research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis(3,5-dimeth­­oxy-2-{[2-(pyridin-2-yl)ethyl­imino-κN]­meth­yl}phenolato-κO)bis­­(di­methyl sulfoxide)­manganese(III) perchlorate methanol 0.774-solvate

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, Howard University, 525 College Street NW, Washington, DC 20059, USA
*Correspondence e-mail: rnegekenze@gmail.com

Edited by W. Imhof, University Koblenz-Landau, Germany (Received 3 July 2017; accepted 21 August 2017; online 15 September 2017)

The title compound, [Mn(C16H17N2O3)2(C2H6OS)2]ClO4·0.774CH3OH, comprises a central octa­hedrally coordinated MnIII cation, with two bidentate Schiff base ligands occupying the equatorial positions and two dimethyl sulfoxide (DMSO) ligands occupying the axial positions. There are two independant cations in the asymmetric unit, with the MnIII atoms of both cations being positioned on crystallographic centers of inversion. The perchlorate anion is disordered over two equivalent conformations, with occupancies of 0.744 (3) and 0.226 (3). In addition, there is a methanol solvent mol­ecule in the crystal lattice that is too close to the minor component of the perchlorate anion to be present simultaneously and thus it was refined to have the same occupancy as the major component of this anion. There is a Jahn–Teller distortion which results in Mn—ODMSO axial bond lengths of 2.2365 (12) and 2.2368 (12) Å in the two cations. In the crystal, inter­molecular ππ stacking between the non-coordinating pyridine rings of each cation is observed. This ππ stacking, along with extensive O—H⋯O hydrogen bonding and C—H⋯O inter­actions, link the components into a complex three-dimensional array.

1. Chemical context

Single-mol­ecule magnets (SMMs) are a class of coordination compounds that attract a great deal of scientific attention because they exhibit magnetic bis­tability at low temperatures (Christou et al., 2000[Christou, G., Gatteschi, D., Hendrickson, D. N. & Sessoli, R. (2000). MRS Bull. 25, 66-71.]; Gatteschi et al., 2006[Gatteschi, D., Sessoli, R. & Villain, J. (2006). In Molecular Magnets. Oxford University Press.]). These finite size (zero-dimensional) mol­ecules possess a high-spin ground state St and a magnetic anisotropy of the easy-axis type (negative zero-field splitting parameter D), which causes a slow relaxation of the magnetization at low temperatures, resulting in a hysteresis of the magnetization of purely mol­ecular origin (Sessoli et al., 1993a[Sessoli, R., Gatteschi, D., Caneschi, A. & Novak, M. A. (1993a). Nature, 365, 141-143.],b[Sessoli, R., Tsai, H. L., Schake, A. R., Wang, S. Y., Vincent, J. B., Folting, K., Gatteschi, D., Christou, G. & Hendrickson, D. N. (1993b). J. Am. Chem. Soc. 115, 1804-1816.]; Gatteschi et al., 1994[Gatteschi, D., Caneschi, A., Pardi, L. & Sessoli, R. (1994). Science, 265, 1054-1058.]; Aubin et al., 1998[Aubin, S. M. J., Dilley, N. R., Pardi, L., Krzystek, J., Wemple, M. W., Brunel, L. C., Maple, M. B., Christou, G. & Hendrickson, D. N. (1998). J. Am. Chem. Soc. 120, 4991-5004.]; Gatteschi & Sessoli, 2003[Gatteschi, D. & Sessoli, R. (2003). Angew. Chem. Int. Ed. Engl. 42, 268-297.]; Long, 2003[Long, J. R. (2003). Chemistry of Nanostructured Materials, edited by P. Yang, p. 291. Hong Kong: World Scientific.]; Thomas et al., 1996[Thomas, L., Lionti, F., Ballou, R., Gatteschi, D., Sessoli, R. & Barbara, B. (1996). Nature, 383, 145-147.]). SMMs promise access to dynamic random access memory devices for quantum computing and to ultimate high-density memory storage devices in which each bit of digital information is stored on a single mol­ecule (Tejada, 2001[Tejada, J. (2001). Polyhedron, 20, 1751-1756.]; Awschalom et al., 1992[Awschalom, D. D., Di Vincenzo, D. P. & Smyth, J. J. (1992). Science, 258, 414-421.]; Leuenberger & Loss, 2001[Leuenberger, M. N. & Loss, D. (2001). Nature, 410, 789-793.]; Cornia et al., 2003[Cornia, A., Fabretti, A. C., Pacchioni, M., Zobbi, L., Bonachi, D., Caneschi, A., Gatteschi, D., Biagi, R., Del Pennino, U., De Renzi, V., Gurevich, L. & Van der Zant, H. S. J. (2003). Angew. Chem. Int. Ed. Engl. 42, 1645-1648.]; Dahlberg & Zhu, 1995[Dahlberg, E. D. & Zhu, J.-G. (1995). Phys. Today, 48, 34-40.]).

The archetype of SMMs is the family of dodeca­nuclear manganese complexes, [Mn12O12(O2CR)16(OH2)4], Mn12 (Lis, 1980[Lis, T. (1980). Acta Cryst. B36, 2042-2046.]; Sessoli et al., 1993a[Sessoli, R., Gatteschi, D., Caneschi, A. & Novak, M. A. (1993a). Nature, 365, 141-143.],b[Sessoli, R., Tsai, H. L., Schake, A. R., Wang, S. Y., Vincent, J. B., Folting, K., Gatteschi, D., Christou, G. & Hendrickson, D. N. (1993b). J. Am. Chem. Soc. 115, 1804-1816.]; Boyd et al., 1988[Boyd, P. D. W., Li, Q. Y., Vincent, J. B., Folting, K., Chang, H. R., Streib, W. E., Huffman, J. C., Christou, G. & Hendrickson, D. N. (1988). J. Am. Chem. Soc. 110, 8537-8539.]; Tsai et al., 1994[Tsai, H. L., Eppley, H. J., Devries, N., Folting, K., Christou, G. & Hendrickson, D. N. (1994). J. Chem. Soc. Chem. Commun. pp. 1745-1746.]; Sun et al., 1998[Sun, Z. M., Ruiz, D., Rumberger, E., Incarvito, C. D., Folting, K., Rheingold, A. L., Christou, G. & Hendrickson, D. N. (1998). Inorg. Chem. 37, 4758-4759.]; Boskovic et al., 2002[Boskovic, C., Brechin, E. K., Streib, W. E., Folting, K., Bollinger, J. C., Hendrickson, D. N. & Christou, G. (2002). J. Am. Chem. Soc. 124, 3725-3736.]). Since the discovery of the SMM behavior of Mn12, a lot of synthetic effort has been devoted to the preparation of new mol­ecules with an increased anisotropy barrier. In this respect, it is inter­esting to note that already a dimeric MnIII salen complex behaves as an SMM (Miyasaka et al., 2004[Miyasaka, H., Clerac, R., Wernsdorfer, W., Lecren, L., Bonhomme, C., Sugiura, K.-I. & Yamashita, M. (2004). Angew. Chem. Int. Ed. Engl. 43, 2801-2805.]).

An undeveloped field in this chemistry is the use of manganese complexes of Schiff base ligands as precursors in the synthesis of SMMs. In a continuation of our studies in manganese chemistry with Schiff base ligands as precursors to SSMs (Egekenze et al., 2017a[Egekenze, R., Gultneh, Y. & Butcher, R. J. (2017a). Acta Cryst. E73, 1113-1116.],b[Egekenze, R., Gultneh, Y. & Butcher, R. J. (2017b). Inorg. Chim. Acta. Submitted.],c[Egekenze, R., Gultneh, Y. & Butcher, R. J. (2017c). Polyhedron, Submitted.]), we report the structure of bis­(3,5-dimeth­oxy-2-{[2-(pyridin-2-yl)ethyl­imino-κN]meth­yl}phenolato-κO)bis­(dimethyl sulfoxide)­manganese(III) per­chlorate methanol 0.774-solvate.

[Scheme 1]

2. Structural commentary

In the structure of the title compound (Fig. 1[link]), the cation contains a central octa­hedrally coordinated MnIII cation, with two bidentate Schiff base ligands occupying the equatorial positions and two dimethyl sulfoxide (DMSO) ligands occupying the axial positions. There are two independant cations in the asymmetric unit, with the MnIII atoms of both cations being positioned on crystallographic centers of inversion. The perchlorate anion is disordered over two equivalent conformations, with occupancies of 0.744 (3) and 0.226 (3). In addition, there is a disordered methanol solvent molecule in the crystal lattice.

[Figure 1]
Figure 1
Diagram of one of the two equivalent cations, showing the atom labeling. Anions and solvent mol­ecules have been omitted for clarity. Atomic displacement parameters are at the 30% probability level.

Inter­estingly, the Schiff base ligand is potentially tridentate as it is the result of the condensation of 3,5-di­meth­oxy­salicyl­aldehyde with 2-(2-amino­eth­yl)pyridine. However, the pyridine arm does not coordinate to manganese and the softer Npy-donors have been replaced by the O-donors of the DMSO mol­ecules as the complex was crystallized from DMSO. The Mn—Ophen [1.8757 (11) and 1.8770 (11) Å] and Mn—Nimine bond lengths [2.0335 (13) and 2.0380 (13) Å] are in the normal ranges found for manganese Schiff base complexes. As this is a high-spin d4 cation, there is Jahn–Teller distortion (Jahn & Teller, 1937[Jahn, H. A. & Teller, E. (1937). Proc. R. Soc. A, 161, 220-235.]) which results in Mn—ODMSO axial bond lengths of 2.2365 (12) and 2.2368 (12) Å in the two cations.

A survey of the Cambridge Structural Database (Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for compounds of manganese Schiff base complexes with attached DMSO ligands showed only one other example (Glaser et al., 2007[Glaser, T., Heidemeier, M. & Fröhlich, R. (2007). C. R. Chim. 10, 71-78.]) of a bis-DMSO complex of an MnIII Schiff base. In this case, the DMSO ligands were also occupying axial positions. If the search was restricted to a single coordinating DMSO ligand, there was one relevant example (Bermejo et al., 1994[Bermejo, M. R., Garcia-Deibe, A., Sanmartin, J., Sousa, A., Aurangzeb, N., Hulme, C. E., McAuliffe, C. A., Pritchard, R. G. & Watkinson, M. (1994). J. Chem. Soc. Chem. Commun. pp. 645-646.]), aqua­[N,N′-bis­(3-bromo-5-nitro­salicyl­idene)-1,2-di­amino-(2-meth­yl)ethane](dimethyl sulfoxide)­manganese(II), which, however, contains both MnII and a tetra­dentate ligand and therefore no Jahn–Teller distorsion was observed.

3. Supra­molecular features

In the crystal structure, inter­molecular ππ stacking between the non-coordinating pyridine rings of each cation is observed with a perpendicular stacking distance of 3.623 Å and a slippage of 1.321 Å (symmetry code 1 − x,, 1 − y, 1 − z). This ππ stacking, along with extensive O—H⋯O hydrogen bonding and C—H⋯O inter­actions (Fig. 2[link] and Table 1[link]), link the components into a complex three-dimensional array.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1S—H1S⋯O14 0.83 (2) 2.21 (4) 2.864 (4) 136 (5)
O1S—H1S⋯O13A 0.83 (2) 1.06 (3) 1.813 (7) 147 (6)
C7A—H7AA⋯O12i 0.98 2.44 3.395 (3) 165
C7A—H7AA⋯O14Ai 0.98 2.49 3.415 (7) 157
C10A—H10B⋯O12ii 0.99 2.57 3.408 (3) 142
C10A—H10B⋯O14Aii 0.99 2.36 3.243 (8) 148
C17A—H17B⋯O12 0.98 2.69 3.173 (4) 112
C9B—H9BA⋯O11iii 0.95 2.60 3.405 (3) 143
C9B—H9BA⋯O11Aiii 0.95 2.52 3.311 (7) 141
C16A—H16A⋯O12Aiv 0.95 2.66 3.563 (6) 160
C11B—H11D⋯O11Aiii 0.99 2.57 3.380 (8) 139
C17A—H17A⋯O3Av 0.98 2.55 3.455 (3) 154
C13A—H13A⋯O1Sii 0.95 2.42 3.343 (4) 165
C18A—H18B⋯O4Av 0.98 2.56 3.491 (3) 160
C17B—H17F⋯O4Bvi 0.98 2.43 3.384 (2) 163
C7B—H7BA⋯O1Svii 0.98 2.51 3.445 (4) 160
C10B—H10D⋯O1S 0.99 2.57 3.428 (3) 146
C18B—H18F⋯O1S 0.98 2.62 3.402 (3) 137
Symmetry codes: (i) x, y-1, z; (ii) -x+1, -y+1, -z+1; (iii) x+1, y, z; (iv) -x+1, -y+2, -z+1; (v) -x, -y+1, -z+1; (vi) -x+1, -y+1, -z; (vii) -x+2, -y+2, -z.
[Figure 2]
Figure 2
Packing diagram, viewed along the b axis, showing the extensive O—H⋯O and C—H⋯O inter­actions linking the cations, anions and solvent mol­ecules into a three-dimensional array. For the disordered moieties, only the major conformation is shown.

4. Database survey

A survey of the Cambridge Structural Database for examples of DMSO ligands coordinating to manganese Schiff base skeletons gave only one example of a bis-DMSO complex (refcode JETYOX) and only five examples with only one attached DMSO ligand (refcodes EBILOQ, FOFWIH, LEJCEI, WADZUZ, and WAFBAJ)

5. Synthesis and crystallization

5.1. Synthesis of 3,5-dimeth­oxy-2-{[2-(pyridin-2-yl)ethyl­imino]­meth­yl}phenol

A solution of 1.3985 g (11.4 mmol) of 2-(pyridin-2-yl)ethanamine in 15 ml of methanol was mixed with a solution of 2.0874 g (11.5 mmol) of 4,6-di­meth­oxy­salicylic aldehyde in 15 ml of methanol to obtain a dark-green solution. The solution was refluxed for 4 h. The thick dark-brown oil obtained was recrystallized from di­chloro­methane by slow evaporation of the solvent (yield: 3.02 g, 87%). Characterization data for C16H18N2O3 are as follows; mol­ecular mass: calculated for [C16H19N2O3]+ = 287.1396, ESI–MS determined m/z = 287.1390. IR (LiTaO3, KBr) (cm−1); 3008 (w), 2932 (w), 2850 (w), 1630 (s), 1610 (s), 1586 (m), 1564 (m), 1537 (s), 1470 (m), 1446 (m-s), 1434 (s), 1403 (w), 1354 (s), 1314 (w), 1290 (w), 1265 (w), 1231 (m), 1217 (s), 1201 (s), 1178 (m), 1144 (s), 1111 (m), 1100 (m), 1040 (m), 1010 (m), 986 (m), 929 (m), 879 (m), 824 (s), 771 (s), 746 (m), 690 (w), 655 (m). UV–Vis {λmax (nm), (MeOH)}: 203 (180.31), 255 (23.19), 262 (25.43), 314 (137.83), 375 (35.61). 1H NMR {CDCl3}: δ 14.25 (s, 1H ArO-H), 8.58, (s, 1H, –CH=N), 5.50, 5.85, 7.25, 7.58, 8.28, (s, 1H ArH); 7.10 (d, 2H); 3.08 (d, 2H, CH2); 3.88 (d, 2H, CH2); 3.70 (m, 6H, 2(OCH3).

5.2. Synthesis of bis­(3,5-dimeth­oxy-2-{[2-(pyridin-2-yl)ethyl­imino-κN]­meth­yl}phenolato-κO)bis­(dimethyl sulfoxide)­man­gan­ese(III) perchlorate methanol 0.774-solvate

A solution of Mn(ClO4)2·6H2O (1.6965 g, 9.2 mmol) in methanol was added to a mixture of 3,5-dimeth­oxy-2-{[2-(pyridin-2-yl)ethyl­imino]­meth­yl}phenol (2.6252 g, 9.2 mmol) and tri­ethyl­amine (C6H15N; 1.65 ml, 9.2 mmol). The solution turned dark brown. It was refluxed for 4 h and cooled to room temperature. The solvent was reduced with a rotary evaporator and the resulting precipitate was filtered off by suction, washed with diethyl ether and dried in the desiccator. The precipitate was recrystallized from methanol and diethyl ether and crystals suitable for X-ray analysis were grown by slow evaporation of a DMSO solution in a yield of 2.89 g (67%). Characterization data for C32H34MnClN4O10 are: mol­ecular mass: calculated for [C32H34MnN4O6]+ = 625.1859, ESI–MS determined m/z = 625.2094. IR (LiTaO3, KBr) (cm−1): 294 (w), 1588 (s), 1543 (m), 1466 (m), 1450 (m), 1438 (m), 1417 (m), 1392 (w), 1338 (m), 1246 (s), 1220 (s), 1186 (w), 1165 (s), 1123 (m), 1081 (s), 1012 (m), 977 (w), 948 (w), 960 (w), 865 (w), 830 (s), 782 (m), 769 (m), 667 (s). UV–Vis [λmax (nm), (MeOH)]: 204 (20074.07), 263 (9385.37), 307 (11149.44).

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The perchlorate anion is disordered over two equivalent conformations, with occupancies of 0.744 (3) and 0.226 (3). Both anions were constrained to have similar metrical and displacement parameters using both DFIX and SIMU commands in SHELXL2016 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]). In addition, there is a methanol solvent mol­ecule present. This mol­ecule is too close to the minor component of the perchlorate anion to be present simultaneously and thus it was refined to have the same occupancy as the major component of this anion. This model lowered the R factor by 0.4%. H atoms were positioned geometrically and allowed to ride on their parent atoms, with C—H distances ranging from 0.95 to 0.98 Å. Uiso(H) = xUeq(C), where x = 1.5 for methyl H atoms and 1.2 for all other C-bound H atoms. The O—H hydrogen was refined isotropically.

Table 2
Experimental details

Crystal data
Chemical formula [Mn(C16H17N2O3)2(C2H6OS)2]ClO4·0.774CH4O
Mr 906.10
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 123
a, b, c (Å) 8.0730 (4), 11.0143 (4), 23.0453 (7)
α, β, γ (°) 87.540 (3), 89.175 (3), 87.729 (3)
V3) 2045.49 (14)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.56
Crystal size (mm) 0.71 × 0.40 × 0.24
 
Data collection
Diffractometer Agilent Xcalibur Ruby Gemini
Absorption correction Analytical [CrysAlis PRO (Agilent, 2012[Agilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, Oxfordshire, England.]), based on expressions derived by Clark & Reid (1995[Clark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887-897.])]
Tmin, Tmax 0.754, 0.885
No. of measured, independent and observed [I > 2σ(I)] reflections 36920, 20464, 16259
Rint 0.031
(sin θ/λ)max−1) 0.860
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.060, 0.149, 1.10
No. of reflections 20464
No. of parameters 577
No. of restraints 148
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 1.16, −1.01
Computer programs: CrysAlis PRO (Agilent, 2012[Agilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, Oxfordshire, England.]), SHELXS97 and SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and SHELXL2016 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]).

Supporting information


Computing details top

Data collection: CrysAlis PRO (Agilent, 2012); cell refinement: CrysAlis PRO (Agilent, 2012); data reduction: CrysAlis PRO (Agilent, 2012); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2016 (Sheldrick, 2015); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Bis(3,5-dimethoxy-2-{[2-(pyridin-2-yl)ethylimino-κN]methyl}phenolato-κO)bis(dimethyl sulfoxide)manganese(III) perchlorate methanol 0.774-solvate top
Crystal data top
[Mn(C16H17N2O3)2(C2H6OS)2]ClO4·0.774CH4OZ = 2
Mr = 906.10F(000) = 947.9
Triclinic, P1Dx = 1.471 Mg m3
a = 8.0730 (4) ÅMo Kα radiation, λ = 0.71073 Å
b = 11.0143 (4) ÅCell parameters from 12258 reflections
c = 23.0453 (7) Åθ = 3.1–37.6°
α = 87.540 (3)°µ = 0.56 mm1
β = 89.175 (3)°T = 123 K
γ = 87.729 (3)°Prism, red-brown
V = 2045.49 (14) Å30.71 × 0.40 × 0.24 mm
Data collection top
Agilent Xcalibur Ruby Gemini
diffractometer
16259 reflections with I > 2σ(I)
Detector resolution: 10.5081 pixels mm-1Rint = 0.031
ω scansθmax = 37.7°, θmin = 3.1°
Absorption correction: analytical
[CrysAlis PRO (Agilent, 2012), based on expressions derived by Clark & Reid (1995)]
h = 1313
Tmin = 0.754, Tmax = 0.885k = 1818
36920 measured reflectionsl = 3937
20464 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.060Hydrogen site location: mixed
wR(F2) = 0.149H atoms treated by a mixture of independent and constrained refinement
S = 1.10 w = 1/[σ2(Fo2) + (0.0465P)2 + 1.6285P]
where P = (Fo2 + 2Fc2)/3
20464 reflections(Δ/σ)max = 0.001
577 parametersΔρmax = 1.16 e Å3
148 restraintsΔρmin = 1.01 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Mn10.5000000.5000000.5000000.01344 (6)
Mn21.0000000.5000000.0000000.01420 (6)
S1A0.17543 (5)0.65456 (4)0.46048 (2)0.02256 (8)
S1B0.67033 (5)0.66578 (4)0.02599 (2)0.02310 (8)
Cl10.30171 (12)0.78497 (7)0.25281 (4)0.03133 (18)0.774 (3)
O110.3026 (4)0.7096 (2)0.20426 (11)0.0591 (14)0.774 (3)
O120.2546 (4)0.7170 (2)0.30416 (11)0.0419 (8)0.774 (3)
O130.1894 (3)0.88677 (19)0.24370 (10)0.0649 (10)0.774 (3)
O140.4653 (3)0.8281 (3)0.26037 (13)0.0809 (11)0.774 (3)
Cl1A0.3726 (7)0.7628 (3)0.24715 (13)0.0490 (10)0.226 (3)
O11A0.3059 (10)0.7049 (7)0.1990 (3)0.044 (3)0.226 (3)
O12A0.3376 (13)0.8908 (3)0.2415 (3)0.064 (3)0.226 (3)
O13A0.5479 (6)0.7399 (9)0.2486 (4)0.096 (4)0.226 (3)
O14A0.2998 (11)0.7157 (7)0.2999 (2)0.0313 (19)0.226 (3)
O1A0.50038 (15)0.34259 (10)0.47199 (5)0.0179 (2)
O2A0.2589 (2)0.03544 (13)0.43949 (7)0.0313 (3)
O3A0.24473 (18)0.12275 (12)0.62751 (6)0.0267 (3)
O4A0.22922 (15)0.52580 (11)0.48181 (6)0.0217 (2)
O1B1.01133 (16)0.65127 (10)0.04028 (5)0.0190 (2)
O2B1.2190 (2)1.03701 (12)0.09960 (6)0.0279 (3)
O3B1.22953 (19)0.90515 (12)0.09819 (6)0.0255 (3)
O4B0.72827 (15)0.53481 (11)0.01510 (6)0.0232 (2)
N1A0.45577 (16)0.43169 (12)0.58189 (6)0.0157 (2)
N2A0.4453 (2)0.76067 (16)0.69461 (8)0.0294 (3)
N1B1.04014 (16)0.58273 (12)0.07568 (6)0.0159 (2)
N2B1.0744 (3)0.25942 (16)0.20333 (7)0.0311 (4)
C1A0.41715 (19)0.24823 (13)0.49218 (7)0.0158 (2)
C2A0.3824 (2)0.15812 (14)0.45271 (7)0.0191 (3)
H2AA0.4143120.1671220.4129640.023*
C3A0.3007 (2)0.05629 (14)0.47333 (8)0.0218 (3)
C4A0.2513 (2)0.04030 (15)0.53187 (8)0.0229 (3)
H4AA0.1944020.0299010.5448220.027*
C5A0.2869 (2)0.12795 (14)0.57000 (7)0.0193 (3)
C6A0.36881 (19)0.23522 (13)0.55126 (7)0.0162 (2)
C7A0.3153 (3)0.03191 (19)0.38039 (10)0.0318 (4)
H7AA0.2767080.1029480.3610930.048*
H7AB0.2712030.0425070.3603920.048*
H7AC0.4367650.0328770.3791740.048*
C8A0.1632 (3)0.0166 (2)0.64944 (11)0.0411 (5)
H8AA0.1395700.0236900.6910140.062*
H8AB0.0591170.0092370.6287450.062*
H8AC0.2352140.0556740.6435490.062*
C9A0.40744 (19)0.32197 (14)0.59325 (7)0.0167 (2)
H9AA0.3966940.2968740.6330400.020*
C10A0.4913 (2)0.50364 (15)0.63280 (7)0.0185 (3)
H10A0.5848780.5566690.6231760.022*
H10B0.5250770.4477380.6656810.022*
C11A0.3406 (2)0.58216 (17)0.65116 (8)0.0236 (3)
H11A0.3086320.6402280.6188970.028*
H11B0.2458130.5297600.6599780.028*
C12A0.3801 (2)0.65134 (16)0.70419 (8)0.0218 (3)
C13A0.3539 (3)0.60108 (19)0.75975 (8)0.0296 (4)
H13A0.3075510.5233740.7650170.036*
C14A0.3962 (3)0.6655 (2)0.80748 (9)0.0334 (4)
H14A0.3786860.6329660.8458230.040*
C15A0.4643 (3)0.7779 (2)0.79808 (9)0.0332 (4)
H15A0.4953270.8240440.8297900.040*
C16A0.4863 (3)0.8215 (2)0.74155 (10)0.0350 (4)
H16A0.5330450.8988590.7353570.042*
C17A0.0194 (3)0.6319 (2)0.40838 (9)0.0303 (4)
H17A0.0223530.7108970.3923370.045*
H17B0.0668720.5837310.3769850.045*
H17C0.0719330.5885920.4272030.045*
C18A0.0442 (3)0.71209 (18)0.51712 (9)0.0286 (4)
H18A0.0048110.7951490.5062350.043*
H18B0.0509520.6601240.5229050.043*
H18C0.1068100.7124810.5532180.043*
C1B1.08105 (19)0.75281 (13)0.02710 (7)0.0160 (2)
C2B1.1110 (2)0.83936 (14)0.07256 (7)0.0182 (3)
H2BA1.0828660.8239970.1113750.022*
C3B1.1824 (2)0.94740 (14)0.05957 (7)0.0196 (3)
C4B1.2262 (2)0.97316 (14)0.00270 (7)0.0204 (3)
H4BA1.2768571.0471110.0049560.025*
C5B1.1944 (2)0.88913 (14)0.04182 (7)0.0182 (3)
C6B1.12204 (19)0.77650 (13)0.03091 (7)0.0161 (2)
C7B1.1637 (3)1.02612 (19)0.15781 (9)0.0314 (4)
H7BA1.1982451.0964040.1818710.047*
H7BB1.2123440.9513760.1735890.047*
H7BC1.0424951.0231330.1578350.047*
C8B1.3098 (3)1.01347 (18)0.11256 (9)0.0296 (4)
H8BA1.3273501.0127380.1545720.044*
H8BB1.4170311.0168760.0921740.044*
H8BC1.2400461.0848490.1007720.044*
C9B1.08844 (19)0.69338 (14)0.07878 (7)0.0169 (2)
H9BA1.1029430.7220590.1166000.020*
C10B1.0104 (2)0.51639 (14)0.13192 (7)0.0182 (3)
H10C0.9176310.4613230.1279360.022*
H10D0.9783210.5753050.1617280.022*
C11B1.1657 (2)0.44193 (16)0.15167 (7)0.0212 (3)
H11C1.2002090.3848290.1213310.025*
H11D1.2575090.4971730.1571110.025*
C12B1.1317 (2)0.37149 (15)0.20787 (7)0.0200 (3)
C13B1.1580 (2)0.42174 (17)0.26116 (8)0.0248 (3)
H13B1.2008480.5006060.2628160.030*
C14B1.1211 (3)0.35536 (18)0.31177 (8)0.0260 (3)
H14B1.1377980.3880330.3486260.031*
C15B1.0593 (3)0.24032 (19)0.30771 (8)0.0282 (4)
H15B1.0308380.1930120.3415710.034*
C16B1.0403 (3)0.1966 (2)0.25299 (9)0.0371 (5)
H16B1.0006650.1169380.2503480.045*
C17B0.5226 (2)0.70393 (18)0.02905 (9)0.0264 (3)
H17D0.4796620.7875750.0247360.040*
H17E0.5757750.6970210.0673280.040*
H17F0.4309980.6482040.0254100.040*
C18B0.5303 (3)0.6533 (3)0.08640 (9)0.0400 (5)
H18D0.4874420.7345230.0961030.060*
H18E0.4379930.6033260.0763940.060*
H18F0.5886910.6152280.1198900.060*
O1S0.7366 (3)0.6892 (3)0.21182 (12)0.0490 (6)0.774 (3)
H1S0.644 (2)0.689 (5)0.2281 (13)0.073*0.774 (3)
C1S0.8497 (6)0.7039 (4)0.25684 (15)0.0523 (9)0.774 (3)
H1SD0.9586490.7219440.2400580.078*0.774 (3)
H1SA0.8587380.6288160.2811840.078*0.774 (3)
H1SB0.8102240.7711550.2805730.078*0.774 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mn10.01323 (13)0.00974 (12)0.01742 (13)0.00149 (10)0.00032 (9)0.00011 (9)
Mn20.01386 (13)0.01008 (12)0.01888 (14)0.00177 (10)0.00235 (10)0.00110 (10)
S1A0.01467 (16)0.01704 (17)0.0354 (2)0.00072 (13)0.00139 (14)0.00494 (14)
S1B0.01565 (17)0.01864 (17)0.0354 (2)0.00003 (13)0.00061 (14)0.00671 (15)
Cl10.0454 (5)0.0229 (3)0.0253 (3)0.0047 (3)0.0010 (3)0.0018 (2)
O110.100 (3)0.051 (3)0.0289 (16)0.013 (2)0.0065 (19)0.0146 (16)
O120.069 (2)0.0277 (13)0.0291 (13)0.0005 (12)0.0004 (12)0.0017 (10)
O130.088 (2)0.0512 (16)0.0505 (15)0.0363 (16)0.0060 (15)0.0154 (12)
O140.0537 (19)0.084 (3)0.110 (3)0.0289 (18)0.0138 (18)0.045 (2)
Cl1A0.096 (3)0.0244 (13)0.0278 (12)0.0124 (16)0.0050 (16)0.0059 (9)
O11A0.065 (7)0.038 (6)0.028 (5)0.009 (6)0.018 (5)0.014 (4)
O12A0.128 (8)0.022 (3)0.043 (4)0.009 (5)0.006 (5)0.006 (3)
O13A0.072 (8)0.117 (10)0.101 (8)0.004 (8)0.007 (7)0.017 (8)
O14A0.055 (5)0.023 (4)0.016 (3)0.009 (3)0.013 (3)0.000 (2)
O1A0.0215 (5)0.0115 (4)0.0210 (5)0.0037 (4)0.0028 (4)0.0012 (4)
O2A0.0367 (8)0.0171 (6)0.0415 (8)0.0086 (5)0.0009 (6)0.0113 (5)
O3A0.0313 (7)0.0201 (6)0.0285 (6)0.0068 (5)0.0060 (5)0.0056 (5)
O4A0.0146 (5)0.0153 (5)0.0348 (6)0.0003 (4)0.0022 (4)0.0034 (4)
O1B0.0233 (6)0.0124 (4)0.0218 (5)0.0039 (4)0.0057 (4)0.0001 (4)
O2B0.0399 (8)0.0182 (5)0.0259 (6)0.0097 (5)0.0018 (5)0.0050 (4)
O3B0.0363 (7)0.0190 (5)0.0226 (6)0.0126 (5)0.0047 (5)0.0039 (4)
O4B0.0149 (5)0.0160 (5)0.0390 (7)0.0006 (4)0.0005 (4)0.0043 (5)
N1A0.0147 (5)0.0143 (5)0.0181 (5)0.0013 (4)0.0020 (4)0.0005 (4)
N2A0.0367 (9)0.0231 (7)0.0291 (8)0.0030 (6)0.0023 (6)0.0052 (6)
N1B0.0147 (5)0.0133 (5)0.0197 (5)0.0023 (4)0.0008 (4)0.0005 (4)
N2B0.0472 (11)0.0226 (7)0.0241 (7)0.0117 (7)0.0045 (6)0.0013 (5)
C1A0.0143 (6)0.0102 (5)0.0228 (6)0.0004 (4)0.0011 (5)0.0001 (4)
C2A0.0193 (7)0.0128 (6)0.0254 (7)0.0007 (5)0.0011 (5)0.0031 (5)
C3A0.0202 (7)0.0121 (6)0.0335 (8)0.0015 (5)0.0017 (6)0.0047 (5)
C4A0.0205 (7)0.0117 (6)0.0366 (9)0.0037 (5)0.0002 (6)0.0003 (6)
C5A0.0167 (6)0.0142 (6)0.0268 (7)0.0009 (5)0.0012 (5)0.0034 (5)
C6A0.0147 (6)0.0119 (5)0.0218 (6)0.0015 (4)0.0002 (5)0.0011 (4)
C7A0.0351 (10)0.0231 (8)0.0384 (10)0.0021 (7)0.0053 (8)0.0120 (7)
C8A0.0475 (14)0.0286 (10)0.0466 (13)0.0147 (9)0.0098 (10)0.0142 (9)
C9A0.0152 (6)0.0152 (6)0.0194 (6)0.0009 (5)0.0007 (4)0.0025 (5)
C10A0.0186 (7)0.0185 (6)0.0188 (6)0.0015 (5)0.0040 (5)0.0027 (5)
C11A0.0210 (7)0.0270 (8)0.0234 (7)0.0021 (6)0.0044 (5)0.0082 (6)
C12A0.0204 (7)0.0215 (7)0.0239 (7)0.0012 (6)0.0031 (5)0.0076 (5)
C13A0.0351 (10)0.0295 (9)0.0255 (8)0.0099 (8)0.0023 (7)0.0069 (7)
C14A0.0397 (11)0.0383 (11)0.0235 (8)0.0085 (9)0.0038 (7)0.0074 (7)
C15A0.0343 (10)0.0344 (10)0.0327 (10)0.0048 (8)0.0057 (8)0.0149 (8)
C16A0.0420 (12)0.0241 (9)0.0400 (11)0.0069 (8)0.0043 (9)0.0095 (8)
C17A0.0280 (9)0.0348 (10)0.0272 (9)0.0094 (8)0.0050 (7)0.0014 (7)
C18A0.0282 (9)0.0265 (8)0.0313 (9)0.0070 (7)0.0079 (7)0.0063 (7)
C1B0.0153 (6)0.0112 (5)0.0215 (6)0.0009 (4)0.0019 (5)0.0009 (4)
C2B0.0207 (7)0.0135 (6)0.0204 (6)0.0016 (5)0.0019 (5)0.0002 (5)
C3B0.0214 (7)0.0129 (6)0.0246 (7)0.0025 (5)0.0009 (5)0.0013 (5)
C4B0.0229 (7)0.0132 (6)0.0256 (7)0.0050 (5)0.0016 (5)0.0015 (5)
C5B0.0182 (6)0.0151 (6)0.0216 (7)0.0032 (5)0.0016 (5)0.0025 (5)
C6B0.0164 (6)0.0126 (5)0.0195 (6)0.0024 (5)0.0013 (5)0.0017 (4)
C7B0.0429 (12)0.0257 (8)0.0253 (8)0.0046 (8)0.0002 (7)0.0045 (7)
C8B0.0391 (11)0.0224 (8)0.0288 (9)0.0146 (7)0.0058 (7)0.0045 (6)
C9B0.0166 (6)0.0142 (6)0.0201 (6)0.0017 (5)0.0018 (5)0.0015 (5)
C10B0.0194 (7)0.0157 (6)0.0196 (6)0.0029 (5)0.0013 (5)0.0001 (5)
C11B0.0192 (7)0.0224 (7)0.0218 (7)0.0021 (6)0.0001 (5)0.0034 (5)
C12B0.0198 (7)0.0185 (6)0.0216 (7)0.0019 (5)0.0020 (5)0.0023 (5)
C13B0.0302 (9)0.0204 (7)0.0243 (8)0.0069 (6)0.0030 (6)0.0001 (6)
C14B0.0317 (9)0.0256 (8)0.0209 (7)0.0048 (7)0.0024 (6)0.0003 (6)
C15B0.0344 (10)0.0279 (9)0.0223 (8)0.0080 (7)0.0018 (6)0.0051 (6)
C16B0.0601 (15)0.0241 (9)0.0284 (9)0.0192 (9)0.0044 (9)0.0026 (7)
C17B0.0242 (8)0.0235 (8)0.0310 (9)0.0027 (6)0.0021 (6)0.0020 (6)
C18B0.0375 (12)0.0538 (14)0.0267 (9)0.0186 (10)0.0031 (8)0.0007 (9)
O1S0.0477 (15)0.0439 (14)0.0552 (15)0.0005 (11)0.0035 (11)0.0039 (11)
C1S0.077 (3)0.0470 (19)0.0332 (16)0.0012 (19)0.0020 (15)0.0047 (13)
Geometric parameters (Å, º) top
Mn1—O1A1.8757 (11)C10A—H10A0.9900
Mn1—O1Ai1.8757 (11)C10A—H10B0.9900
Mn1—N1A2.0335 (13)C11A—C12A1.512 (2)
Mn1—N1Ai2.0336 (13)C11A—H11A0.9900
Mn1—O4A2.2365 (12)C11A—H11B0.9900
Mn1—O4Ai2.2365 (12)C12A—C13A1.390 (3)
Mn2—O1B1.8770 (11)C13A—C14A1.388 (3)
Mn2—O1Bii1.8770 (11)C13A—H13A0.9500
Mn2—N1Bii2.0380 (13)C14A—C15A1.382 (3)
Mn2—N1B2.0380 (13)C14A—H14A0.9500
Mn2—O4Bii2.2368 (13)C15A—C16A1.381 (3)
Mn2—O4B2.2368 (13)C15A—H15A0.9500
S1A—O4A1.5293 (12)C16A—H16A0.9500
S1A—C17A1.785 (2)C17A—H17A0.9800
S1A—C18A1.791 (2)C17A—H17B0.9800
S1B—O4B1.5287 (13)C17A—H17C0.9800
S1B—C17B1.779 (2)C18A—H18A0.9800
S1B—C18B1.785 (2)C18A—H18B0.9800
Cl1—O111.4212 (15)C18A—H18C0.9800
Cl1—O131.4241 (14)C1B—C2B1.411 (2)
Cl1—O121.4279 (15)C1B—C6B1.419 (2)
Cl1—O141.4365 (15)C2B—C3B1.388 (2)
Cl1A—O11A1.4256 (15)C2B—H2BA0.9500
Cl1A—O12A1.4274 (15)C3B—C4B1.406 (2)
Cl1A—O14A1.4280 (15)C4B—C5B1.380 (2)
Cl1A—O13A1.4285 (15)C4B—H4BA0.9500
O1A—C1A1.3240 (18)C5B—C6B1.425 (2)
O2A—C3A1.358 (2)C6B—C9B1.433 (2)
O2A—C7A1.429 (3)C7B—H7BA0.9800
O3A—C5A1.363 (2)C7B—H7BB0.9800
O3A—C8A1.434 (2)C7B—H7BC0.9800
O1B—C1B1.3206 (18)C8B—H8BA0.9800
O2B—C3B1.360 (2)C8B—H8BB0.9800
O2B—C7B1.431 (2)C8B—H8BC0.9800
O3B—C5B1.354 (2)C9B—H9BA0.9500
O3B—C8B1.434 (2)C10B—C11B1.534 (2)
N1A—C9A1.299 (2)C10B—H10C0.9900
N1A—C10A1.481 (2)C10B—H10D0.9900
N2A—C12A1.342 (3)C11B—C12B1.508 (2)
N2A—C16A1.349 (3)C11B—H11C0.9900
N1B—C9B1.299 (2)C11B—H11D0.9900
N1B—C10B1.481 (2)C12B—C13B1.391 (2)
N2B—C16B1.343 (3)C13B—C14B1.385 (3)
N2B—C12B1.344 (2)C13B—H13B0.9500
C1A—C2A1.414 (2)C14B—C15B1.387 (3)
C1A—C6A1.414 (2)C14B—H14B0.9500
C2A—C3A1.387 (2)C15B—C16B1.382 (3)
C2A—H2AA0.9500C15B—H15B0.9500
C3A—C4A1.407 (3)C16B—H16B0.9500
C4A—C5A1.374 (2)C17B—H17D0.9800
C4A—H4AA0.9500C17B—H17E0.9800
C5A—C6A1.425 (2)C17B—H17F0.9800
C6A—C9A1.435 (2)C18B—H18D0.9800
C7A—H7AA0.9800C18B—H18E0.9800
C7A—H7AB0.9800C18B—H18F0.9800
C7A—H7AC0.9800O1S—C1S1.410 (5)
C8A—H8AA0.9800O1S—H1S0.830 (10)
C8A—H8AB0.9800C1S—H1SD0.9800
C8A—H8AC0.9800C1S—H1SA0.9800
C9A—H9AA0.9500C1S—H1SB0.9800
C10A—C11A1.530 (2)
O1A—Mn1—O1Ai180.0H11A—C11A—H11B108.1
O1A—Mn1—N1A90.10 (5)N2A—C12A—C13A122.45 (16)
O1Ai—Mn1—N1A89.90 (5)N2A—C12A—C11A116.68 (16)
O1A—Mn1—N1Ai89.90 (5)C13A—C12A—C11A120.84 (17)
O1Ai—Mn1—N1Ai90.10 (5)C14A—C13A—C12A119.36 (19)
N1A—Mn1—N1Ai180.00 (8)C14A—C13A—H13A120.3
O1A—Mn1—O4A90.48 (5)C12A—C13A—H13A120.3
O1Ai—Mn1—O4A89.52 (5)C15A—C14A—C13A118.7 (2)
N1A—Mn1—O4A92.32 (5)C15A—C14A—H14A120.7
N1Ai—Mn1—O4A87.68 (5)C13A—C14A—H14A120.7
O1A—Mn1—O4Ai89.52 (5)C16A—C15A—C14A118.46 (18)
O1Ai—Mn1—O4Ai90.48 (5)C16A—C15A—H15A120.8
N1A—Mn1—O4Ai87.68 (5)C14A—C15A—H15A120.8
N1Ai—Mn1—O4Ai92.32 (5)N2A—C16A—C15A123.8 (2)
O4A—Mn1—O4Ai180.0N2A—C16A—H16A118.1
O1B—Mn2—O1Bii180.00 (8)C15A—C16A—H16A118.1
O1B—Mn2—N1Bii90.60 (5)S1A—C17A—H17A109.5
O1Bii—Mn2—N1Bii89.40 (5)S1A—C17A—H17B109.5
O1B—Mn2—N1B89.40 (5)H17A—C17A—H17B109.5
O1Bii—Mn2—N1B90.59 (5)S1A—C17A—H17C109.5
N1Bii—Mn2—N1B180.00 (7)H17A—C17A—H17C109.5
O1B—Mn2—O4Bii90.15 (5)H17B—C17A—H17C109.5
O1Bii—Mn2—O4Bii89.85 (5)S1A—C18A—H18A109.5
N1Bii—Mn2—O4Bii87.99 (5)S1A—C18A—H18B109.5
N1B—Mn2—O4Bii92.01 (5)H18A—C18A—H18B109.5
O1B—Mn2—O4B89.85 (5)S1A—C18A—H18C109.5
O1Bii—Mn2—O4B90.15 (5)H18A—C18A—H18C109.5
N1Bii—Mn2—O4B92.01 (5)H18B—C18A—H18C109.5
N1B—Mn2—O4B87.99 (5)O1B—C1B—C2B117.87 (14)
O4Bii—Mn2—O4B180.0O1B—C1B—C6B121.68 (14)
O4A—S1A—C17A104.11 (9)C2B—C1B—C6B120.43 (14)
O4A—S1A—C18A105.08 (9)C3B—C2B—C1B118.84 (14)
C17A—S1A—C18A98.35 (9)C3B—C2B—H2BA120.6
O4B—S1B—C17B104.91 (9)C1B—C2B—H2BA120.6
O4B—S1B—C18B104.63 (10)O2B—C3B—C2B124.31 (15)
C17B—S1B—C18B98.31 (10)O2B—C3B—C4B113.50 (14)
O11—Cl1—O13110.35 (8)C2B—C3B—C4B122.18 (15)
O11—Cl1—O12109.97 (8)C5B—C4B—C3B118.84 (14)
O13—Cl1—O12109.65 (8)C5B—C4B—H4BA120.6
O11—Cl1—O14109.25 (8)C3B—C4B—H4BA120.6
O13—Cl1—O14108.89 (8)O3B—C5B—C4B123.81 (14)
O12—Cl1—O14108.71 (8)O3B—C5B—C6B114.89 (14)
O11A—Cl1A—O12A109.64 (9)C4B—C5B—C6B121.30 (14)
O11A—Cl1A—O14A109.60 (9)C1B—C6B—C5B118.39 (14)
O12A—Cl1A—O14A109.38 (9)C1B—C6B—C9B122.46 (13)
O11A—Cl1A—O13A109.48 (9)C5B—C6B—C9B119.13 (14)
O12A—Cl1A—O13A109.41 (9)O2B—C7B—H7BA109.5
O14A—Cl1A—O13A109.32 (9)O2B—C7B—H7BB109.5
C1A—O1A—Mn1128.49 (10)H7BA—C7B—H7BB109.5
C3A—O2A—C7A117.94 (16)O2B—C7B—H7BC109.5
C5A—O3A—C8A117.26 (17)H7BA—C7B—H7BC109.5
S1A—O4A—Mn1114.48 (7)H7BB—C7B—H7BC109.5
C1B—O1B—Mn2131.56 (10)O3B—C8B—H8BA109.5
C3B—O2B—C7B118.09 (15)O3B—C8B—H8BB109.5
C5B—O3B—C8B118.46 (14)H8BA—C8B—H8BB109.5
S1B—O4B—Mn2116.94 (7)O3B—C8B—H8BC109.5
C9A—N1A—C10A116.07 (13)H8BA—C8B—H8BC109.5
C9A—N1A—Mn1123.36 (11)H8BB—C8B—H8BC109.5
C10A—N1A—Mn1120.39 (10)N1B—C9B—C6B126.56 (14)
C12A—N2A—C16A117.25 (18)N1B—C9B—H9BA116.7
C9B—N1B—C10B115.93 (13)C6B—C9B—H9BA116.7
C9B—N1B—Mn2124.38 (11)N1B—C10B—C11B111.19 (13)
C10B—N1B—Mn2119.67 (10)N1B—C10B—H10C109.4
C16B—N2B—C12B117.14 (17)C11B—C10B—H10C109.4
O1A—C1A—C2A117.43 (14)N1B—C10B—H10D109.4
O1A—C1A—C6A121.76 (14)C11B—C10B—H10D109.4
C2A—C1A—C6A120.78 (14)H10C—C10B—H10D108.0
C3A—C2A—C1A118.47 (16)C12B—C11B—C10B110.56 (14)
C3A—C2A—H2AA120.8C12B—C11B—H11C109.5
C1A—C2A—H2AA120.8C10B—C11B—H11C109.5
O2A—C3A—C2A123.82 (17)C12B—C11B—H11D109.5
O2A—C3A—C4A113.97 (15)C10B—C11B—H11D109.5
C2A—C3A—C4A122.21 (15)H11C—C11B—H11D108.1
C5A—C4A—C3A118.87 (15)N2B—C12B—C13B122.58 (16)
C5A—C4A—H4AA120.6N2B—C12B—C11B116.46 (15)
C3A—C4A—H4AA120.6C13B—C12B—C11B120.96 (15)
O3A—C5A—C4A124.17 (15)C14B—C13B—C12B119.18 (17)
O3A—C5A—C6A114.31 (15)C14B—C13B—H13B120.4
C4A—C5A—C6A121.50 (16)C12B—C13B—H13B120.4
C1A—C6A—C5A118.15 (14)C13B—C14B—C15B118.85 (17)
C1A—C6A—C9A122.61 (13)C13B—C14B—H14B120.6
C5A—C6A—C9A119.15 (14)C15B—C14B—H14B120.6
O2A—C7A—H7AA109.5C16B—C15B—C14B118.07 (17)
O2A—C7A—H7AB109.5C16B—C15B—H15B121.0
H7AA—C7A—H7AB109.5C14B—C15B—H15B121.0
O2A—C7A—H7AC109.5N2B—C16B—C15B124.15 (19)
H7AA—C7A—H7AC109.5N2B—C16B—H16B117.9
H7AB—C7A—H7AC109.5C15B—C16B—H16B117.9
O3A—C8A—H8AA109.5S1B—C17B—H17D109.5
O3A—C8A—H8AB109.5S1B—C17B—H17E109.5
H8AA—C8A—H8AB109.5H17D—C17B—H17E109.5
O3A—C8A—H8AC109.5S1B—C17B—H17F109.5
H8AA—C8A—H8AC109.5H17D—C17B—H17F109.5
H8AB—C8A—H8AC109.5H17E—C17B—H17F109.5
N1A—C9A—C6A126.02 (14)S1B—C18B—H18D109.5
N1A—C9A—H9AA117.0S1B—C18B—H18E109.5
C6A—C9A—H9AA117.0H18D—C18B—H18E109.5
N1A—C10A—C11A111.85 (13)S1B—C18B—H18F109.5
N1A—C10A—H10A109.2H18D—C18B—H18F109.5
C11A—C10A—H10A109.2H18E—C18B—H18F109.5
N1A—C10A—H10B109.2C1S—O1S—H1S105 (2)
C11A—C10A—H10B109.2O1S—C1S—H1SD109.5
H10A—C10A—H10B107.9O1S—C1S—H1SA109.5
C12A—C11A—C10A110.29 (14)H1SD—C1S—H1SA109.5
C12A—C11A—H11A109.6O1S—C1S—H1SB109.5
C10A—C11A—H11A109.6H1SD—C1S—H1SB109.5
C12A—C11A—H11B109.6H1SA—C1S—H1SB109.5
C10A—C11A—H11B109.6
N1A—Mn1—O1A—C1A30.38 (13)N2A—C12A—C13A—C14A0.1 (3)
N1Ai—Mn1—O1A—C1A149.62 (13)C11A—C12A—C13A—C14A178.06 (19)
O4A—Mn1—O1A—C1A61.94 (13)C12A—C13A—C14A—C15A0.4 (3)
O4Ai—Mn1—O1A—C1A118.05 (13)C13A—C14A—C15A—C16A0.4 (4)
C17A—S1A—O4A—Mn1143.32 (9)C12A—N2A—C16A—C15A0.2 (3)
C18A—S1A—O4A—Mn1113.81 (9)C14A—C15A—C16A—N2A0.1 (4)
N1Bii—Mn2—O1B—C1B157.35 (15)Mn2—O1B—C1B—C2B161.78 (12)
N1B—Mn2—O1B—C1B22.65 (15)Mn2—O1B—C1B—C6B19.5 (2)
O4Bii—Mn2—O1B—C1B69.36 (15)O1B—C1B—C2B—C3B179.24 (15)
O4B—Mn2—O1B—C1B110.64 (15)C6B—C1B—C2B—C3B0.5 (2)
C17B—S1B—O4B—Mn2122.40 (9)C7B—O2B—C3B—C2B7.4 (3)
C18B—S1B—O4B—Mn2134.66 (11)C7B—O2B—C3B—C4B173.44 (17)
Mn1—O1A—C1A—C2A154.60 (11)C1B—C2B—C3B—O2B179.24 (16)
Mn1—O1A—C1A—C6A27.4 (2)C1B—C2B—C3B—C4B0.2 (3)
O1A—C1A—C2A—C3A177.68 (15)O2B—C3B—C4B—C5B179.67 (16)
C6A—C1A—C2A—C3A0.4 (2)C2B—C3B—C4B—C5B1.2 (3)
C7A—O2A—C3A—C2A5.8 (3)C8B—O3B—C5B—C4B2.3 (3)
C7A—O2A—C3A—C4A175.16 (17)C8B—O3B—C5B—C6B177.06 (16)
C1A—C2A—C3A—O2A179.19 (16)C3B—C4B—C5B—O3B179.19 (16)
C1A—C2A—C3A—C4A0.2 (2)C3B—C4B—C5B—C6B1.5 (3)
O2A—C3A—C4A—C5A179.80 (16)O1B—C1B—C6B—C5B178.92 (14)
C2A—C3A—C4A—C5A0.7 (3)C2B—C1B—C6B—C5B0.2 (2)
C8A—O3A—C5A—C4A2.2 (3)O1B—C1B—C6B—C9B1.0 (2)
C8A—O3A—C5A—C6A179.41 (17)C2B—C1B—C6B—C9B177.68 (15)
C3A—C4A—C5A—O3A179.69 (16)O3B—C5B—C6B—C1B179.83 (15)
C3A—C4A—C5A—C6A1.4 (3)C4B—C5B—C6B—C1B0.8 (2)
O1A—C1A—C6A—C5A176.92 (14)O3B—C5B—C6B—C9B1.8 (2)
C2A—C1A—C6A—C5A1.1 (2)C4B—C5B—C6B—C9B178.77 (15)
O1A—C1A—C6A—C9A0.6 (2)C10B—N1B—C9B—C6B178.73 (15)
C2A—C1A—C6A—C9A177.41 (14)Mn2—N1B—C9B—C6B0.0 (2)
O3A—C5A—C6A—C1A179.97 (14)C1B—C6B—C9B—N1B10.1 (3)
C4A—C5A—C6A—C1A1.6 (2)C5B—C6B—C9B—N1B172.01 (15)
O3A—C5A—C6A—C9A3.5 (2)C9B—N1B—C10B—C11B93.08 (17)
C4A—C5A—C6A—C9A178.08 (15)Mn2—N1B—C10B—C11B88.15 (14)
C10A—N1A—C9A—C6A178.90 (14)N1B—C10B—C11B—C12B178.01 (13)
Mn1—N1A—C9A—C6A3.8 (2)C16B—N2B—C12B—C13B0.9 (3)
C1A—C6A—C9A—N1A15.9 (2)C16B—N2B—C12B—C11B178.7 (2)
C5A—C6A—C9A—N1A167.76 (15)C10B—C11B—C12B—N2B89.7 (2)
C9A—N1A—C10A—C11A93.76 (17)C10B—C11B—C12B—C13B89.9 (2)
Mn1—N1A—C10A—C11A90.96 (15)N2B—C12B—C13B—C14B1.3 (3)
N1A—C10A—C11A—C12A178.38 (14)C11B—C12B—C13B—C14B178.28 (17)
C16A—N2A—C12A—C13A0.3 (3)C12B—C13B—C14B—C15B0.2 (3)
C16A—N2A—C12A—C11A177.81 (18)C13B—C14B—C15B—C16B1.1 (3)
C10A—C11A—C12A—N2A88.9 (2)C12B—N2B—C16B—C15B0.6 (4)
C10A—C11A—C12A—C13A89.2 (2)C14B—C15B—C16B—N2B1.6 (4)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+2, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1S—H1S···O140.83 (2)2.21 (4)2.864 (4)136 (5)
O1S—H1S···O13A0.83 (2)1.06 (3)1.813 (7)147 (6)
C7A—H7AA···O12iii0.982.443.395 (3)165
C7A—H7AA···O14Aiii0.982.493.415 (7)157
C10A—H10B···O12i0.992.573.408 (3)142
C10A—H10B···O14Ai0.992.363.243 (8)148
C17A—H17B···O120.982.693.173 (4)112
C9B—H9BA···O11iv0.952.603.405 (3)143
C9B—H9BA···O11Aiv0.952.523.311 (7)141
C16A—H16A···O12Av0.952.663.563 (6)160
C11B—H11D···O11Aiv0.992.573.380 (8)139
C17A—H17A···O3Avi0.982.553.455 (3)154
C13A—H13A···O1Si0.952.423.343 (4)165
C18A—H18B···O4Avi0.982.563.491 (3)160
C17B—H17F···O4Bvii0.982.433.384 (2)163
C7B—H7BA···O1Sviii0.982.513.445 (4)160
C10B—H10D···O1S0.992.573.428 (3)146
C18B—H18F···O1S0.982.623.402 (3)137
Symmetry codes: (i) x+1, y+1, z+1; (iii) x, y1, z; (iv) x+1, y, z; (v) x+1, y+2, z+1; (vi) x, y+1, z+1; (vii) x+1, y+1, z; (viii) x+2, y+2, z.
 

Acknowledgements

RJB is grateful to the NSF, Partnership for Reduced Dimensional Materials, for partial funding of this research, as well as the Howard University Nanoscience Facility for access to liquid nitro­gen. RJB acknowledges the NSF MRI program for funds to purchase an X-ray diffractometer.

Funding information

Funding for this research was provided by: National Science Foundation, Directorate for Mathematical and Physical Sciences (grant Nos. 1205608 and CHE-0619278).

References

First citationAgilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, Oxfordshire, England.
First citationAubin, S. M. J., Dilley, N. R., Pardi, L., Krzystek, J., Wemple, M. W., Brunel, L. C., Maple, M. B., Christou, G. & Hendrickson, D. N. (1998). J. Am. Chem. Soc. 120, 4991–5004.  Web of Science CrossRef CAS
First citationAwschalom, D. D., Di Vincenzo, D. P. & Smyth, J. J. (1992). Science, 258, 414–421.  CrossRef PubMed CAS Web of Science
First citationBermejo, M. R., Garcia-Deibe, A., Sanmartin, J., Sousa, A., Aurangzeb, N., Hulme, C. E., McAuliffe, C. A., Pritchard, R. G. & Watkinson, M. (1994). J. Chem. Soc. Chem. Commun. pp. 645–646.  CrossRef Web of Science
First citationBoskovic, C., Brechin, E. K., Streib, W. E., Folting, K., Bollinger, J. C., Hendrickson, D. N. & Christou, G. (2002). J. Am. Chem. Soc. 124, 3725–3736.  Web of Science CSD CrossRef PubMed CAS
First citationBoyd, P. D. W., Li, Q. Y., Vincent, J. B., Folting, K., Chang, H. R., Streib, W. E., Huffman, J. C., Christou, G. & Hendrickson, D. N. (1988). J. Am. Chem. Soc. 110, 8537–8539.  CSD CrossRef CAS Web of Science
First citationChristou, G., Gatteschi, D., Hendrickson, D. N. & Sessoli, R. (2000). MRS Bull. 25, 66–71.  Web of Science CrossRef CAS
First citationClark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887–897.  CrossRef CAS Web of Science IUCr Journals
First citationCornia, A., Fabretti, A. C., Pacchioni, M., Zobbi, L., Bonachi, D., Caneschi, A., Gatteschi, D., Biagi, R., Del Pennino, U., De Renzi, V., Gurevich, L. & Van der Zant, H. S. J. (2003). Angew. Chem. Int. Ed. Engl. 42, 1645–1648.  Web of Science CrossRef PubMed CAS
First citationDahlberg, E. D. & Zhu, J.-G. (1995). Phys. Today, 48, 34–40.  CrossRef CAS Web of Science
First citationEgekenze, R., Gultneh, Y. & Butcher, R. J. (2017a). Acta Cryst. E73, 1113–1116.  Web of Science CSD CrossRef IUCr Journals
First citationEgekenze, R., Gultneh, Y. & Butcher, R. J. (2017b). Inorg. Chim. Acta. Submitted.
First citationEgekenze, R., Gultneh, Y. & Butcher, R. J. (2017c). Polyhedron, Submitted.
First citationGatteschi, D., Caneschi, A., Pardi, L. & Sessoli, R. (1994). Science, 265, 1054–1058.  CrossRef PubMed CAS Web of Science
First citationGatteschi, D. & Sessoli, R. (2003). Angew. Chem. Int. Ed. Engl. 42, 268–297.  Web of Science CrossRef PubMed CAS
First citationGatteschi, D., Sessoli, R. & Villain, J. (2006). In Molecular Magnets. Oxford University Press.
First citationGlaser, T., Heidemeier, M. & Fröhlich, R. (2007). C. R. Chim. 10, 71–78.  Web of Science CSD CrossRef CAS
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals
First citationJahn, H. A. & Teller, E. (1937). Proc. R. Soc. A, 161, 220–235.  CrossRef CAS
First citationLeuenberger, M. N. & Loss, D. (2001). Nature, 410, 789–793.  Web of Science CrossRef PubMed CAS
First citationLis, T. (1980). Acta Cryst. B36, 2042–2046.  CSD CrossRef CAS IUCr Journals Web of Science
First citationLong, J. R. (2003). Chemistry of Nanostructured Materials, edited by P. Yang, p. 291. Hong Kong: World Scientific.
First citationMiyasaka, H., Clerac, R., Wernsdorfer, W., Lecren, L., Bonhomme, C., Sugiura, K.-I. & Yamashita, M. (2004). Angew. Chem. Int. Ed. Engl. 43, 2801–2805.  Web of Science CSD CrossRef PubMed CAS
First citationSessoli, R., Gatteschi, D., Caneschi, A. & Novak, M. A. (1993a). Nature, 365, 141–143.  CrossRef CAS Web of Science
First citationSessoli, R., Tsai, H. L., Schake, A. R., Wang, S. Y., Vincent, J. B., Folting, K., Gatteschi, D., Christou, G. & Hendrickson, D. N. (1993b). J. Am. Chem. Soc. 115, 1804–1816.  CSD CrossRef CAS Web of Science
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals
First citationSun, Z. M., Ruiz, D., Rumberger, E., Incarvito, C. D., Folting, K., Rheingold, A. L., Christou, G. & Hendrickson, D. N. (1998). Inorg. Chem. 37, 4758–4759.  Web of Science CSD CrossRef PubMed CAS
First citationTejada, J. (2001). Polyhedron, 20, 1751–1756.  Web of Science CrossRef CAS
First citationThomas, L., Lionti, F., Ballou, R., Gatteschi, D., Sessoli, R. & Barbara, B. (1996). Nature, 383, 145–147.  CrossRef CAS Web of Science
First citationTsai, H. L., Eppley, H. J., Devries, N., Folting, K., Christou, G. & Hendrickson, D. N. (1994). J. Chem. Soc. Chem. Commun. pp. 1745–1746.  CrossRef Web of Science

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds