research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of [N,N-bis­­(di­phenyl­phospho­ro­thio­yl)amidato-κ2S,S′]bis­­(tri­phenyl­phosphane-κP)copper(I) di­chloro­methane monosolvate

CROSSMARK_Color_square_no_text.svg

aDepartment of Materials and Life Science, Seikei University, 3-3-1 Kichijoji-kitamachi, Musashino-shi, Tokyo, Japan, and bFaculty of Education and Human Science, University of Yamanashi, 4-4-37, Takeda, Kofu, Yamanashi, Japan
*Correspondence e-mail: tsubomura@st.seikei.ac.jp

Edited by W. Imhof, University Koblenz-Landau, Germany (Received 31 May 2017; accepted 23 June 2017; online 4 July 2017)

The title compound, [Cu(C24H20NP2S2)(C18H15P)2]·CH2Cl2 or [Cu(dppaS2)(PPh3)2]·CH2Cl2, is a neutral mononuclear copper(I) complex bearing an N,N-bis­(di­phenyl­phospho­rothio­yl)amidate (dppaS2) ligand and two tri­phenyl­phosphane ligands. The molecular structure shows that the two S atoms of the dppaS2 ligand [Cu—S = 2.3462 (9) and 2.3484 (9) Å] and the two P atoms of the two tri­phenyl­phosphane ligands [Cu—P = 2.3167 (9) and 2.2969 (9) Å] coordinate to the copper(I) atom, resulting in a tetra­hedral coordination geometry. The crystallographically observed mol­ecular structure is compared to the results of DFT calculations.

1. Chemical context

Copper(I) complexes have been studied actively because of the abundance of the metal ore and their inter­esting lumin­escent properties (Costa et al., 2012[Costa, R. D., Ortí, E., Bolink, H. J., Monti, F., Accorsi, G. & Armaroli, N. (2012). Angew. Chem. Int. Ed. 51, 8178-8211.]). The most well-explored copper(I) complexes are those bearing nitro­gen and phospho­rus donor atoms, which display strong emission and long-lived lifetime of the excited states (Czerwieniec et al., 2013[Czerwieniec, R., Kowalski, K. & Yersin, H. (2013). Dalton Trans. 42, 9826-9830.]). On the other hand, CuI complexes bearing sulfur donor ligands have not been well studied in this respect. Several years ago, we reported some emissive copper(I) complexes bearing diphosphane di­sulfide (Dairiki et al., 2009[Dairiki, A., Tsukuda, T., Matsumoto, K. & Tsubomura, T. (2009). Polyhedron, 28, 2730-2734.]). In addition, an inter­esting reaction was also reported in which a sulfur atom of the diphosphane di­sulfide ligand was transferred to another diphosphane ligand (Tsukuda et al., 2012[Tsukuda, T., Miyoshi, R., Esumi, A., Yamagiwa, A., Dairiki, A., Matsumoto, K. & Tsubomura, T. (2012). Inorg. Chim. Acta, 384, 149-153.]). We describe here the crystal structure of a neutral copper(I) complex [Cu(dppaS2)(PPh3)2] bearing the anionic diphos­phane di­sulfide ligand N,N-bis­(di­phenyl­phospho­rothio­yl)amidate (dppaS2) and two tri­phenyl­phosphane ligands.

[Scheme 1]

2. Structural commentary

The molecular structure of [Cu(dppaS2)(PPh3)2] shows that the two sulfur atoms of the dppaS2 ligand and the two phospho­rus atoms of the two tri­phenyl­phosphane ligands coordinate to the copper atom, resulting in a tetra­hedral coordination geometry (Fig. 1[link]). The bond lengths between the copper(I) atom and the two sulfur atoms of the dppaS2 ligand are Cu—S = 2.3462 (9) and 2.3484 (9) Å, and those between the copper atom and the phospho­rus atoms of the tri­phenyl­phosphane ligands are Cu—P = 2.3167 (9) and 2.2969 (9) Å. The diphosphine di­sulfide ligand forms a six-membered ring adopting a boat conformation. The bond order of the P6—S2 and P7—S3 bonds are considered to be slightly smaller than two because the lengths of the bonds are considerably longer than general P=S (= 1.91 Å) bond lengths (Wilson et al., 1999[Wilson, A. & Prince, E. (1999). Editors. International Tables for Crystallography, Volume C, 2nd ed., pp. 782-803. Dordrecht: Kluwer.]) by ca 0.1 Å (Table 1[link]). P6—N8 and P7—N8 appear to have double-bond character because at 1.587 (2) and 1.584 (2) Å, respectively, they are significantly shorter than the typical N—P (= 1.66 Å) bond length.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C42—H42⋯C13i 0.95 2.91 3.586 (5) 129
C59—H59⋯C53ii 0.95 2.79 3.590 (5) 142
C56—H56⋯C60iii 0.95 2.69 3.589 (6) 157
C66—H66⋯C65iv 0.95 3.02 3.468 (5) 111
C55—H55⋯C55v 0.95 3.71 3.552 (5) 73
C55—H55⋯C56v 0.95 3.47 3.495 (5) 83
Symmetry codes: (i) -x+2, -y, -z+1; (ii) -x+1, -y+1, -z; (iii) x+1, y, z; (iv) -x+1, -y, -z; (v) -x+2, -y+1, -z.
[Figure 1]
Figure 1
The structure of the molecular components of [Cu(dppaS2)(PPh3)2]·CH2Cl2, showing 50% probability displacement ellipsoids. H atoms have been omitted for clarity.

3. Supra­molecular features

The space group of the crystal is P[\overline{1}], and the asymmetric unit consists of a complex mol­ecule, so that a unit cell contains two complex mol­ecules. In the crystal, weak C—H⋯C inter­actions are observed (Fig. 2[link] and Table 1[link]).

[Figure 2]
Figure 2
The crystal structure constructed from chains by C—H⋯C inter­actions (red dashed lines).

4. DFT calculations

Calculations were performed with the GAUSSIAN09 software (Frisch et al., 2009[Frisch, M. J., et al. (2009). GAUSSIAN09. Gaussian, Inc., Wallingford, CT, USA.]) using the B3LYP method (Becke et al., 1992[Becke, A. D. J. (1992). J. Chem. Phys. 96, 2155-2160.], 1993[Becke, A. D. J. (1993). J. Chem. Phys. 98, 5648-5652.]; Lee et al., 1988[Lee, C., Yang, W. & Parr, R. G. (1988). Phys. Rev. B, 37, 785-789.]). The basis sets were as follows: copper, 6-311G with Wachters (1970[Wachters, A. J. H. (1970). J. Chem. Phys. 52, 1033-1036.]) 4p functions; phos­phorus, oxygen, and nitro­gen, 6-31+G*; carbon, 6-31G*; and hydrogen, 6-31G. DFT calculations were performed and the results compared with experimental values (Table 2[link]). The optimized structure in the singlet ground state is roughly consistent with crystal structure. The calculated Cu—S and Cu—P bond lengths are in agreement with the experimental value within 0.08 Å. The S—Cu—S and P—Cu—P bond angles, and the dihedral angle between the S/Cu/S and P/Cu/P planes obtained by DFT calculations and experimentally are in good agreement. The near right angle (87°) of the dihedral angle shows that the tetra­hedral geometry seems to be favorable for the complex.

Table 2
Bond lengths and angles (Å, °) for the optimized and obtained structure of [Cu(dppaS2)(PPh3)2]

Parameter calculated (singlet) crystal
Cu—S 2.422, 2.428 2.3462 (9), 2.3484 (9)
Cu—P 2.336, 2.329 2.2969 (9), 2.3167 (9)
S—P 2.042, 2.042 1.9920 (11), 2.0047 (11)
P—N 1.608, 1.607 1.587 (2), 1.584 (2)
S—Cu—S 111.75 114.96 (3)
P—Cu—P 122.81 121.28 (3)
Dihedral angle 87.74 86.69
The dihedral angle is between the S2/Cu1/S3 and P4/Cu1/P5 planes.

5. Synthesis and crystallization

Under an argon atmosphere, 5 ml anhydrous di­chloro­methane were added with stirring to a mixture of N,N-bis­(di­phenyl­phospho­rothio­yl)amine (HdppaS2) (135 mg, 0.3 mmol) and potassium tert-butoxide (35 mg, 0.3 mmol). Tri­phenyl­phosphane (157.4 mg, 0.6 mmol) and [Cu(CH3CN)4]PF6 (111.8 mg, 0.3 mmol) were then added to the reaction solution. After the solution had been stirred for one h at room temperature, a white powder (KPF6) precipitated. The mixture was then filtered. The solution was added to ethanol (20 ml) and the resulting colorless crystals were obtained by filtration. Yield 256 mg (82%). Analysis found: C, 69.43; H, 4.85; N, 1.36%. Calculated for [Cu(dppaS2)(PPh3)2], C60H50NS2P4Cu: C, 69.51; H, 4.86; N, 1.35%. 31P{1H} NMR (202 MHz, CDCl3) 34.6 (t, J = 53.16 Hz, dppaS2), −2.5 (s, br, tri­phenyl­phosphane). Broadening of the 31P signals of the phospho­rus atoms directly coordinating to the copper atom, which has a large quadrupole moment, has frequently been observed (von Rekowski et al., 2014[Rekowski, F. von, Koch, C. & Gschwind, R. (2014). J. Am. Chem. Soc. 136, 11389-11395.]). Single crystals suitable for X-ray diffraction were obtained during the synthetic procedure.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. The non-hydrogen atoms were refined anisotropically. All H atoms were positioned geometrically and refined isotropically using the riding model with C—H = 0.99 Å and Uiso(H) = 1.2Ueq(C) for methyl­ene groups, and 0.95 Å and Uiso(H) = 1.2Ueq(C) for aromatic groups.

Table 3
Experimental details

Crystal data
Chemical formula [Cu(C24H20NP2S2)(C18H15P)2]·CH2Cl2
Mr 1121.56
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 123
a, b, c (Å) 10.610 (3), 12.929 (3), 21.782 (5)
α, β, γ (°) 80.450 (8), 80.644 (8), 67.642 (7)
V3) 2708.8 (12)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.74
Crystal size (mm) 0.50 × 0.40 × 0.40
 
Data collection
Diffractometer Rigaku Saturn70
Absorption correction Numerical (NUMABS; Rigaku, 1999[Rigaku (1999). NUMABS. Rigaku Corporation, Tokyo, Japan.])
Tmin, Tmax 0.821, 0.863
No. of measured, independent and observed [F2 > 2.0σ(F2)] reflections 24835, 11403, 9450
Rint 0.042
(sin θ/λ)max−1) 0.649
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.152, 0.82
No. of reflections 11403
No. of parameters 640
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 1.10, −0.46
Computer programs: CrystalClear (Rigaku, 2000[Rigaku (2000). CrystalClear. Rigaku Corporation, Tokyo, Japan.]), SIR92 (Altomare et al., 1993[Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343-350.]), SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]) and CrystalStructure (Rigaku, 2015[Rigaku (2015). CrystalStructure. Rigaku Corporation, Tokyo, Japan.]).

Supporting information


Computing details top

Data collection: CrystalClear (Rigaku, 2000); cell refinement: CrystalClear (Rigaku, 2000); data reduction: CrystalClear (Rigaku, 2000); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2006); software used to prepare material for publication: CrystalStructure (Rigaku, 2015).

[N,N-bis(diphenylphosphorothioyl)amidato-κ2S,S']bis(triphenylphosphane-κP)copper(I) dichloromethane monosolvate top
Crystal data top
[Cu(C24H20NP2S2)(C18H15P)2]·CH2Cl2Z = 2
Mr = 1121.56F(000) = 1160.00
Triclinic, P1Dx = 1.375 Mg m3
a = 10.610 (3) ÅMo Kα radiation, λ = 0.71075 Å
b = 12.929 (3) ÅCell parameters from 6125 reflections
c = 21.782 (5) Åθ = 3.2–27.5°
α = 80.450 (8)°µ = 0.74 mm1
β = 80.644 (8)°T = 123 K
γ = 67.642 (7)°Prism, colorless
V = 2708.8 (12) Å30.50 × 0.40 × 0.40 mm
Data collection top
Rigaku Saturn70
diffractometer
9450 reflections with F2 > 2.0σ(F2)
Detector resolution: 29.257 pixels mm-1Rint = 0.042
ω scansθmax = 27.5°, θmin = 3.2°
Absorption correction: numerical
(NUMABS; Rigaku, 1999)
h = 1213
Tmin = 0.821, Tmax = 0.863k = 1616
24835 measured reflectionsl = 2828
11403 independent reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.152H-atom parameters constrained
S = 0.82 w = 1/[σ2(Fo2) + (0.1058P)2 + 7.313P]
where P = (Fo2 + 2Fc2)/3
11403 reflections(Δ/σ)max = 0.001
640 parametersΔρmax = 1.10 e Å3
0 restraintsΔρmin = 0.46 e Å3
Primary atom site location: structure-invariant direct methods
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement was performed using all reflections. The weighted R-factor (wR) and goodness of fit (S) are based on F2. R-factor (gt) are based on F. The threshold expression of F2 > 2.0 sigma(F2) is used only for calculating R-factor (gt).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.76468 (4)0.25233 (3)0.284204 (15)0.01466 (11)
Cl700.85178 (13)0.23334 (11)0.21386 (6)0.0590 (3)
Cl710.58013 (13)0.20717 (10)0.27758 (5)0.0551 (3)
S20.80813 (8)0.39124 (6)0.20945 (3)0.01882 (16)
S30.62471 (8)0.16942 (6)0.25477 (3)0.01728 (16)
P40.96915 (8)0.10274 (6)0.29819 (3)0.01554 (16)
P50.64070 (8)0.35492 (6)0.36493 (3)0.01494 (16)
P60.74273 (7)0.38722 (6)0.12949 (3)0.01317 (15)
P70.57225 (7)0.24508 (6)0.16971 (3)0.01315 (15)
N80.6625 (3)0.3073 (2)0.12584 (11)0.0159 (5)
C91.1108 (3)0.1251 (3)0.32436 (13)0.0190 (6)
C101.0813 (3)0.2140 (3)0.35943 (14)0.0229 (6)
H100.98920.26390.36690.027*
C111.1849 (4)0.2305 (3)0.38359 (16)0.0287 (7)
H111.16340.29200.40700.034*
C121.3195 (4)0.1574 (3)0.37344 (16)0.0302 (8)
H121.39020.16830.39020.036*
C131.3509 (3)0.0681 (3)0.33867 (16)0.0278 (7)
H131.44310.01800.33170.033*
C141.2479 (3)0.0519 (3)0.31409 (15)0.0239 (7)
H141.27020.00910.29020.029*
C150.9526 (3)0.0154 (2)0.35433 (14)0.0189 (6)
C161.0157 (3)0.0502 (3)0.40937 (15)0.0236 (7)
H161.07700.01730.41720.028*
C170.9886 (4)0.1336 (3)0.45308 (16)0.0321 (8)
H171.03060.15640.49090.038*
C180.9015 (4)0.1828 (3)0.44165 (17)0.0324 (8)
H180.88390.23960.47150.039*
C190.8395 (4)0.1496 (3)0.38663 (17)0.0292 (7)
H190.78040.18410.37840.035*
C200.8645 (3)0.0654 (3)0.34365 (15)0.0238 (7)
H200.82050.04170.30640.029*
C211.0443 (3)0.0385 (3)0.22537 (14)0.0195 (6)
C221.0856 (5)0.0754 (3)0.22047 (19)0.0429 (10)
H221.08190.12620.25700.052*
C231.1329 (5)0.1163 (4)0.1620 (2)0.0527 (13)
H231.16000.19450.15910.063*
C241.1400 (4)0.0438 (4)0.10906 (18)0.0391 (9)
H241.16960.07130.06930.047*
C251.1041 (4)0.0690 (3)0.11369 (16)0.0368 (9)
H251.11260.11880.07730.044*
C261.0556 (4)0.1104 (3)0.17139 (15)0.0292 (8)
H261.02980.18860.17400.035*
C270.4811 (3)0.4736 (3)0.35029 (13)0.0196 (6)
C280.3841 (4)0.4530 (3)0.32282 (17)0.0310 (8)
H280.40560.38150.30920.037*
C290.2562 (4)0.5366 (4)0.31530 (19)0.0416 (10)
H290.19050.52190.29680.050*
C300.2244 (4)0.6412 (3)0.33470 (18)0.0371 (9)
H300.13710.69820.32940.045*
C310.3199 (4)0.6625 (3)0.36169 (18)0.0343 (8)
H310.29820.73450.37470.041*
C320.4474 (4)0.5792 (3)0.36994 (17)0.0271 (7)
H320.51200.59410.38910.032*
C330.7372 (3)0.4213 (2)0.39628 (14)0.0179 (6)
C340.7933 (3)0.4906 (3)0.35449 (15)0.0226 (6)
H340.77620.50510.31180.027*
C350.8738 (3)0.5382 (3)0.37471 (17)0.0280 (7)
H350.91200.58510.34600.034*
C360.8987 (4)0.5173 (3)0.43712 (19)0.0340 (8)
H360.95450.54970.45090.041*
C370.8428 (4)0.4497 (3)0.47931 (18)0.0329 (8)
H370.85910.43660.52200.039*
C380.7625 (3)0.4009 (3)0.45910 (15)0.0244 (7)
H380.72500.35370.48800.029*
C390.5844 (3)0.2747 (3)0.43368 (13)0.0182 (6)
C400.4726 (4)0.3246 (3)0.47633 (15)0.0248 (7)
H400.42210.40320.47010.030*
C410.4348 (4)0.2593 (3)0.52796 (16)0.0308 (8)
H410.35880.29380.55690.037*
C420.5062 (4)0.1453 (3)0.53751 (17)0.0356 (9)
H420.47920.10130.57280.043*
C430.6176 (4)0.0947 (3)0.49559 (19)0.0437 (11)
H430.66810.01610.50220.052*
C440.6552 (4)0.1599 (3)0.44364 (17)0.0323 (8)
H440.73070.12490.41460.039*
C450.6382 (3)0.5305 (2)0.10170 (14)0.0169 (6)
C460.6032 (3)0.5538 (3)0.04012 (14)0.0204 (6)
H460.63940.49610.01320.024*
C470.5162 (3)0.6605 (3)0.01796 (16)0.0252 (7)
H470.49250.67520.02370.030*
C480.4647 (4)0.7446 (3)0.05696 (19)0.0333 (8)
H480.40680.81790.04190.040*
C490.4970 (4)0.7226 (3)0.11759 (19)0.0377 (9)
H490.46000.78080.14420.045*
C500.5829 (4)0.6165 (3)0.14057 (17)0.0281 (7)
H500.60400.60250.18260.034*
C510.8854 (3)0.3508 (2)0.06807 (13)0.0168 (6)
C520.8794 (3)0.2986 (3)0.01793 (14)0.0238 (7)
H520.80320.27760.01700.029*
C530.9859 (4)0.2774 (3)0.03074 (15)0.0325 (8)
H530.98190.24220.06500.039*
C541.0976 (4)0.3076 (3)0.02928 (17)0.0380 (10)
H541.16940.29380.06270.046*
C551.1041 (4)0.3575 (3)0.0205 (2)0.0377 (9)
H551.18150.37680.02180.045*
C560.9978 (3)0.3798 (3)0.06922 (17)0.0275 (7)
H561.00250.41510.10330.033*
C570.3936 (3)0.3388 (2)0.17572 (13)0.0155 (5)
C580.3555 (3)0.4422 (3)0.13879 (15)0.0210 (6)
H580.42300.46320.11120.025*
C590.2185 (3)0.5153 (3)0.14200 (17)0.0271 (7)
H590.19340.58640.11730.033*
C600.1201 (3)0.4842 (3)0.18100 (16)0.0259 (7)
H600.02680.53330.18260.031*
C610.1564 (3)0.3817 (3)0.21796 (15)0.0248 (7)
H610.08800.36060.24470.030*
C620.2930 (3)0.3093 (3)0.21607 (14)0.0219 (6)
H620.31780.23980.24230.026*
C630.5829 (3)0.1341 (2)0.12530 (13)0.0169 (6)
C640.4714 (3)0.1058 (3)0.12004 (15)0.0224 (6)
H640.38290.14680.13900.027*
C650.4902 (4)0.0167 (3)0.08673 (17)0.0279 (7)
H650.41410.00270.08320.033*
C660.6187 (4)0.0436 (3)0.05883 (15)0.0276 (7)
H660.63070.10410.03620.033*
C670.7296 (4)0.0155 (3)0.06404 (15)0.0258 (7)
H670.81790.05690.04500.031*
C680.7123 (3)0.0732 (3)0.09719 (15)0.0230 (6)
H680.78880.09220.10060.028*
C690.6779 (5)0.1451 (4)0.22122 (19)0.0423 (10)
H69A0.64170.13010.18020.051*
H69B0.66930.07230.23370.051*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.01456 (19)0.01581 (19)0.01294 (17)0.00524 (14)0.00092 (13)0.00102 (13)
Cl700.0466 (7)0.0637 (8)0.0562 (7)0.0086 (6)0.0035 (5)0.0146 (6)
Cl710.0605 (7)0.0490 (6)0.0453 (6)0.0167 (6)0.0111 (5)0.0010 (5)
S20.0220 (4)0.0220 (4)0.0151 (3)0.0117 (3)0.0030 (3)0.0008 (3)
S30.0178 (4)0.0185 (4)0.0165 (3)0.0085 (3)0.0045 (3)0.0024 (3)
P40.0140 (4)0.0145 (4)0.0153 (3)0.0038 (3)0.0005 (3)0.0013 (3)
P50.0144 (4)0.0161 (4)0.0145 (3)0.0057 (3)0.0009 (3)0.0026 (3)
P60.0126 (4)0.0137 (3)0.0131 (3)0.0054 (3)0.0000 (3)0.0008 (3)
P70.0126 (4)0.0129 (3)0.0140 (3)0.0050 (3)0.0022 (3)0.0001 (3)
N80.0172 (13)0.0176 (12)0.0149 (11)0.0095 (10)0.0013 (9)0.0004 (9)
C90.0170 (15)0.0226 (15)0.0149 (13)0.0073 (12)0.0019 (11)0.0054 (11)
C100.0222 (16)0.0242 (16)0.0213 (15)0.0083 (13)0.0022 (12)0.0001 (12)
C110.0308 (19)0.0359 (19)0.0242 (16)0.0174 (16)0.0040 (14)0.0024 (14)
C120.0264 (18)0.046 (2)0.0224 (16)0.0210 (16)0.0054 (13)0.0074 (14)
C130.0153 (15)0.0327 (19)0.0278 (17)0.0049 (14)0.0036 (13)0.0087 (14)
C140.0201 (16)0.0226 (16)0.0249 (16)0.0063 (13)0.0008 (12)0.0030 (12)
C150.0152 (14)0.0140 (14)0.0195 (14)0.0008 (11)0.0027 (11)0.0004 (11)
C160.0248 (17)0.0205 (16)0.0207 (15)0.0055 (13)0.0007 (12)0.0008 (12)
C170.043 (2)0.0223 (17)0.0215 (16)0.0051 (16)0.0021 (15)0.0051 (13)
C180.040 (2)0.0172 (16)0.0297 (18)0.0066 (15)0.0103 (15)0.0023 (13)
C190.0287 (18)0.0216 (16)0.0349 (18)0.0106 (14)0.0051 (14)0.0011 (14)
C200.0236 (17)0.0197 (15)0.0243 (16)0.0070 (13)0.0031 (13)0.0003 (12)
C210.0144 (14)0.0213 (15)0.0193 (14)0.0044 (12)0.0010 (11)0.0012 (11)
C220.064 (3)0.0276 (19)0.033 (2)0.022 (2)0.0215 (19)0.0073 (15)
C230.076 (3)0.039 (2)0.046 (2)0.030 (2)0.031 (2)0.0241 (19)
C240.032 (2)0.056 (3)0.0275 (18)0.0149 (19)0.0105 (15)0.0174 (17)
C250.0292 (19)0.041 (2)0.0201 (16)0.0060 (17)0.0030 (14)0.0002 (15)
C260.0280 (18)0.0241 (17)0.0209 (16)0.0020 (14)0.0043 (13)0.0021 (13)
C270.0220 (16)0.0218 (15)0.0142 (13)0.0083 (13)0.0002 (11)0.0012 (11)
C280.0263 (18)0.0331 (19)0.0322 (18)0.0027 (15)0.0099 (14)0.0132 (15)
C290.0240 (19)0.052 (3)0.042 (2)0.0023 (17)0.0153 (16)0.0146 (19)
C300.0238 (18)0.038 (2)0.0337 (19)0.0048 (16)0.0053 (15)0.0009 (16)
C310.0298 (19)0.0197 (17)0.042 (2)0.0004 (15)0.0012 (16)0.0015 (15)
C320.0226 (17)0.0215 (16)0.0345 (18)0.0049 (14)0.0023 (14)0.0047 (13)
C330.0135 (14)0.0161 (14)0.0216 (14)0.0011 (11)0.0001 (11)0.0072 (11)
C340.0214 (16)0.0221 (16)0.0262 (16)0.0097 (13)0.0016 (12)0.0048 (12)
C350.0222 (17)0.0239 (17)0.0399 (19)0.0104 (14)0.0036 (14)0.0042 (14)
C360.0283 (19)0.0327 (19)0.049 (2)0.0145 (16)0.0147 (16)0.0067 (16)
C370.032 (2)0.036 (2)0.0338 (19)0.0117 (16)0.0156 (15)0.0034 (15)
C380.0227 (17)0.0270 (17)0.0244 (16)0.0088 (14)0.0041 (13)0.0045 (13)
C390.0173 (15)0.0237 (15)0.0149 (13)0.0093 (12)0.0008 (11)0.0027 (11)
C400.0272 (17)0.0204 (16)0.0235 (16)0.0081 (14)0.0063 (13)0.0030 (12)
C410.0276 (18)0.0298 (18)0.0276 (17)0.0079 (15)0.0105 (14)0.0021 (14)
C420.034 (2)0.033 (2)0.0280 (18)0.0074 (16)0.0082 (15)0.0081 (15)
C430.040 (2)0.0253 (19)0.040 (2)0.0027 (17)0.0132 (18)0.0111 (16)
C440.0254 (18)0.0275 (18)0.0290 (18)0.0002 (15)0.0089 (14)0.0027 (14)
C450.0158 (14)0.0163 (14)0.0192 (14)0.0090 (12)0.0027 (11)0.0005 (11)
C460.0200 (15)0.0190 (15)0.0210 (15)0.0081 (12)0.0007 (12)0.0006 (11)
C470.0211 (16)0.0252 (17)0.0270 (16)0.0082 (14)0.0046 (13)0.0050 (13)
C480.033 (2)0.0152 (16)0.046 (2)0.0016 (14)0.0125 (16)0.0019 (14)
C490.045 (2)0.0158 (16)0.047 (2)0.0017 (16)0.0127 (18)0.0105 (15)
C500.0321 (19)0.0205 (16)0.0297 (17)0.0039 (14)0.0073 (14)0.0077 (13)
C510.0151 (14)0.0156 (14)0.0142 (13)0.0015 (11)0.0001 (11)0.0019 (10)
C520.0195 (16)0.0244 (16)0.0201 (15)0.0005 (13)0.0027 (12)0.0027 (12)
C530.0308 (19)0.0308 (19)0.0161 (15)0.0091 (15)0.0017 (13)0.0025 (13)
C540.0279 (19)0.031 (2)0.0281 (18)0.0064 (16)0.0151 (15)0.0086 (15)
C550.0227 (18)0.033 (2)0.048 (2)0.0121 (16)0.0128 (16)0.0079 (17)
C560.0222 (17)0.0258 (17)0.0332 (18)0.0118 (14)0.0052 (14)0.0002 (14)
C570.0145 (14)0.0169 (14)0.0159 (13)0.0059 (11)0.0015 (11)0.0042 (10)
C580.0160 (15)0.0209 (15)0.0251 (15)0.0067 (12)0.0048 (12)0.0024 (12)
C590.0215 (17)0.0193 (16)0.0352 (18)0.0011 (13)0.0103 (14)0.0026 (13)
C600.0141 (15)0.0293 (18)0.0315 (17)0.0012 (13)0.0067 (13)0.0076 (14)
C610.0170 (16)0.0310 (18)0.0249 (16)0.0078 (14)0.0006 (12)0.0037 (13)
C620.0201 (16)0.0236 (16)0.0206 (14)0.0081 (13)0.0029 (12)0.0022 (12)
C630.0223 (15)0.0134 (13)0.0153 (13)0.0068 (12)0.0051 (11)0.0016 (10)
C640.0226 (16)0.0213 (16)0.0258 (16)0.0090 (13)0.0060 (13)0.0035 (12)
C650.0320 (19)0.0222 (16)0.0360 (18)0.0121 (14)0.0142 (15)0.0051 (14)
C660.043 (2)0.0187 (15)0.0220 (15)0.0093 (15)0.0088 (14)0.0048 (12)
C670.0293 (18)0.0166 (15)0.0246 (16)0.0016 (13)0.0025 (13)0.0050 (12)
C680.0240 (17)0.0208 (15)0.0251 (15)0.0101 (13)0.0002 (13)0.0033 (12)
C690.052 (3)0.037 (2)0.035 (2)0.0132 (19)0.0062 (18)0.0016 (16)
Geometric parameters (Å, º) top
C10—H100.9500C46—H460.9500
C10—C111.391 (5)C46—C471.394 (4)
C11—H110.9500C47—H470.9500
C11—C121.387 (5)C47—C481.381 (5)
C12—H120.9500C48—H480.9500
C12—C131.391 (5)C48—C491.375 (5)
C13—H130.9500C49—H490.9500
C13—C141.388 (5)C49—C501.390 (5)
C14—H140.9500C50—H500.9500
C15—C201.389 (5)C51—C561.384 (4)
C15—C161.393 (4)C51—C521.397 (4)
C16—H160.9500C52—H520.9500
C16—C171.399 (5)C52—C531.395 (5)
C17—H170.9500C53—H530.9500
C17—C181.377 (6)C53—C541.387 (6)
C18—H180.9500C54—H540.9500
C18—C191.387 (5)C54—C551.374 (6)
C19—H190.9500C55—H550.9500
C19—C201.390 (4)C55—C561.395 (5)
C20—H200.9500C56—H560.9500
C21—C261.392 (4)C57—C621.396 (4)
C21—C221.385 (5)C57—C581.391 (4)
C22—H220.9500C58—H580.9500
C22—C231.403 (5)C58—C591.398 (4)
C23—H230.9500C59—H590.9500
C23—C241.372 (6)C59—C601.375 (5)
C24—H240.9500C60—H600.9500
C24—C251.377 (6)C60—C611.382 (5)
C25—H250.9500C61—H610.9500
C25—C261.391 (5)C61—C621.392 (5)
C26—H260.9500C62—H620.9500
C27—C321.396 (4)C63—C681.395 (4)
C27—C281.396 (5)C63—C641.390 (4)
C28—H280.9500C64—H640.9500
C28—C291.391 (5)C64—C651.396 (4)
C29—H290.9500C65—H650.9500
C29—C301.385 (6)C65—C661.384 (5)
C30—H300.9500C66—H660.9500
C30—C311.381 (6)C66—C671.382 (5)
C31—H310.9500C67—H670.9500
C31—C321.389 (5)C67—C681.394 (4)
C32—H320.9500C68—H680.9500
C33—C381.400 (4)C69—H69B0.9900
C33—C341.394 (4)C69—H69A0.9900
C34—H340.9500C9—C141.407 (4)
C34—C351.384 (4)C9—C101.393 (5)
C35—H350.9500Cl70—C691.759 (5)
C35—C361.390 (5)Cl71—C691.766 (4)
C36—H360.9500Cu1—S32.3484 (9)
C36—C371.382 (5)Cu1—S22.3462 (9)
C37—H370.9500Cu1—P52.2969 (9)
C37—C381.393 (5)Cu1—P42.3167 (9)
C38—H380.9500P4—C91.826 (3)
C39—C441.382 (5)P4—C211.834 (3)
C39—C401.395 (4)P4—C151.837 (3)
C40—H400.9500P5—C391.828 (3)
C40—C411.391 (5)P5—C331.828 (3)
C41—H410.9500P5—C271.833 (3)
C41—C421.375 (5)P6—N81.587 (2)
C42—H420.9500P6—C511.819 (3)
C42—C431.385 (5)P6—C451.820 (3)
C43—H430.9500P7—N81.584 (2)
C43—C441.394 (5)P7—C631.819 (3)
C44—H440.9500P7—C571.817 (3)
C45—C501.398 (4)S2—P61.9920 (11)
C45—C461.404 (4)S3—P72.0047 (11)
P5—Cu1—P4121.28 (3)C33—C34—H34119.8
P5—Cu1—S2101.86 (3)C34—C35—C36119.9 (3)
P4—Cu1—S2108.95 (3)C34—C35—H35120.0
P5—Cu1—S3106.70 (3)C36—C35—H35120.0
P4—Cu1—S3103.66 (4)C37—C36—C35120.4 (3)
S2—Cu1—S3114.96 (3)C37—C36—H36119.8
P6—S2—Cu1108.57 (4)C35—C36—H36119.8
P7—S3—Cu1106.93 (4)C36—C37—C38119.9 (3)
C9—P4—C21103.84 (14)C36—C37—H37120.0
C9—P4—C15102.13 (14)C38—C37—H37120.0
C21—P4—C15103.42 (14)C37—C38—C33120.0 (3)
C9—P4—Cu1120.01 (11)C37—C38—H38120.0
C21—P4—Cu1111.08 (10)C33—C38—H38120.0
C15—P4—Cu1114.55 (10)C44—C39—C40118.7 (3)
C39—P5—C33103.84 (14)C44—C39—P5118.7 (2)
C39—P5—C27101.77 (14)C40—C39—P5122.6 (2)
C33—P5—C27102.10 (14)C39—C40—C41120.1 (3)
C39—P5—Cu1115.34 (10)C39—C40—H40120.0
C33—P5—Cu1112.80 (10)C41—C40—H40120.0
C27—P5—Cu1119.00 (10)C42—C41—C40120.7 (3)
N8—P6—C51104.80 (13)C42—C41—H41119.6
N8—P6—C45108.33 (13)C40—C41—H41119.6
C51—P6—C45103.04 (13)C41—C42—C43119.8 (3)
N8—P6—S2120.87 (10)C41—C42—H42120.1
C51—P6—S2110.49 (10)C43—C42—H42120.1
C45—P6—S2107.88 (10)C44—C43—C42119.5 (3)
N8—P7—C57109.55 (13)C44—C43—H43120.2
N8—P7—C63103.64 (13)C42—C43—H43120.2
C57—P7—C63106.11 (13)C39—C44—C43121.2 (3)
N8—P7—S3120.38 (10)C39—C44—H44119.4
C57—P7—S3109.96 (10)C43—C44—H44119.4
C63—P7—S3106.06 (10)C50—C45—C46118.5 (3)
P7—N8—P6140.30 (16)C50—C45—P6122.6 (2)
C10—C9—C14118.6 (3)C46—C45—P6118.8 (2)
C10—C9—P4118.7 (2)C47—C46—C45120.9 (3)
C14—C9—P4122.6 (2)C47—C46—H46119.5
C11—C10—C9120.9 (3)C45—C46—H46119.5
C11—C10—H10119.5C48—C47—C46119.5 (3)
C9—C10—H10119.5C48—C47—H47120.2
C10—C11—C12120.0 (3)C46—C47—H47120.2
C10—C11—H11120.0C49—C48—C47120.2 (3)
C12—C11—H11120.0C49—C48—H48119.9
C13—C12—C11119.9 (3)C47—C48—H48119.9
C13—C12—H12120.1C48—C49—C50121.1 (3)
C11—C12—H12120.1C48—C49—H49119.5
C12—C13—C14120.3 (3)C50—C49—H49119.5
C12—C13—H13119.9C49—C50—C45119.9 (3)
C14—C13—H13119.9C49—C50—H50120.1
C13—C14—C9120.4 (3)C45—C50—H50120.1
C13—C14—H14119.8C56—C51—C52119.5 (3)
C9—C14—H14119.8C56—C51—P6120.0 (2)
C20—C15—C16119.0 (3)C52—C51—P6120.4 (2)
C20—C15—P4118.1 (2)C53—C52—C51119.7 (3)
C16—C15—P4122.7 (2)C53—C52—H52120.1
C15—C16—C17119.9 (3)C51—C52—H52120.1
C15—C16—H16120.1C54—C53—C52120.2 (3)
C17—C16—H16120.1C54—C53—H53119.9
C18—C17—C16120.4 (3)C52—C53—H53119.9
C18—C17—H17119.8C55—C54—C53120.0 (3)
C16—C17—H17119.8C55—C54—H54120.0
C17—C18—C19120.0 (3)C53—C54—H54120.0
C17—C18—H18120.0C54—C55—C56120.3 (4)
C19—C18—H18120.0C54—C55—H55119.8
C18—C19—C20119.6 (3)C56—C55—H55119.8
C18—C19—H19120.2C51—C56—C55120.2 (3)
C20—C19—H19120.2C51—C56—H56119.9
C15—C20—C19121.0 (3)C55—C56—H56119.9
C15—C20—H20119.5C62—C57—C58119.0 (3)
C19—C20—H20119.5C62—C57—P7121.7 (2)
C22—C21—C26118.5 (3)C58—C57—P7119.3 (2)
C22—C21—P4124.3 (2)C57—C58—C59120.5 (3)
C26—C21—P4117.2 (2)C57—C58—H58119.8
C21—C22—C23120.5 (4)C59—C58—H58119.8
C21—C22—H22119.7C60—C59—C58119.9 (3)
C23—C22—H22119.7C60—C59—H59120.0
C24—C23—C22120.2 (4)C58—C59—H59120.0
C24—C23—H23119.9C59—C60—C61120.2 (3)
C22—C23—H23119.9C59—C60—H60119.9
C23—C24—C25119.8 (3)C61—C60—H60119.9
C23—C24—H24120.1C60—C61—C62120.2 (3)
C25—C24—H24120.1C60—C61—H61119.9
C24—C25—C26120.3 (3)C62—C61—H61119.9
C24—C25—H25119.8C57—C62—C61120.1 (3)
C26—C25—H25119.8C57—C62—H62119.9
C25—C26—C21120.7 (3)C61—C62—H62119.9
C25—C26—H26119.7C64—C63—C68119.6 (3)
C21—C26—H26119.7C64—C63—P7123.7 (2)
C32—C27—C28118.8 (3)C68—C63—P7116.7 (2)
C32—C27—P5123.5 (2)C63—C64—C65119.7 (3)
C28—C27—P5117.4 (2)C63—C64—H64120.1
C29—C28—C27120.4 (3)C65—C64—H64120.1
C29—C28—H28119.8C66—C65—C64120.6 (3)
C27—C28—H28119.8C66—C65—H65119.7
C28—C29—C30120.2 (4)C64—C65—H65119.7
C28—C29—H29119.9C67—C66—C65119.8 (3)
C30—C29—H29119.9C67—C66—H66120.1
C31—C30—C29119.9 (3)C65—C66—H66120.1
C31—C30—H30120.0C66—C67—C68120.3 (3)
C29—C30—H30120.0C66—C67—H67119.9
C30—C31—C32120.2 (3)C68—C67—H67119.9
C30—C31—H31119.9C67—C68—C63120.1 (3)
C32—C31—H31119.9C67—C68—H68120.0
C31—C32—C27120.4 (3)C63—C68—H68120.0
C31—C32—H32119.8Cl70—C69—Cl71111.2 (2)
C27—C32—H32119.8Cl70—C69—H69A109.4
C34—C33—C38119.3 (3)Cl71—C69—H69A109.4
C34—C33—P5117.7 (2)Cl70—C69—H69B109.4
C38—C33—P5122.9 (2)Cl71—C69—H69B109.4
C35—C34—C33120.5 (3)H69A—C69—H69B108.0
C35—C34—H34119.8
P5—Cu1—S2—P6125.54 (4)C29—C30—C31—C320.5 (6)
P4—Cu1—S2—P6105.18 (5)C30—C31—C32—C270.9 (6)
S3—Cu1—S2—P610.61 (5)C28—C27—C32—C310.6 (5)
P5—Cu1—S3—P7110.80 (4)P5—C27—C32—C31174.8 (3)
P4—Cu1—S3—P7120.10 (4)C39—P5—C33—C34179.4 (2)
S2—Cu1—S3—P71.31 (5)C27—P5—C33—C3473.8 (3)
P5—Cu1—P4—C958.34 (12)Cu1—P5—C33—C3455.1 (3)
S2—Cu1—P4—C959.23 (11)C39—P5—C33—C384.1 (3)
S3—Cu1—P4—C9177.92 (11)C27—P5—C33—C38109.6 (3)
P5—Cu1—P4—C21179.58 (11)Cu1—P5—C33—C38121.5 (2)
S2—Cu1—P4—C2162.01 (11)C38—C33—C34—C350.3 (5)
S3—Cu1—P4—C2160.85 (11)P5—C33—C34—C35176.4 (2)
P5—Cu1—P4—C1563.71 (12)C33—C34—C35—C360.2 (5)
S2—Cu1—P4—C15178.72 (11)C34—C35—C36—C370.4 (5)
S3—Cu1—P4—C1555.87 (12)C35—C36—C37—C380.9 (6)
P4—Cu1—P5—C3959.55 (11)C36—C37—C38—C330.7 (5)
S2—Cu1—P5—C39179.39 (11)C34—C33—C38—C370.2 (5)
S3—Cu1—P5—C3958.52 (11)P5—C33—C38—C37176.7 (3)
P4—Cu1—P5—C3359.54 (11)C33—P5—C39—C44101.2 (3)
S2—Cu1—P5—C3361.51 (11)C27—P5—C39—C44153.0 (3)
S3—Cu1—P5—C33177.61 (11)Cu1—P5—C39—C4422.7 (3)
P4—Cu1—P5—C27179.08 (11)C33—P5—C39—C4079.1 (3)
S2—Cu1—P5—C2758.03 (12)C27—P5—C39—C4026.7 (3)
S3—Cu1—P5—C2762.85 (12)Cu1—P5—C39—C40156.9 (2)
Cu1—S2—P6—N85.53 (12)C44—C39—C40—C410.6 (5)
Cu1—S2—P6—C51117.23 (10)P5—C39—C40—C41179.8 (3)
Cu1—S2—P6—C45130.84 (10)C39—C40—C41—C420.3 (6)
Cu1—S3—P7—N821.91 (12)C40—C41—C42—C430.4 (6)
Cu1—S3—P7—C57106.82 (10)C41—C42—C43—C440.8 (7)
Cu1—S3—P7—C63138.86 (11)C40—C39—C44—C430.9 (6)
C57—P7—N8—P687.7 (3)P5—C39—C44—C43179.4 (3)
C63—P7—N8—P6159.4 (3)C42—C43—C44—C391.0 (7)
S3—P7—N8—P641.2 (3)N8—P6—C45—C50114.7 (3)
C51—P6—N8—P7149.0 (3)C51—P6—C45—C50134.6 (3)
C45—P6—N8—P7101.5 (3)S2—P6—C45—C5017.8 (3)
S2—P6—N8—P723.6 (3)N8—P6—C45—C4660.5 (3)
C21—P4—C9—C10151.0 (2)C51—P6—C45—C4650.2 (3)
C15—P4—C9—C10101.7 (3)S2—P6—C45—C46167.1 (2)
Cu1—P4—C9—C1026.2 (3)C50—C45—C46—C470.5 (5)
C21—P4—C9—C1433.4 (3)P6—C45—C46—C47175.8 (2)
C15—P4—C9—C1473.9 (3)C45—C46—C47—C480.6 (5)
Cu1—P4—C9—C14158.1 (2)C46—C47—C48—C491.2 (6)
C14—C9—C10—C110.3 (5)C47—C48—C49—C500.8 (6)
P4—C9—C10—C11176.2 (2)C48—C49—C50—C450.2 (6)
C9—C10—C11—C120.7 (5)C46—C45—C50—C490.9 (5)
C10—C11—C12—C130.5 (5)P6—C45—C50—C49176.1 (3)
C11—C12—C13—C140.0 (5)N8—P6—C51—C56161.3 (3)
C12—C13—C14—C90.4 (5)C45—P6—C51—C5685.4 (3)
C10—C9—C14—C130.2 (4)S2—P6—C51—C5629.6 (3)
P4—C9—C14—C13175.5 (2)N8—P6—C51—C5221.8 (3)
C9—P4—C15—C20171.8 (2)C45—P6—C51—C5291.5 (3)
C21—P4—C15—C2064.2 (3)S2—P6—C51—C52153.5 (2)
Cu1—P4—C15—C2056.8 (3)C56—C51—C52—C530.8 (5)
C9—P4—C15—C1613.7 (3)P6—C51—C52—C53176.1 (2)
C21—P4—C15—C16121.3 (3)C51—C52—C53—C540.3 (5)
Cu1—P4—C15—C16117.7 (2)C52—C53—C54—C550.7 (5)
C20—C15—C16—C170.6 (5)C53—C54—C55—C561.2 (6)
P4—C15—C16—C17173.9 (3)C52—C51—C56—C550.3 (5)
C15—C16—C17—C181.0 (5)P6—C51—C56—C55176.6 (3)
C16—C17—C18—C190.2 (5)C54—C55—C56—C510.7 (5)
C17—C18—C19—C200.9 (5)N8—P7—C57—C62174.0 (2)
C16—C15—C20—C190.5 (5)C63—P7—C57—C6274.7 (3)
P4—C15—C20—C19175.2 (3)S3—P7—C57—C6239.6 (3)
C18—C19—C20—C151.2 (5)N8—P7—C57—C586.6 (3)
C9—P4—C21—C22101.7 (3)C63—P7—C57—C58104.7 (2)
C15—P4—C21—C224.6 (4)S3—P7—C57—C58141.0 (2)
Cu1—P4—C21—C22128.0 (3)C62—C57—C58—C590.1 (5)
C9—P4—C21—C2680.7 (3)P7—C57—C58—C59179.3 (2)
C15—P4—C21—C26173.0 (3)C57—C58—C59—C601.2 (5)
Cu1—P4—C21—C2649.6 (3)C58—C59—C60—C611.2 (5)
C26—C21—C22—C232.3 (6)C59—C60—C61—C620.1 (5)
P4—C21—C22—C23175.3 (4)C58—C57—C62—C611.4 (4)
C21—C22—C23—C240.7 (8)P7—C57—C62—C61177.9 (2)
C22—C23—C24—C251.8 (7)C60—C61—C62—C571.5 (5)
C23—C24—C25—C262.6 (6)N8—P7—C63—C64137.6 (3)
C24—C25—C26—C210.9 (6)C57—P7—C63—C6422.2 (3)
C22—C21—C26—C251.5 (5)S3—P7—C63—C6494.7 (3)
P4—C21—C26—C25176.3 (3)N8—P7—C63—C6844.5 (3)
C39—P5—C27—C3298.5 (3)C57—P7—C63—C68159.9 (2)
C33—P5—C27—C328.7 (3)S3—P7—C63—C6883.2 (2)
Cu1—P5—C27—C32133.6 (2)C68—C63—C64—C650.0 (5)
C39—P5—C27—C2875.8 (3)P7—C63—C64—C65177.8 (2)
C33—P5—C27—C28177.1 (3)C63—C64—C65—C660.1 (5)
Cu1—P5—C27—C2852.2 (3)C64—C65—C66—C670.1 (5)
C32—C27—C28—C290.0 (5)C65—C66—C67—C680.1 (5)
P5—C27—C28—C29174.5 (3)C66—C67—C68—C630.0 (5)
C27—C28—C29—C300.4 (6)C64—C63—C68—C670.0 (5)
C28—C29—C30—C310.1 (6)P7—C63—C68—C67178.0 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C42—H42···C13i0.952.913.586 (5)129
C59—H59···C53ii0.952.793.590 (5)142
C56—H56···C60iii0.952.693.589 (6)157
C66—H66···C65iv0.953.023.468 (5)111
C55—H55···C55v0.953.713.552 (5)73
C55—H55···C56v0.953.473.495 (5)83
Symmetry codes: (i) x+2, y, z+1; (ii) x+1, y+1, z; (iii) x+1, y, z; (iv) x+1, y, z; (v) x+2, y+1, z.
Parameters (Å, °) for the optimized and obtained structure of [Cu(dppaS2)(PPh3)2] top
Parametercalculated (singlet)crystal
Cu—S2.422
2.428
2.3462 (9)
2.3484 (9)
Cu—P2.336
2.329
2.2969 (9)
2.3167 (9)
S—P2.042
2.042
1.9920 (11)
2.0047 (11)
P—N1.608
1.607
1.587 (2)
1.584 (2)
S—Cu—S111.75114.96 (3)
P—Cu—P122.81121.28 (3)
Dihedral angle87.7486.69
 

Funding information

Funding for this research was provided by: Ministry of Education, Culture, Sports, Science and Technology, KAKENHI (award No. 26410077).

References

First citationAltomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350.  CrossRef Web of Science IUCr Journals Google Scholar
First citationBecke, A. D. J. (1992). J. Chem. Phys. 96, 2155–2160.  CrossRef CAS Web of Science Google Scholar
First citationBecke, A. D. J. (1993). J. Chem. Phys. 98, 5648–5652.  CrossRef CAS Web of Science Google Scholar
First citationCosta, R. D., Ortí, E., Bolink, H. J., Monti, F., Accorsi, G. & Armaroli, N. (2012). Angew. Chem. Int. Ed. 51, 8178–8211.  Web of Science CrossRef CAS Google Scholar
First citationCzerwieniec, R., Kowalski, K. & Yersin, H. (2013). Dalton Trans. 42, 9826–9830.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationDairiki, A., Tsukuda, T., Matsumoto, K. & Tsubomura, T. (2009). Polyhedron, 28, 2730–2734.  Web of Science CSD CrossRef CAS Google Scholar
First citationFrisch, M. J., et al. (2009). GAUSSIAN09. Gaussian, Inc., Wallingford, CT, USA.  Google Scholar
First citationLee, C., Yang, W. & Parr, R. G. (1988). Phys. Rev. B, 37, 785–789.  CrossRef CAS Web of Science Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationRekowski, F. von, Koch, C. & Gschwind, R. (2014). J. Am. Chem. Soc. 136, 11389–11395.  Web of Science PubMed Google Scholar
First citationRigaku (1999). NUMABS. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (2000). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (2015). CrystalStructure. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTsukuda, T., Miyoshi, R., Esumi, A., Yamagiwa, A., Dairiki, A., Matsumoto, K. & Tsubomura, T. (2012). Inorg. Chim. Acta, 384, 149–153.  Web of Science CSD CrossRef CAS Google Scholar
First citationWachters, A. J. H. (1970). J. Chem. Phys. 52, 1033–1036.  CrossRef CAS Web of Science Google Scholar
First citationWilson, A. & Prince, E. (1999). Editors. International Tables for Crystallography, Volume C, 2nd ed., pp. 782–803. Dordrecht: Kluwer.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds