Download citation
Download citation
link to html
In the title compound, C24H19N3O4S2, the fused thienothienopyrimidine ring system is essentially planar, and makes a dihedral angle of 85.61 (2) and 72.02 (2)° with the phenyl and o-tolyloxy rings, respectively. The mol­ecular structure is stabilized by intra­molecular N—H...N and N—H...O hydrogen bonds. The crystal packing is stabilized mainly by inter­molecular π–π inter­actions between adjacent thienothienopyrimidine ring systems; the centroid–centroid distances between the central and outer thio­phene rings and between adjacent outer thio­phene rings are 3.841 (4) and 3.696 (4) Å, respectively.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807036781/is2198sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807036781/is2198Isup2.hkl
Contains datablock I

CCDC reference: 657891

Key indicators

  • Single-crystal X-ray study
  • T = 292 K
  • Mean [sigma](C-C) = 0.007 Å
  • R factor = 0.067
  • wR factor = 0.179
  • Data-to-parameter ratio = 13.3

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT066_ALERT_1_C Predicted and Reported Transmissions Identical . ? PLAT154_ALERT_1_C The su's on the Cell Angles are Equal (x 10000) 100 Deg. PLAT180_ALERT_3_C Check Cell Rounding: # of Values Ending with 0 = 3 PLAT220_ALERT_2_C Large Non-Solvent C Ueq(max)/Ueq(min) ... 2.90 Ratio PLAT230_ALERT_2_C Hirshfeld Test Diff for C14 - C15 .. 6.11 su PLAT242_ALERT_2_C Check Low Ueq as Compared to Neighbors for C16 PLAT242_ALERT_2_C Check Low Ueq as Compared to Neighbors for C23 PLAT340_ALERT_3_C Low Bond Precision on C-C Bonds (x 1000) Ang ... 7
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 8 ALERT level C = Check and explain 0 ALERT level G = General alerts; check 2 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 4 ALERT type 2 Indicator that the structure model may be wrong or deficient 2 ALERT type 3 Indicator that the structure quality may be low 0 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

Comment top

The derivatives of thienopyrimidine are of great importance because of their remarked biological properties (Panico et al., 2001; Ding et al., 2004; Modica et al., 2004). We have recently focused on the synthesis of fused heterocyclic systems containing a fused pyrimidinone ring moiety using aza-Wittig reaction (Liu et al., 2006). The title compound, (I), may be used as a new precursor for obtaining bioactive molecules and its structure is reported here (Fig. 1). The bond lengths and angles are unexceptional. The thienothienopyrimidinone ring system is essentially planar, with maximum deviations 0.034 (1) and 0.021 (3) Å for S1 and C20, respectively; the C1—C6 phenyl ring is twisted with respect to it, with a dihedral angle of 85.61 (2)°. Intramolecular N—H···O and N—H···N hydrogen bonds interactions are present which stabilize the molecular structure (Table 1). There are also intermolecular π-π interactions (Janiak, 2000; Fig. 2). In the thienothiophene system (ring A: S1/C18/C19/C20/C21 and B: S2/C10/C9/C19/C18), the interplanar perpendicular distances between them A/Ai and A/Bi [symmetry code (i): 2 - x, 2 - y, 2 - z] are 3.490 (3) and 3.471 (3) Å, respectively, and the center-to-center distances are 3.696 (4) and 3.841 (4) Å.

Related literature top

Many derivatives of pyrimidinone have been prepared, and their biological and pharmaceutical activities have been studied by Modica et al. (2004) and Panico et al. (2001). For related literature, see: Janiak (2000); Ding et al. (2004); Liu et al. (2006).

Experimental top

To a solution of diethyl 3-triphenylphosphoranylideneamino- 4-aminothieno[2,3-b]thiophene-2,5-dicarboxylate (3 mmol) in anhydrous dichloromethane (15 ml) was added phenyl isocyanate (3 mmol) under dry nitrogen at room temperature. The reaction mixture was left unstirred for 8 h at 273–278 K, then the solvent was removed under reduced pressure, which was used directly without further purification. To the reaction mixture was added anhydrous acetonitrile (15 ml) with 2-methylphenol (3 mmol) and anhydrous K2CO3 (1 mmol). The mixture was stirred for 6 h at 313–323 K, the solution concentrated under reduced pressure. The title compound was recrystallized from ethanol/dichloromethane (1:2 v/v) at room temperature, yielding single crystals suitable for X-ray diffraction.

Refinement top

H atoms were located in a difference map and treated as riding, with C—H = 0.93–0.97 and N—H = 0.86 Å, and with Uiso(H) = 1.2Ueq(C, N) or 1.5Ueq(methyl C).

Structure description top

The derivatives of thienopyrimidine are of great importance because of their remarked biological properties (Panico et al., 2001; Ding et al., 2004; Modica et al., 2004). We have recently focused on the synthesis of fused heterocyclic systems containing a fused pyrimidinone ring moiety using aza-Wittig reaction (Liu et al., 2006). The title compound, (I), may be used as a new precursor for obtaining bioactive molecules and its structure is reported here (Fig. 1). The bond lengths and angles are unexceptional. The thienothienopyrimidinone ring system is essentially planar, with maximum deviations 0.034 (1) and 0.021 (3) Å for S1 and C20, respectively; the C1—C6 phenyl ring is twisted with respect to it, with a dihedral angle of 85.61 (2)°. Intramolecular N—H···O and N—H···N hydrogen bonds interactions are present which stabilize the molecular structure (Table 1). There are also intermolecular π-π interactions (Janiak, 2000; Fig. 2). In the thienothiophene system (ring A: S1/C18/C19/C20/C21 and B: S2/C10/C9/C19/C18), the interplanar perpendicular distances between them A/Ai and A/Bi [symmetry code (i): 2 - x, 2 - y, 2 - z] are 3.490 (3) and 3.471 (3) Å, respectively, and the center-to-center distances are 3.696 (4) and 3.841 (4) Å.

Many derivatives of pyrimidinone have been prepared, and their biological and pharmaceutical activities have been studied by Modica et al. (2004) and Panico et al. (2001). For related literature, see: Janiak (2000); Ding et al. (2004); Liu et al. (2006).

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT-Plus (Bruker, 2001); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXTL (Sheldrick, 2001).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with atom labels and 50% probability displacement ellipsoids for non-H atoms. The intramolecular N—H···N/O hydrogen bonds are indicated by dashed lines.
[Figure 2] Fig. 2. A packing view of the title compound along the a axis, showing the hydrogen bonds as dashed lines.
Ethyl 8-amino-2-(o-tolyloxy)-4-oxo-3-phenyl-3,4-dihydro- thieno[2',3':2,3]thieno[4,5-d]pyrimidine-6-carboxylate top
Crystal data top
C24H19N3O4S2Z = 2
Mr = 477.54F(000) = 496
Triclinic, P1Dx = 1.382 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.0996 (6) ÅCell parameters from 2292 reflections
b = 10.444 (9) Åθ = 2.1–22.0°
c = 16.9985 (13) ŵ = 0.27 mm1
α = 104.447 (1)°T = 292 K
β = 97.120 (1)°Plate, colorless
γ = 106.041 (1)°0.30 × 0.20 × 0.10 mm
V = 1147.5 (10) Å3
Data collection top
Bruker SMART CCD area-detector
diffractometer
3980 independent reflections
Radiation source: fine-focus sealed tube2644 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.058
φ and ω scansθmax = 25.0°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 88
Tmin = 0.924, Tmax = 0.974k = 1212
9743 measured reflectionsl = 2020
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.067Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.179H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0925P)2]
where P = (Fo2 + 2Fc2)/3
3980 reflections(Δ/σ)max = 0.001
300 parametersΔρmax = 0.27 e Å3
0 restraintsΔρmin = 0.32 e Å3
Crystal data top
C24H19N3O4S2γ = 106.041 (1)°
Mr = 477.54V = 1147.5 (10) Å3
Triclinic, P1Z = 2
a = 7.0996 (6) ÅMo Kα radiation
b = 10.444 (9) ŵ = 0.27 mm1
c = 16.9985 (13) ÅT = 292 K
α = 104.447 (1)°0.30 × 0.20 × 0.10 mm
β = 97.120 (1)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
3980 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2644 reflections with I > 2σ(I)
Tmin = 0.924, Tmax = 0.974Rint = 0.058
9743 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0670 restraints
wR(F2) = 0.179H-atom parameters constrained
S = 1.04Δρmax = 0.27 e Å3
3980 reflectionsΔρmin = 0.32 e Å3
300 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.9189 (7)1.1256 (5)0.6229 (3)0.0784 (14)
H11.02361.10540.65040.094*
C20.9250 (9)1.1479 (6)0.5454 (3)0.1021 (19)
H21.03531.14410.52170.122*
C30.7701 (11)1.1754 (5)0.5041 (3)0.0965 (19)
H30.77511.19060.45270.116*
C40.6068 (10)1.1805 (5)0.5392 (3)0.0949 (18)
H40.50121.19900.51100.114*
C50.5974 (8)1.1584 (4)0.6161 (3)0.0774 (14)
H50.48551.16020.63900.093*
C60.7567 (6)1.1337 (4)0.6580 (2)0.0543 (10)
C70.8496 (5)1.2306 (4)0.8098 (2)0.0451 (9)
C80.6680 (5)0.9832 (3)0.7488 (2)0.0447 (9)
C90.7561 (5)1.0601 (3)0.88721 (19)0.0388 (8)
C100.8443 (5)1.1936 (4)0.8855 (2)0.0456 (9)
C110.5062 (6)0.7475 (4)0.6740 (2)0.0509 (10)
C120.3264 (7)0.7053 (5)0.6964 (3)0.0694 (12)
H120.26030.76840.71570.083*
C130.2456 (8)0.5640 (6)0.6891 (3)0.0939 (17)
H130.12560.53140.70550.113*
C140.3440 (12)0.4740 (5)0.6578 (4)0.111 (2)
H140.28810.37920.65080.133*
C150.5262 (10)0.5225 (5)0.6362 (4)0.1013 (18)
H150.59230.45950.61640.122*
C160.6118 (7)0.6600 (4)0.6431 (3)0.0647 (11)
C170.8087 (8)0.7118 (6)0.6181 (4)0.113 (2)
H17A0.90560.77780.66550.170*
H17B0.79070.75610.57580.170*
H17C0.85530.63450.59690.170*
C180.8776 (5)1.1747 (4)1.0281 (2)0.0447 (9)
C190.7735 (5)1.0482 (3)0.9699 (2)0.0406 (8)
C200.7077 (5)0.9386 (4)1.0068 (2)0.0435 (8)
C210.7692 (5)0.9872 (4)1.0933 (2)0.0472 (9)
C220.7380 (6)0.9123 (4)1.1549 (2)0.0517 (9)
C230.6039 (7)0.6880 (4)1.1759 (2)0.0606 (11)
H23A0.73020.69871.21040.073*
H23B0.51680.71541.21180.073*
C240.5102 (9)0.5422 (5)1.1241 (3)0.1020 (18)
H24A0.39030.53411.08750.153*
H24B0.47750.48341.15910.153*
H24C0.60180.51401.09200.153*
N10.7524 (4)1.1129 (3)0.74015 (16)0.0473 (7)
O10.9230 (4)1.3454 (3)0.80035 (16)0.0630 (8)
N20.6637 (4)0.9504 (3)0.81807 (16)0.0436 (7)
O20.5882 (4)0.8878 (2)0.67519 (14)0.0580 (7)
N30.6009 (5)0.8069 (3)0.96004 (18)0.0546 (8)
H3A0.56360.74260.98350.066*
H3B0.57020.78730.90690.066*
O40.7953 (5)0.9629 (3)1.22886 (16)0.0710 (8)
O50.6378 (4)0.7756 (3)1.11951 (15)0.0570 (7)
S10.90384 (15)1.16428 (10)1.12772 (6)0.0569 (3)
S20.95315 (15)1.30932 (10)0.98436 (6)0.0562 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.065 (3)0.109 (4)0.055 (3)0.007 (3)0.010 (2)0.040 (3)
C20.090 (4)0.135 (5)0.067 (3)0.001 (4)0.017 (3)0.047 (3)
C30.136 (5)0.088 (4)0.052 (3)0.007 (4)0.004 (3)0.038 (3)
C40.149 (6)0.094 (4)0.053 (3)0.064 (4)0.010 (3)0.027 (3)
C50.110 (4)0.080 (3)0.052 (3)0.055 (3)0.003 (3)0.017 (2)
C60.075 (3)0.042 (2)0.042 (2)0.0100 (19)0.002 (2)0.0180 (17)
C70.045 (2)0.044 (2)0.045 (2)0.0117 (17)0.0040 (16)0.0163 (17)
C80.050 (2)0.041 (2)0.041 (2)0.0144 (17)0.0051 (16)0.0103 (16)
C90.0333 (18)0.049 (2)0.0382 (18)0.0165 (16)0.0072 (15)0.0161 (16)
C100.041 (2)0.046 (2)0.044 (2)0.0119 (17)0.0012 (16)0.0091 (16)
C110.068 (3)0.043 (2)0.0343 (18)0.0112 (19)0.0013 (18)0.0106 (16)
C120.066 (3)0.079 (3)0.060 (3)0.014 (2)0.014 (2)0.023 (2)
C130.092 (4)0.093 (4)0.077 (3)0.013 (3)0.011 (3)0.040 (3)
C140.166 (7)0.046 (3)0.085 (4)0.007 (4)0.010 (4)0.021 (3)
C150.139 (5)0.058 (3)0.104 (4)0.031 (3)0.026 (4)0.019 (3)
C160.080 (3)0.054 (3)0.059 (3)0.022 (2)0.012 (2)0.015 (2)
C170.096 (4)0.137 (5)0.128 (5)0.056 (4)0.049 (4)0.042 (4)
C180.0339 (19)0.056 (2)0.0433 (19)0.0166 (17)0.0061 (15)0.0109 (17)
C190.0374 (19)0.048 (2)0.0426 (19)0.0195 (16)0.0077 (16)0.0186 (17)
C200.039 (2)0.058 (2)0.0403 (19)0.0239 (18)0.0071 (16)0.0159 (17)
C210.043 (2)0.058 (2)0.044 (2)0.0188 (18)0.0059 (16)0.0187 (17)
C220.053 (2)0.067 (3)0.044 (2)0.029 (2)0.0108 (18)0.0201 (19)
C230.070 (3)0.071 (3)0.054 (2)0.029 (2)0.018 (2)0.033 (2)
C240.146 (5)0.076 (3)0.070 (3)0.011 (3)0.010 (3)0.030 (3)
N10.0583 (19)0.0426 (17)0.0393 (16)0.0133 (15)0.0054 (14)0.0149 (13)
O10.0733 (19)0.0456 (15)0.0613 (17)0.0070 (14)0.0033 (14)0.0189 (13)
N20.0517 (18)0.0399 (16)0.0371 (16)0.0140 (14)0.0038 (13)0.0110 (13)
O20.086 (2)0.0418 (14)0.0378 (14)0.0111 (13)0.0043 (13)0.0125 (11)
N30.066 (2)0.0498 (18)0.0440 (17)0.0142 (16)0.0050 (15)0.0153 (14)
O40.092 (2)0.0792 (19)0.0401 (15)0.0242 (16)0.0034 (14)0.0224 (14)
O50.0678 (18)0.0602 (17)0.0447 (14)0.0181 (14)0.0101 (13)0.0222 (13)
S10.0593 (7)0.0654 (7)0.0403 (5)0.0167 (5)0.0036 (4)0.0125 (5)
S20.0615 (7)0.0490 (6)0.0480 (6)0.0095 (5)0.0016 (5)0.0109 (4)
Geometric parameters (Å, º) top
C1—C61.374 (6)C13—H130.9300
C1—C21.398 (6)C14—C151.382 (8)
C1—H10.9300C14—H140.9300
C2—C31.366 (8)C15—C161.364 (6)
C2—H20.9300C15—H150.9300
C3—C41.375 (7)C16—C171.508 (6)
C3—H30.9300C17—H17A0.9600
C4—C51.390 (6)C17—H17B0.9600
C4—H40.9300C17—H17C0.9600
C5—C61.381 (6)C18—C191.378 (5)
C5—H50.9300C18—S11.715 (3)
C6—N11.468 (4)C18—S21.738 (4)
C7—O11.227 (4)C19—C201.434 (5)
C7—N11.411 (4)C20—N31.352 (5)
C7—C101.436 (5)C20—C211.400 (5)
C8—N21.307 (4)C21—C221.458 (5)
C8—O21.330 (4)C21—S11.738 (4)
C8—N11.375 (4)C22—O41.204 (4)
C9—N21.359 (4)C22—O51.345 (4)
C9—C101.371 (5)C23—C241.470 (6)
C9—C191.434 (4)C23—O51.480 (4)
C10—S21.740 (3)C23—H23A0.9700
C11—C121.364 (5)C23—H23B0.9700
C11—C161.382 (6)C24—H24A0.9600
C11—O21.414 (4)C24—H24B0.9600
C12—C131.395 (7)C24—H24C0.9600
C12—H120.9300N3—H3A0.8600
C13—C141.364 (8)N3—H3B0.8600
C6—C1—C2119.3 (5)C15—C16—C17121.7 (5)
C6—C1—H1120.3C11—C16—C17122.6 (4)
C2—C1—H1120.3C16—C17—H17A109.5
C3—C2—C1120.5 (5)C16—C17—H17B109.5
C3—C2—H2119.7H17A—C17—H17B109.5
C1—C2—H2119.7C16—C17—H17C109.5
C2—C3—C4119.6 (5)H17A—C17—H17C109.5
C2—C3—H3120.2H17B—C17—H17C109.5
C4—C3—H3120.2C19—C18—S1112.8 (3)
C3—C4—C5120.9 (5)C19—C18—S2113.0 (3)
C3—C4—H4119.6S1—C18—S2134.2 (2)
C5—C4—H4119.6C18—C19—C9111.4 (3)
C6—C5—C4119.0 (5)C18—C19—C20112.5 (3)
C6—C5—H5120.5C9—C19—C20136.0 (3)
C4—C5—H5120.5N3—C20—C21127.0 (3)
C1—C6—C5120.6 (4)N3—C20—C19121.6 (3)
C1—C6—N1119.3 (4)C21—C20—C19111.4 (3)
C5—C6—N1120.1 (4)C20—C21—C22129.9 (3)
O1—C7—N1120.2 (3)C20—C21—S1111.7 (3)
O1—C7—C10128.9 (3)C22—C21—S1118.4 (3)
N1—C7—C10110.9 (3)O4—C22—O5122.4 (3)
N2—C8—O2121.7 (3)O4—C22—C21125.6 (4)
N2—C8—N1127.2 (3)O5—C22—C21112.0 (3)
O2—C8—N1111.1 (3)C24—C23—O5107.6 (3)
N2—C9—C10123.7 (3)C24—C23—H23A110.2
N2—C9—C19123.5 (3)O5—C23—H23A110.2
C10—C9—C19112.7 (3)C24—C23—H23B110.2
C9—C10—C7122.9 (3)O5—C23—H23B110.2
C9—C10—S2112.4 (3)H23A—C23—H23B108.5
C7—C10—S2124.6 (3)C23—C24—H24A109.5
C12—C11—C16124.7 (4)C23—C24—H24B109.5
C12—C11—O2119.7 (4)H24A—C24—H24B109.5
C16—C11—O2115.4 (3)C23—C24—H24C109.5
C11—C12—C13117.5 (5)H24A—C24—H24C109.5
C11—C12—H12121.2H24B—C24—H24C109.5
C13—C12—H12121.2C8—N1—C7121.5 (3)
C14—C13—C12119.4 (5)C8—N1—C6121.5 (3)
C14—C13—H13120.3C7—N1—C6116.9 (3)
C12—C13—H13120.3C8—N2—C9113.8 (3)
C13—C14—C15120.6 (5)C8—O2—C11117.6 (3)
C13—C14—H14119.7C20—N3—H3A120.0
C15—C14—H14119.7C20—N3—H3B120.0
C16—C15—C14121.9 (5)H3A—N3—H3B120.0
C16—C15—H15119.1C22—O5—C23116.8 (3)
C14—C15—H15119.1C18—S1—C2191.53 (17)
C15—C16—C11115.7 (4)C18—S2—C1090.37 (17)
C6—C1—C2—C31.0 (8)N3—C20—C21—C220.5 (6)
C1—C2—C3—C40.3 (8)C19—C20—C21—C22179.1 (3)
C2—C3—C4—C50.2 (8)N3—C20—C21—S1180.0 (3)
C3—C4—C5—C61.2 (7)C19—C20—C21—S10.3 (4)
C2—C1—C6—C52.4 (7)C20—C21—C22—O4179.4 (4)
C2—C1—C6—N1178.8 (4)S1—C21—C22—O41.2 (5)
C4—C5—C6—C12.5 (6)C20—C21—C22—O51.5 (5)
C4—C5—C6—N1178.7 (4)S1—C21—C22—O5177.9 (2)
N2—C9—C10—C70.7 (5)N2—C8—N1—C70.3 (6)
C19—C9—C10—C7178.7 (3)O2—C8—N1—C7178.9 (3)
N2—C9—C10—S2179.0 (3)N2—C8—N1—C6176.4 (4)
C19—C9—C10—S20.4 (4)O2—C8—N1—C62.8 (5)
O1—C7—C10—C9179.8 (4)O1—C7—N1—C8179.7 (3)
N1—C7—C10—C90.4 (5)C10—C7—N1—C80.2 (5)
O1—C7—C10—S22.1 (6)O1—C7—N1—C64.1 (5)
N1—C7—C10—S2178.5 (3)C10—C7—N1—C6176.4 (3)
C16—C11—C12—C131.4 (6)C1—C6—N1—C891.1 (5)
O2—C11—C12—C13176.0 (4)C5—C6—N1—C887.7 (4)
C11—C12—C13—C142.2 (7)C1—C6—N1—C785.1 (4)
C12—C13—C14—C152.5 (8)C5—C6—N1—C796.1 (4)
C13—C14—C15—C161.8 (9)O2—C8—N2—C9178.6 (3)
C14—C15—C16—C110.8 (8)N1—C8—N2—C90.5 (5)
C14—C15—C16—C17178.8 (5)C10—C9—N2—C80.7 (5)
C12—C11—C16—C150.7 (6)C19—C9—N2—C8178.7 (3)
O2—C11—C16—C15175.5 (4)N2—C8—O2—C113.0 (5)
C12—C11—C16—C17179.0 (4)N1—C8—O2—C11176.3 (3)
O2—C11—C16—C174.2 (6)C12—C11—O2—C874.9 (4)
S1—C18—C19—C9179.3 (2)C16—C11—O2—C8110.0 (4)
S2—C18—C19—C90.7 (4)O4—C22—O5—C231.3 (5)
S1—C18—C19—C201.4 (4)C21—C22—O5—C23177.8 (3)
S2—C18—C19—C20178.6 (2)C24—C23—O5—C22174.7 (4)
N2—C9—C19—C18178.7 (3)C19—C18—S1—C211.0 (3)
C10—C9—C19—C180.7 (4)S2—C18—S1—C21178.9 (3)
N2—C9—C19—C202.3 (6)C20—C21—S1—C180.4 (3)
C10—C9—C19—C20178.3 (4)C22—C21—S1—C18179.9 (3)
C18—C19—C20—N3179.2 (3)C19—C18—S2—C100.4 (3)
C9—C19—C20—N30.3 (6)S1—C18—S2—C10179.6 (3)
C18—C19—C20—C211.1 (4)C9—C10—S2—C180.0 (3)
C9—C19—C20—C21179.9 (4)C7—C10—S2—C18178.3 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3A···O50.862.222.799 (4)124
N3—H3B···N20.862.563.158 (4)128

Experimental details

Crystal data
Chemical formulaC24H19N3O4S2
Mr477.54
Crystal system, space groupTriclinic, P1
Temperature (K)292
a, b, c (Å)7.0996 (6), 10.444 (9), 16.9985 (13)
α, β, γ (°)104.447 (1), 97.120 (1), 106.041 (1)
V3)1147.5 (10)
Z2
Radiation typeMo Kα
µ (mm1)0.27
Crystal size (mm)0.30 × 0.20 × 0.10
Data collection
DiffractometerBruker SMART CCD area-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.924, 0.974
No. of measured, independent and
observed [I > 2σ(I)] reflections
9743, 3980, 2644
Rint0.058
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.067, 0.179, 1.04
No. of reflections3980
No. of parameters300
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.27, 0.32

Computer programs: SMART (Bruker, 2001), SAINT-Plus (Bruker, 2001), SAINT-Plus, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), PLATON (Spek, 2003), SHELXTL (Sheldrick, 2001).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3A···O50.862.222.799 (4)124
N3—H3B···N20.862.563.158 (4)128
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds