C19i1.346 (6)
C6—C81.508 (3)N7—C191.346 (6)
N3—C131.336 (3)N8—C191.373 (7)
N3—H1N30.86 (3)N8—H8A0.8600
N3—H2N30.89 (2)N8—H8B0.8600
N1—C91.361 (3)C19—C201.401 (7)
N1—C131.364 (3)C20—C211.354 (10)
N1—H1N10.93 (3)C20—H20A0.9300
N2—C91.347 (3)C21—C20i1.354 (10)
N2—H1N21.01 (3)C21—H21A0.9300
N2—H2N20.83 (2)N7A—C19Ai1.348 (10)
C9—C101.389 (3)N7A—C19A1.348 (10)
C10—C111.378 (3)N8A—C19A1.351 (10)
C10—H10A0.9300N8A—H8AA0.8600
C11—C121.369 (3)N8A—H8AB0.8600
C11—H11A0.9300C19A—C20A1.398 (10)
C12—C131.393 (3)C20A—C21A1.332 (12)
C12—H12A0.9300C20A—H20B0.9300
N4—C141.353 (3)C21A—C20Ai1.332 (12)
N4—C181.371 (2)C21A—H21B0.9300
C2—C1—C6120.62 (18)C14—N4—H1N4118.5 (17)
C2—C1—H1A119.7C18—N4—H1N4117.9 (17)
C6—C1—H1A119.7C14—N5—H1N5118.0 (16)
C3—C2—C1120.05 (18)C14—N5—H2N5118.2 (17)
C3—C2—H2A120.0H1N5—N5—H2N5121 (2)
C1—C2—H2A120.0C18—N6—H1N6115.7 (16)
C4—C3—C2120.00 (18)C18—N6—H2N6117.2 (17)
C4—C3—H3A120.0H1N6—N6—H2N6119 (2)
C2—C3—H3A120.0N5—C14—N4117.2 (2)
C3—C4—C5120.95 (17)N5—C14—C15123.9 (2)
C3—C4—H4A119.5N4—C14—C15118.87 (18)
C5—C4—H4A119.5C14—C15—C16118.5 (2)
C4—C5—C6119.12 (16)C14—C15—H15A120.7
C4—C5—C7119.45 (15)C16—C15—H15A120.7
C6—C5—C7121.41 (16)C17—C16—C15122.0 (2)
C1—C6—C5119.26 (17)C17—C16—H16A119.0
C1—C6—C8116.51 (15)C15—C16—H16A119.0
C5—C6—C8124.20 (15)C16—C17—C18118.67 (19)
O4—C7—O3123.78 (17)C16—C17—H17A120.7
O4—C7—C5118.39 (16)C18—C17—H17A120.7
O3—C7—C5117.83 (15)N6—C18—N4116.1 (2)
O2—C8—O1124.68 (17)N6—C18—C17125.55 (18)
O2—C8—C6118.3 (2)N4—C18—C17118.3 (2)
O1—C8—C6116.80 (19)C19i—N7—C19118.3 (7)
C13—N3—H1N3118.0 (17)C19—N8—H8A120.0
C13—N3—H2N3118.5 (15)C19—N8—H8B120.0
H1N3—N3—H2N3122 (2)H8A—N8—H8B120.0
C9—N1—C13123.73 (17)N7—C19—N8115.0 (5)
C9—N1—H1N1114.9 (15)N7—C19—C20121.6 (7)
C13—N1—H1N1121.2 (15)N8—C19—C20123.4 (7)
C9—N2—H1N2121.1 (17)C21—C20—C19118.7 (9)
C9—N2—H2N2120.2 (17)C21—C20—H20A120.6
H1N2—N2—H2N2119 (2)C19—C20—H20A120.6
N2—C9—N1117.26 (18)C20i—C21—C20120.7 (10)
N2—C9—C10124.7 (2)C20i—C21—H21A119.7
N1—C9—C10118.1 (2)C20—C21—H21A119.7
C11—C10—C9118.8 (2)C19Ai—N7A—C19A117.0 (10)
C11—C10—H10A120.6C19A—N8A—H8AA120.0
C9—C10—H10A120.6C19A—N8A—H8AB120.0
C12—C11—C10122.6 (2)H8AA—N8A—H8AB120.0
C12—C11—H11A118.7N7A—C19A—N8A116.2 (8)
C10—C11—H11A118.7N7A—C19A—C20A121.9 (10)
C11—C12—C13118.4 (2)N8A—C19A—C20A121.8 (10)
C11—C12—H12A120.8C21A—C20A—C19A119.0 (12)
C13—C12—H12A120.8C21A—C20A—H20B120.5
N3—C13—N1116.81 (18)C19A—C20A—H20B120.5
N3—C13—C12124.8 (2)C20A—C21A—C20Ai121.1 (14)
N1—C13—C12118.4 (2)C20A—C21A—H21B119.5
C14—N4—C18123.6 (2)C20Ai—C21A—H21B119.5
C6—C1—C2—C30.5 (4)C9—N1—C13—N3178.83 (17)
C1—C2—C3—C40.1 (4)C9—N1—C13—C121.0 (3)
C2—C3—C4—C50.4 (3)C11—C12—C13—N3177.8 (2)
C3—C4—C5—C60.2 (3)C11—C12—C13—N12.0 (3)
C3—C4—C5—C7178.2 (2)C18—N4—C14—N5179.7 (2)
C2—C1—C6—C50.7 (3)C18—N4—C14—C150.6 (3)
C2—C1—C6—C8177.5 (2)N5—C14—C15—C16179.8 (2)
C4—C5—C6—C10.4 (3)N4—C14—C15—C161.1 (3)
C7—C5—C6—C1178.8 (2)C14—C15—C16—C170.6 (3)
C4—C5—C6—C8177.7 (2)C15—C16—C17—C180.6 (3)
C7—C5—C6—C80.7 (3)C14—N4—C18—N6177.5 (2)
C4—C5—C7—O40.7 (3)C14—N4—C18—C170.6 (3)
C6—C5—C7—O4179.11 (19)C16—C17—C18—N6176.8 (2)
C4—C5—C7—O3178.9 (2)C16—C17—C18—N41.2 (3)
C6—C5—C7—O30.5 (3)C19i—N7—C19—N8176.8 (7)
C1—C6—C8—O288.3 (2)C19i—N7—C19—C203.0 (8)
C5—C6—C8—O289.8 (2)N7—C19—C20—C216.0 (16)
C1—C6—C8—O186.7 (2)N8—C19—C20—C21173.8 (7)
C5—C6—C8—O195.2 (2)C19—C20—C21—C20i2.9 (8)
C13—N1—C9—N2179.82 (16)C19Ai—N7A—C19A—N8A178.4 (12)
C13—N1—C9—C100.4 (3)C19Ai—N7A—C19A—C20A0.2 (8)
N2—C9—C10—C11179.8 (2)N7A—C19A—C20A—C21A0.4 (17)
N1—C9—C10—C110.8 (3)N8A—C19A—C20A—C21A178.5 (9)
C9—C10—C11—C120.2 (3)C19A—C20A—C21A—C20Ai0.2 (8)
C10—C11—C12—C131.6 (3)
Symmetry code: (i) x, y, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N1···O1ii0.93 (3)1.78 (3)2.697 (2)170 (2)
N2—H1N2···O2iii1.01 (3)1.89 (3)2.889 (3)167 (3)
N2—H2N2···O1ii0.83 (3)2.48 (2)3.144 (3)138 (2)
N3—H1N3···O20.86 (3)2.56 (3)3.090 (2)120 (2)
N3—H1N3···O30.86 (3)2.18 (3)3.005 (3)161 (3)
N3—H2N3···O2ii0.89 (3)2.02 (3)2.892 (2)168 (2)
N4—H1N4···O30.96 (3)1.69 (3)2.641 (2)169 (3)
N5—H1N5···O30.88 (3)2.53 (3)3.208 (3)135 (2)
N5—H2N5···O1iv0.91 (3)2.00 (3)2.886 (3)166 (2)
N6—H1N6···O40.92 (3)1.96 (3)2.866 (2)169 (2)
N6—H2N6···O4v0.87 (3)2.02 (3)2.824 (2)155 (3)
N8—H8A···O4iii0.862.353.196 (4)170
C15—H15A···O3iv0.932.583.422 (3)151
C10—H10A···Cg1vi0.932.483.379 (3)163
Symmetry codes: (ii) x+1/2, y+1/2, z+1; (iii) x, y+1, z+1/2; (iv) x, y, z+1/2; (v) x, y, z+1/2; (vi) x+1/2, y+3/2, z+1/2.

Experimental details

Crystal data
Chemical formula4C5H8N3+·2C8H4O42·C5H7N3
Mr877.94
Crystal system, space groupMonoclinic, C2/c
Temperature (K)100
a, b, c (Å)29.7011 (6), 15.2183 (3), 9.7666 (2)
β (°) 101.670 (1)
V3)4323.25 (15)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.65 × 0.19 × 0.08
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.939, 0.992
No. of measured, independent and
observed [I > 2σ(I)] reflections
28159, 6403, 3722
Rint0.037
(sin θ/λ)max1)0.709
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.064, 0.153, 1.05
No. of reflections6403
No. of parameters368
No. of restraints138
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.41, 0.29

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N1···O1i0.93 (3)1.78 (3)2.697 (2)170 (2)
N2—H1N2···O2ii1.01 (3)1.89 (3)2.889 (3)167 (3)
N2—H2N2···O1i0.83 (3)2.48 (2)3.144 (3)138 (2)
N3—H1N3···O20.86 (3)2.56 (3)3.090 (2)120 (2)
N3—H1N3···O30.86 (3)2.18 (3)3.005 (3)161 (3)
N3—H2N3···O2i0.89 (3)2.02 (3)2.892 (2)168 (2)
N4—H1N4···O30.96 (3)1.69 (3)2.641 (2)169 (3)
N5—H1N5···O30.88 (3)2.53 (3)3.208 (3)135 (2)
N5—H2N5···O1iii0.91 (3)2.00 (3)2.886 (3)166 (2)
N6—H1N6···O40.92 (3)1.96 (3)2.866 (2)169 (2)
N6—H2N6···O4iv0.87 (3)2.02 (3)2.824 (2)155 (3)
N8—H8A···O4ii0.862.353.196 (4)169.7
C15—H15A···O3iii0.932.583.422 (3)151.1
C10—H10A···Cg1v0.932.483.379 (3)163
Symmetry codes: (i) x+1/2, y+1/2, z+1; (ii) x, y+1, z+1/2; (iii) x, y, z+1/2; (iv) x, y, z+1/2; (v) x+1/2, y+3/2, z+1/2.
 

Footnotes

Thomson Reuters ResearcherID: C-7581-2009.

§Thomson Reuters ResearcherID: A-3561-2009.

Acknowledgements

This research was supported by Universiti Sains Malaysia (USM) under the Research University Grant (1001/PKIMIA/811055). HKF and WSL thank USM for the Research University Golden Goose Grant (1001/PFIZIK/811012). WSL thanks the Malaysian Government and USM for the award of the post of Assistant Research Officer under the Research University Golden Goose Grant (1001/PFIZIK/811012).

References

First citationAbu Zuhri, A. Z. & Cox, J. A. (1989). Mikrochim. Acta, 11, 277–283.  CrossRef Google Scholar
First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationBrike, G., Hirsch, M. & Franz, V. (2002). US Patent No. 636 838 9B1.  Google Scholar
First citationBruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBüyükgüngör, O. & Odabąsoğlu, M. (2006). Acta Cryst. E62, o3816–o3818.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationEl-Mossalamy, E. H. (2001). Pigm. Resin Technol. 30, 164–168.  CrossRef CAS Google Scholar
First citationInuzuka, K. & Fujimoto, A. (1990). Bull. Chem. Soc. Jpn, 63, 216–220.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYamamoto, S., Nakadate, T., Aizu, E. & Kato, R. (1990). Carcinogenesis, 11, 749–754.  CrossRef CAS PubMed Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds