metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146
ADDENDA AND ERRATA
A correction has been published for this article. To view the correction, click here.

[SP-4-2]-(Aceto­nitrile-κN)chlorido­[2-(4,6-di­phenyl­pyridin-2-yl)phenyl-κ2C1,N]platinum(II)

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, Anhui University, Hefei, Anhui 230039, People's Republic of China
*Correspondence e-mail: lsl1968@ahu.edu.cn

Edited by W. Imhof, University Koblenz-Landau, Germany (Received 25 July 2019; accepted 31 August 2019; online 20 September 2019)

The synthesis and crystal structure of the title PtII complex, [Pt(C23H16N)Cl(CH3CN)], based on the C,N-chelating 2,4,6-tri­phenyl­pyridine as the primary ligand, is described. The central PtII atom is in a distorted square-planar coordination environment. In the crystal, mol­ecules are arranged via a metallophilic inter­action between platinum atoms with a Pt⋯Pt contact of 7.052 (2) Å. In addition, a ππ inter­action occurs.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Platinum complexes have received significant attention because of their chemical and photophysical properties, such as high stability, emissions in the visible region, high fluorescent quantum yields and long excited lifetimes (Fang et al., 2018[Fang, B., Zhu, Y. Z., Hu, L., Shen, Y., Jiang, G., Zhang, Q., Tian, X., Li, S., Zhou, H., Wu, J. & Tian, Y. (2018). Inorg. Chem. 57, 14134-14143.]). PtII complexes often form one-dimensional (1-D) stacked structures via the overlap of the Pt 5dz2 orbitals to form inter­molecular metallophilic (Pt⋯Pt) inter­actions (Yasuhiro et al., 2019[Yasuhiro, S., Atsushi, K., Masaki, Y. & Masako, K. (2019). Eur. J. Inorg. Chem. 1011-1017.]). In this study, we report the crystal structure of a novel PtII complex, [PtCl(C23H16N)(CH3CN)].

The mol­ecular structure of the title compound is shown in Fig. 1[link]. The platinum(II) center shows a distorted square-planar coordination environment built up by the coordination of one chloride, one aceto­nitrile and one C,N-chelating 2,4,6-di­phenyl­pyridine. Bond lengths and angles are given in Table 1[link]. The primary ligand, 2,4,6-tri­phenyl­pyridine, is coordinated as a bidentate ligand via the pyridine nitro­gen atom and C1 of the phenyl substituent in the 2-position after C—H activation. A stable five-membered ring structure is formed by this coordination mode. The remaining two coordination sites of the PtII center are occupied by an aceto­nitrile mol­ecule in a trans-position with respect to the coordinating carbon atom of 2,4,6-tri­phenyl­pyridine and a chloride ligand in a trans-position with respect to the pyridine nitro­gen atom. The chelating ligand is not planar, showing dihedral angles between the central pyridine ring and ring C1–C6 of 12.98 (2)°, 50.1 (5)° for the corresponding angle with ring C12–C17, and 7.44 (2)° between the pyridine ring and the top ring C18–C23.

Table 1
Selected geometric parameters (Å, °)

Pt1—N1 2.054 (3) Pt1—C1 1.973 (3)
Pt1—N3 2.102 (3) Pt1—Cl1 2.2964 (10)
       
C1—Pt1—Cl1 92.94 (10) N1—Pt1—Cl1 171.86 (7)
C1—Pt1—N1 81.37 (12) N1—Pt1—N3 100.50 (11)
C1—Pt1—N3 176.81 (12) N3—Pt1—Cl1 84.92 (9)
[Figure 1]
Figure 1
Mol­ecular structure of the title compound showing the atom-numbering scheme.

In the crystal, mol­ecules are arranged via a metallophilic inter­action between platinum atoms with a Pt⋯Pt contact of 7.052 (2) Å. In addition, a ππ inter­action of 3.598 (3) Å occurs between the centroid of the central pyridine ring and the centroid of a phenyl substituent at the 4-position of the pyridine ring of another mol­ecule (Fig. 2[link]).

[Figure 2]
Figure 2
Perspective view of the supra­molecular arrangement of mol­ecules in the crystal.

A closely related structure of a platinum complex in which the phenyl substituents at the 2- and 6-positions of the pyridine ring are replaced by naphthalene moieties has been reported (Kui et al., 2006[Kui, S. C. F., Chui, S. S. Y., Che, C. M. & Zhu, N. Y. (2006). J. Am. Chem. Soc. 128, 8297-8309.]). In the crystal structure of this complex, a metallophilic inter­action also occurs between platinum atoms with a Pt⋯Pt distance of 7.059 (2) Å.

Synthesis and crystallization

2,4,6-Tri­phenyl­pyridine (1 mmol, 0.31 g), potassium tetra­chloro­platinate (1 mmol, 0.41 g) and 100 ml of glacial acetic acid were placed in a 250 ml flask and stirred at room temperature for 10 min. The reaction solution then was refluxed for 72 h. After completion of the reaction, the solution was cooled to room temperature and filtered. The residue was washed twice with 30 ml of ethanol, 30 ml of acetone and 30 ml of deionized water yielding a green–yellow solid (yield: 350 mg, 60%). Single crystals of the title compound were obtained by dissolving 200 mg of the product in a mixture of aceto­nitrile and di­chloro­methane (25 ml, v/v =1:1) in an Erlenmeyer flask which was placed in a glove box in a dark environment and without any vibrations. After one week at room temperature yellow–green rod-like crystals suitable for X-ray analysis were obtained.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula [Pt(C23H16N)Cl(C2H3N)]
Mr 577.96
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 293
a, b, c (Å) 7.5024 (6), 7.8654 (6), 17.6956 (14)
α, β, γ (°) 93.063 (1), 101.796 (1), 92.372 (1)
V3) 1019.23 (14)
Z 2
Radiation type Mo Kα
μ (mm−1) 7.03
Crystal size (mm) 0.3 × 0.2 × 0.2
 
Data collection
Diffractometer Bruker APEXII CCD area detector
Absorption correction Multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.431, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 7516, 3731, 3545
Rint 0.025
(sin θ/λ)max−1) 0.606
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.019, 0.048, 1.05
No. of reflections 3731
No. of parameters 264
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.83, −0.79
Computer programs: APEX2 and SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Structural data


Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL (Sheldrick, 2015); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

[SP-4-2]-(Acetonitrile-κN)chlorido[2-(4,6-diphenylpyridin-2-yl)phenyl-κ2C1,N]platinum(II) top
Crystal data top
[Pt(C23H16N)Cl(C2H3N)]Z = 2
Mr = 577.96F(000) = 556
Triclinic, P1Dx = 1.883 Mg m3
a = 7.5024 (6) ÅMo Kα radiation, λ = 0.71073 Å
b = 7.8654 (6) ÅCell parameters from 6030 reflections
c = 17.6956 (14) Åθ = 2.4–27.1°
α = 93.063 (1)°µ = 7.03 mm1
β = 101.796 (1)°T = 293 K
γ = 92.372 (1)°Block, yellow
V = 1019.23 (14) Å30.3 × 0.2 × 0.2 mm
Data collection top
Bruker APEXII CCD area detector
diffractometer
3545 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.025
phi and ω scansθmax = 25.5°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 89
Tmin = 0.431, Tmax = 0.746k = 99
7516 measured reflectionsl = 2121
3731 independent reflections
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.019 w = 1/[σ2(Fo2) + (0.0176P)2 + 0.2638P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.048(Δ/σ)max = 0.003
S = 1.05Δρmax = 0.83 e Å3
3731 reflectionsΔρmin = 0.79 e Å3
264 parametersExtinction correction: SHELXL2016/4 (Sheldrick 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.0005 (2)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. H atoms bonded to C atoms were placed in idealized positions and refined as riding to their parent atoms with isotropic displacement parameters Uiso = 1.2 Ueq of the corresponding carrier atom. All non-hydrogen atoms were refined anisotropically.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C11.1156 (5)0.3608 (4)0.2502 (2)0.0401 (7)
C21.2081 (5)0.5191 (5)0.2712 (2)0.0519 (9)
H21.2722810.5421780.3217820.062*
C31.2062 (6)0.6426 (5)0.2180 (3)0.0629 (11)
H31.2685440.7474580.2334150.076*
C41.1129 (6)0.6118 (5)0.1427 (3)0.0639 (11)
H41.1115490.6958780.1076410.077*
C51.0212 (5)0.4559 (5)0.1193 (2)0.0540 (9)
H50.9584500.4344960.0683980.065*
C61.0232 (4)0.3309 (4)0.17231 (19)0.0413 (7)
C70.9257 (4)0.1635 (4)0.15328 (18)0.0380 (7)
C80.8518 (4)0.0982 (4)0.07915 (19)0.0423 (7)
H80.8661770.1608570.0374730.051*
C90.7563 (4)0.0594 (4)0.06540 (18)0.0383 (7)
C100.7339 (5)0.1397 (4)0.13105 (18)0.0408 (7)
H100.6651780.2425490.1249820.049*
C110.8096 (4)0.0729 (4)0.20525 (18)0.0371 (7)
C120.7610 (4)0.1563 (4)0.27160 (18)0.0394 (7)
C130.7726 (5)0.3310 (4)0.2770 (2)0.0471 (8)
H130.8180670.3955080.2403320.057*
C140.7165 (6)0.4090 (5)0.3370 (2)0.0615 (11)
H140.7263290.5258500.3408250.074*
C150.6461 (6)0.3159 (6)0.3912 (2)0.0681 (12)
H150.6084260.3695710.4313280.082*
C160.6320 (5)0.1439 (6)0.3856 (2)0.0616 (11)
H160.5837550.0808960.4218910.074*
C170.6891 (5)0.0625 (5)0.3263 (2)0.0494 (8)
H170.6794100.0544690.3231260.059*
C180.6785 (4)0.1317 (4)0.01394 (19)0.0404 (7)
C190.6816 (5)0.0405 (5)0.0784 (2)0.0501 (9)
H190.7351900.0694420.0715960.060*
C200.6080 (5)0.1070 (6)0.1525 (2)0.0562 (10)
H200.6136320.0417270.1943840.067*
C210.5280 (6)0.2657 (5)0.1649 (2)0.0586 (10)
H210.4771810.3102030.2147670.070*
C220.5235 (8)0.3592 (6)0.1026 (3)0.0891 (17)
H220.4690680.4689130.1103840.107*
C230.5976 (8)0.2950 (6)0.0287 (2)0.0817 (16)
H230.5934580.3627310.0124630.098*
C241.1269 (5)0.1497 (5)0.4249 (2)0.0527 (9)
C251.1527 (8)0.2807 (6)0.4812 (3)0.0798 (15)
H25A1.2718060.2635940.5139240.120*
H25B1.1414540.3913310.4544740.120*
H25C1.0618760.2731980.5122140.120*
Cl11.34036 (17)0.27375 (14)0.40961 (6)0.0722 (3)
N10.9166 (3)0.0737 (3)0.21650 (15)0.0349 (6)
N31.1089 (4)0.0486 (4)0.38137 (18)0.0514 (8)
Pt11.10465 (2)0.16285 (2)0.31332 (2)0.03819 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0420 (17)0.0389 (17)0.0381 (18)0.0031 (13)0.0069 (14)0.0009 (14)
C20.053 (2)0.046 (2)0.052 (2)0.0112 (16)0.0059 (17)0.0024 (16)
C30.075 (3)0.044 (2)0.067 (3)0.0193 (19)0.014 (2)0.0003 (19)
C40.081 (3)0.044 (2)0.065 (3)0.0128 (19)0.013 (2)0.0154 (19)
C50.067 (2)0.046 (2)0.047 (2)0.0072 (17)0.0081 (18)0.0104 (16)
C60.0460 (18)0.0375 (17)0.0389 (18)0.0032 (14)0.0062 (14)0.0033 (14)
C70.0384 (16)0.0388 (17)0.0354 (17)0.0022 (13)0.0054 (13)0.0036 (13)
C80.0495 (19)0.0433 (18)0.0324 (17)0.0046 (14)0.0047 (14)0.0073 (14)
C90.0358 (16)0.0437 (17)0.0338 (17)0.0028 (13)0.0039 (13)0.0013 (13)
C100.0476 (18)0.0377 (16)0.0336 (17)0.0065 (14)0.0025 (14)0.0004 (13)
C110.0397 (17)0.0348 (16)0.0356 (17)0.0020 (13)0.0059 (13)0.0030 (13)
C120.0416 (17)0.0445 (18)0.0290 (16)0.0108 (14)0.0026 (13)0.0024 (13)
C130.059 (2)0.0447 (19)0.0339 (17)0.0111 (16)0.0034 (15)0.0024 (14)
C140.083 (3)0.054 (2)0.042 (2)0.022 (2)0.002 (2)0.0096 (17)
C150.085 (3)0.078 (3)0.037 (2)0.036 (2)0.011 (2)0.007 (2)
C160.063 (2)0.084 (3)0.037 (2)0.016 (2)0.0173 (18)0.0098 (19)
C170.053 (2)0.054 (2)0.0389 (19)0.0064 (16)0.0086 (16)0.0020 (16)
C180.0415 (17)0.0462 (18)0.0317 (17)0.0006 (14)0.0049 (14)0.0012 (14)
C190.057 (2)0.055 (2)0.0369 (19)0.0084 (17)0.0087 (16)0.0012 (16)
C200.061 (2)0.075 (3)0.0315 (19)0.000 (2)0.0093 (17)0.0002 (17)
C210.064 (2)0.070 (3)0.037 (2)0.001 (2)0.0036 (17)0.0103 (18)
C220.138 (5)0.068 (3)0.046 (3)0.045 (3)0.001 (3)0.009 (2)
C230.135 (5)0.061 (3)0.040 (2)0.033 (3)0.003 (3)0.0040 (19)
C240.061 (2)0.051 (2)0.039 (2)0.0072 (17)0.0053 (17)0.0055 (17)
C250.100 (4)0.068 (3)0.063 (3)0.005 (3)0.007 (3)0.028 (2)
Cl10.0869 (7)0.0672 (6)0.0457 (6)0.0237 (6)0.0198 (5)0.0035 (5)
N10.0388 (14)0.0352 (13)0.0295 (13)0.0012 (11)0.0040 (11)0.0040 (11)
N30.0583 (19)0.0497 (17)0.0391 (17)0.0074 (14)0.0047 (14)0.0024 (14)
Pt10.04378 (9)0.03880 (9)0.02922 (8)0.00374 (5)0.00262 (5)0.00073 (5)
Geometric parameters (Å, º) top
C1—C21.394 (5)C12—C171.394 (5)
C1—C61.412 (5)C13—H130.9300
Pt1—N12.054 (3)C13—C141.383 (5)
Pt1—N32.102 (3)C14—H140.9300
Pt1—C11.973 (3)C14—C151.378 (6)
Pt1—Cl12.2964 (10)C15—H150.9300
C2—H20.9300C15—C161.369 (6)
C2—C31.387 (5)C16—H160.9300
C3—H30.9300C16—C171.388 (5)
C3—C41.376 (6)C17—H170.9300
C4—H40.9300C18—C191.383 (5)
C4—C51.381 (5)C18—C231.386 (5)
C5—H50.9300C19—H190.9300
C5—C61.393 (5)C19—C201.380 (5)
C6—C71.467 (4)C20—H200.9300
C7—C81.378 (4)C20—C211.350 (6)
C7—N11.366 (4)C21—H210.9300
C8—H80.9300C21—C221.362 (6)
C8—C91.390 (4)C22—H220.9300
C9—C101.388 (4)C22—C231.373 (6)
C9—C181.479 (4)C23—H230.9300
C10—H100.9300C24—C251.463 (5)
C10—C111.386 (4)C24—N31.130 (5)
C11—C121.476 (4)C25—H25A0.9600
C11—N11.359 (4)C25—H25B0.9600
C12—C131.387 (5)C25—H25C0.9600
C2—C1—C6117.2 (3)C16—C15—C14119.5 (4)
C2—C1—Pt1128.9 (3)C16—C15—H15120.3
C6—C1—Pt1113.9 (2)C15—C16—H16119.7
C1—C2—H2119.4C15—C16—C17120.7 (4)
C3—C2—C1121.1 (4)C17—C16—H16119.7
C3—C2—H2119.4C12—C17—H17120.0
C2—C3—H3119.6C16—C17—C12120.0 (4)
C4—C3—C2120.7 (4)C16—C17—H17120.0
C4—C3—H3119.6C19—C18—C9122.1 (3)
C3—C4—H4120.0C19—C18—C23115.5 (3)
C3—C4—C5120.0 (4)C23—C18—C9122.3 (3)
C5—C4—H4120.0C18—C19—H19118.8
C4—C5—H5120.2C20—C19—C18122.4 (4)
C4—C5—C6119.6 (4)C20—C19—H19118.8
C6—C5—H5120.2C19—C20—H20119.7
C1—C6—C7115.1 (3)C21—C20—C19120.7 (4)
C5—C6—C1121.3 (3)C21—C20—H20119.7
C5—C6—C7123.5 (3)C20—C21—H21120.8
C8—C7—C6124.4 (3)C20—C21—C22118.5 (4)
N1—C7—C6113.7 (3)C22—C21—H21120.8
N1—C7—C8121.9 (3)C21—C22—H22119.3
C7—C8—H8119.3C21—C22—C23121.4 (4)
C7—C8—C9121.3 (3)C23—C22—H22119.3
C9—C8—H8119.3C18—C23—H23119.2
C8—C9—C18121.8 (3)C22—C23—C18121.6 (4)
C10—C9—C8115.3 (3)C22—C23—H23119.2
C10—C9—C18122.9 (3)N3—C24—C25179.2 (5)
C9—C10—H10118.7C24—C25—H25A109.5
C11—C10—C9122.7 (3)C24—C25—H25B109.5
C11—C10—H10118.7C24—C25—H25C109.5
C10—C11—C12118.8 (3)H25A—C25—H25B109.5
N1—C11—C10120.4 (3)H25A—C25—H25C109.5
N1—C11—C12120.6 (3)H25B—C25—H25C109.5
C13—C12—C11120.5 (3)C7—N1—Pt1112.9 (2)
C13—C12—C17119.1 (3)C11—N1—C7117.7 (3)
C17—C12—C11120.2 (3)C11—N1—Pt1128.6 (2)
C12—C13—H13120.0C24—N3—Pt1171.1 (3)
C14—C13—C12119.9 (4)C1—Pt1—Cl192.94 (10)
C14—C13—H13120.0C1—Pt1—N181.37 (12)
C13—C14—H14119.6C1—Pt1—N3176.81 (12)
C15—C14—C13120.9 (4)N1—Pt1—Cl1171.86 (7)
C15—C14—H14119.6N1—Pt1—N3100.50 (11)
C14—C15—H15120.3N3—Pt1—Cl184.92 (9)
C1—C2—C3—C40.2 (7)C10—C11—C12—C1350.2 (4)
C1—C6—C7—C8169.2 (3)C10—C11—C12—C17124.7 (3)
C1—C6—C7—N19.6 (4)C10—C11—N1—C78.8 (4)
C2—C1—C6—C51.5 (5)C10—C11—N1—Pt1159.7 (2)
C2—C1—C6—C7179.2 (3)C11—C12—C13—C14176.2 (3)
C2—C3—C4—C50.5 (7)C11—C12—C17—C16175.6 (3)
C3—C4—C5—C60.3 (7)C12—C11—N1—C7166.6 (3)
C4—C5—C6—C10.7 (6)C12—C11—N1—Pt125.0 (4)
C4—C5—C6—C7178.3 (4)C12—C13—C14—C151.0 (6)
C5—C6—C7—C813.1 (5)C13—C12—C17—C160.6 (5)
C5—C6—C7—N1168.1 (3)C13—C14—C15—C160.1 (7)
C6—C1—C2—C31.2 (5)C14—C15—C16—C170.5 (7)
C6—C7—C8—C9178.0 (3)C15—C16—C17—C120.2 (6)
C6—C7—N1—C11171.9 (3)C17—C12—C13—C141.2 (5)
C6—C7—N1—Pt117.9 (3)C18—C9—C10—C11178.9 (3)
C7—C8—C9—C103.1 (5)C18—C19—C20—C210.4 (6)
C7—C8—C9—C18179.2 (3)C19—C18—C23—C221.0 (7)
C8—C7—N1—C119.2 (4)C19—C20—C21—C220.7 (7)
C8—C7—N1—Pt1161.0 (3)C20—C21—C22—C230.2 (8)
C8—C9—C10—C113.5 (5)C21—C22—C23—C180.7 (9)
C8—C9—C18—C196.0 (5)C23—C18—C19—C200.5 (6)
C8—C9—C18—C23174.0 (4)N1—C7—C8—C93.2 (5)
C9—C10—C11—C12172.9 (3)N1—C11—C12—C13134.3 (3)
C9—C10—C11—N12.5 (5)N1—C11—C12—C1750.8 (4)
C9—C18—C19—C20179.5 (3)Pt1—C1—C2—C3177.6 (3)
C9—C18—C23—C22179.0 (5)Pt1—C1—C6—C5178.4 (3)
C10—C9—C18—C19171.4 (3)Pt1—C1—C6—C73.9 (4)
C10—C9—C18—C238.6 (5)
 

Funding information

The authors thank the National Natural Science Foundation of China (award No. 51802001) and the Natural Science Foundation of Anhui Province (award No. 1908085MB30) for financial support of this project.

References

First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFang, B., Zhu, Y. Z., Hu, L., Shen, Y., Jiang, G., Zhang, Q., Tian, X., Li, S., Zhou, H., Wu, J. & Tian, Y. (2018). Inorg. Chem. 57, 14134–14143.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationKui, S. C. F., Chui, S. S. Y., Che, C. M. & Zhu, N. Y. (2006). J. Am. Chem. Soc. 128, 8297–8309.  CSD CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationYasuhiro, S., Atsushi, K., Masaki, Y. & Masako, K. (2019). Eur. J. Inorg. Chem. 1011–1017.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds