organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

5-Bromo­phthalazine hemihydrate

aDepartment of Chemistry, Tangshan Normal University, Tangshan 063000, People's Republic of China
*Correspondence e-mail: cmj_1237@yahoo.com.cn

(Received 25 May 2012; accepted 3 July 2012; online 10 July 2012)

The title compound, C8H5BrN2·0.5H2O, is a phthalazine derivative synthesized from 3-bromo­benzene-1,2-dicarbaldehyde and hydrazine. The mol­ecule is essentially planar, the deviation from the mean plane of the phthalazine ring being 0.015 (3) Å. The O atom of the solvent water mol­ecule is situated on a twofold rotation axis. In the crystal, O—H⋯N hydrogen bonds and short N⋯Br [2.980 (3) Å] contacts lead to the formation of a two-dimensional network parallel to (101).

Related literature

For general background on applications of phthalazines, see: Caira et al. (2011[Caira, M. R., Georgescu, E., Georgescu, F., Albota, F., Dumitrascu, F. & Lorea, D. (2011). Monatsh. Chem. 142, 743-748.]); Musa et al. (2012[Musa, A. Y., Jalgham, R. T. T. & Mohamad, A. B. (2012). Corros. Sci. 56, 175-183.]).

[Scheme 1]

Experimental

Crystal data
  • C8H5BrN2·0.5H2O

  • Mr = 218.06

  • Orthorhombic, F d d 2

  • a = 13.5000 (18) Å

  • b = 29.964 (5) Å

  • c = 7.5565 (5) Å

  • V = 3056.7 (7) Å3

  • Z = 16

  • Mo Kα radiation

  • μ = 5.31 mm−1

  • T = 113 K

  • 0.30 × 0.22 × 0.18 mm

Data collection
  • Rigaku Saturn724 CCD diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku/MSC, 2002[Rigaku/MSC (2002). CrystalClear. Rigaku/MSC, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.299, Tmax = 0.448

  • 7799 measured reflections

  • 1819 independent reflections

  • 1781 reflections with I > 2σ(I)

  • Rint = 0.064

Refinement
  • R[F2 > 2σ(F2)] = 0.029

  • wR(F2) = 0.074

  • S = 1.06

  • 1819 reflections

  • 109 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.74 e Å−3

  • Δρmin = −0.77 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 839 Friedel pairs

  • Flack parameter: −0.002 (10)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1A⋯N1 0.82 (2) 2.07 (3) 2.887 (3) 175 (5)

Data collection: CrystalClear (Rigaku/MSC, 2002[Rigaku/MSC (2002). CrystalClear. Rigaku/MSC, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Crystal Impact, 2009[Crystal Impact (2009). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: CrystalStructure (Rigaku/MSC, 2006[Rigaku/MSC (2006). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.]).

Supporting information


Comment top

Phthalazine derivatives have played an important role in the development of corrosion science as they can inhibit the corrosion of mild steel (Musa et al., 2012). Moreover, they are of particular interest owing to their biological activity and optical properties (Caira, et al., 2011).

In this paper, the title new phthalazine derivative derived from the condensation of 3-bromo-benzene-1,2-dicarboxaldehyde with hydrazine is reported. The molecular structure of the title compound (Fig.1) is essentially planar with a deviation from the mean plane of the phthalazine ring of 0.0115 (3) Å. All bond lengths have normal values.The oxygen atom of the solvent water molecule is situated on a twofold rotation axis. In the crystal, O—H···N hydrogen bonds and short N···Br contacts lead to the formation of a two dimensional network structure (Fig.2).

Related literature top

For general background on applications of phthalazines, see: Caira et al. (2011); Musa et al. (2012).

Experimental top

A solution of 0.1 mol of 3-bromo-benzene-1,2-dicarboxaldehyde is dissolved in 100 ml of ethanol and added dropwise with constant stirring, under a blanket of nitrogen, to an ice-cooled solution of 0.3 mol of hydrazine hydrate in 100 ml of ethanol. The light yellowish reaction mixture is kept with constant stirring for an additional three hours. Ethanol and excess hydrazine are removed under reduced pressure. The remaining yellowish solid may be purified by recrystallization from diethyl ether to yield the yellowish title compound (yield 48%). Finally, the title compound was dissolved in a small amount of methanol and the solution was kept for 10 days at ambient temperature to give rise to white flake crystals due to slow evaporation of the solvent.

Refinement top

The H atom of the solvent water was located in a difference fourier map and refined as a riding atom with Uiso(H) = 1.2Ueq(O). Remaining H atoms were positioned geometrically with C—H = 0.93–0.98 Å and constrained to ride on their parent atoms with Uiso(H) = 1.2Ueq(C).

Structure description top

Phthalazine derivatives have played an important role in the development of corrosion science as they can inhibit the corrosion of mild steel (Musa et al., 2012). Moreover, they are of particular interest owing to their biological activity and optical properties (Caira, et al., 2011).

In this paper, the title new phthalazine derivative derived from the condensation of 3-bromo-benzene-1,2-dicarboxaldehyde with hydrazine is reported. The molecular structure of the title compound (Fig.1) is essentially planar with a deviation from the mean plane of the phthalazine ring of 0.0115 (3) Å. All bond lengths have normal values.The oxygen atom of the solvent water molecule is situated on a twofold rotation axis. In the crystal, O—H···N hydrogen bonds and short N···Br contacts lead to the formation of a two dimensional network structure (Fig.2).

For general background on applications of phthalazines, see: Caira et al. (2011); Musa et al. (2012).

Computing details top

Data collection: CrystalClear (Rigaku/MSC, 2002); cell refinement: CrystalClear (Rigaku/MSC, 2002); data reduction: CrystalClear (Rigaku/MSC, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Crystal Impact, 2009); software used to prepare material for publication: CrystalStructure (Rigaku/MSC, 2006).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound showing 30% probability displacement ellipsoids.
[Figure 2] Fig. 2. Molecular packing of the title compound with hydrogen bonds and N···Br contacts shown as dashed lines.
5-Bromophthalazine hemihydrate top
Crystal data top
C8H5BrN2·0.5H2OF(000) = 1712
Mr = 218.06Dx = 1.895 Mg m3
Orthorhombic, Fdd2Mo Kα radiation, λ = 0.71073 Å
Hall symbol: F 2 -2dCell parameters from 2874 reflections
a = 13.5000 (18) Åθ = 1.4–28.0°
b = 29.964 (5) ŵ = 5.31 mm1
c = 7.5565 (5) ÅT = 113 K
V = 3056.7 (7) Å3Prism, colorless
Z = 160.30 × 0.22 × 0.18 mm
Data collection top
Rigaku Saturn724 CCD
diffractometer
1819 independent reflections
Radiation source: rotating anode1781 reflections with I > 2σ(I)
Multilayer monochromatorRint = 0.064
Detector resolution: 14.22 pixels mm-1θmax = 27.8°, θmin = 2.7°
ω and φ scansh = 1717
Absorption correction: multi-scan
(CrystalClear; Rigaku/MSC, 2002)
k = 3739
Tmin = 0.299, Tmax = 0.448l = 99
7799 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.029H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.074 w = 1/[σ2(Fo2) + (0.0496P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max = 0.001
1819 reflectionsΔρmax = 0.74 e Å3
109 parametersΔρmin = 0.77 e Å3
2 restraintsAbsolute structure: Flack (1983), 839 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.002 (10)
Crystal data top
C8H5BrN2·0.5H2OV = 3056.7 (7) Å3
Mr = 218.06Z = 16
Orthorhombic, Fdd2Mo Kα radiation
a = 13.5000 (18) ŵ = 5.31 mm1
b = 29.964 (5) ÅT = 113 K
c = 7.5565 (5) Å0.30 × 0.22 × 0.18 mm
Data collection top
Rigaku Saturn724 CCD
diffractometer
1819 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku/MSC, 2002)
1781 reflections with I > 2σ(I)
Tmin = 0.299, Tmax = 0.448Rint = 0.064
7799 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.029H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.074Δρmax = 0.74 e Å3
S = 1.06Δρmin = 0.77 e Å3
1819 reflectionsAbsolute structure: Flack (1983), 839 Friedel pairs
109 parametersAbsolute structure parameter: 0.002 (10)
2 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt)etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.655288 (19)0.300585 (8)0.53761 (6)0.02108 (10)
N10.65121 (19)0.45112 (8)0.5432 (5)0.0234 (5)
N20.71705 (19)0.47790 (9)0.6304 (4)0.0256 (6)
C10.6599 (2)0.40781 (10)0.5487 (6)0.0204 (6)
H10.61270.39040.48620.024*
C20.7360 (2)0.38513 (10)0.6426 (4)0.0176 (5)
C30.7467 (2)0.33818 (10)0.6536 (4)0.0184 (6)
C40.8227 (2)0.32011 (10)0.7484 (4)0.0220 (6)
H40.82860.28860.75780.026*
C50.8923 (2)0.34786 (12)0.8323 (4)0.0245 (7)
H50.94610.33480.89460.029*
C60.8843 (2)0.39313 (11)0.8259 (4)0.0228 (7)
H60.93130.41150.88460.027*
C70.8049 (2)0.41233 (10)0.7306 (4)0.0189 (6)
C80.7888 (2)0.45888 (11)0.7189 (5)0.0255 (7)
H80.83370.47780.78010.031*
O10.50000.50000.3550 (5)0.0295 (8)
H1A0.543 (2)0.4874 (15)0.413 (5)0.045 (14)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.02422 (15)0.01764 (14)0.02139 (15)0.00117 (9)0.00086 (12)0.00143 (13)
N10.0232 (12)0.0237 (12)0.0231 (13)0.0039 (8)0.0011 (11)0.0018 (14)
N20.0291 (14)0.0195 (12)0.0281 (15)0.0028 (10)0.0021 (12)0.0008 (12)
C10.0179 (12)0.0221 (13)0.0211 (15)0.0007 (10)0.0008 (12)0.0016 (16)
C20.0202 (14)0.0169 (13)0.0157 (14)0.0005 (11)0.0021 (11)0.0001 (12)
C30.0226 (13)0.0184 (14)0.0141 (12)0.0010 (10)0.0015 (11)0.0028 (11)
C40.0273 (14)0.0201 (14)0.0185 (15)0.0043 (12)0.0017 (12)0.0000 (12)
C50.0232 (15)0.0290 (16)0.0214 (17)0.0063 (13)0.0003 (11)0.0005 (12)
C60.0212 (14)0.0255 (14)0.0215 (18)0.0005 (12)0.0004 (11)0.0018 (12)
C70.0193 (13)0.0220 (14)0.0154 (13)0.0011 (11)0.0036 (10)0.0018 (11)
C80.0265 (16)0.0216 (14)0.0284 (16)0.0023 (11)0.0020 (13)0.0067 (13)
O10.0263 (18)0.0323 (18)0.0298 (18)0.0044 (14)0.0000.000
Geometric parameters (Å, º) top
Br1—C31.887 (3)C4—C51.406 (5)
N1—C11.304 (4)C4—H40.9500
N1—N21.367 (4)C5—C61.362 (5)
N2—C81.308 (4)C5—H50.9500
C1—C21.421 (4)C6—C71.413 (4)
C1—H10.9500C6—H60.9500
C2—C71.405 (4)C7—C81.414 (4)
C2—C31.417 (4)C8—H80.9500
C3—C41.363 (4)O1—H1A0.82 (2)
C1—N1—N2120.7 (3)C5—C4—H4119.8
C8—N2—N1118.2 (3)C6—C5—C4121.3 (3)
N1—C1—C2123.9 (3)C6—C5—H5119.3
N1—C1—H1118.1C4—C5—H5119.3
C2—C1—H1118.1C5—C6—C7118.9 (3)
C7—C2—C3118.7 (3)C5—C6—H6120.5
C7—C2—C1115.9 (3)C7—C6—H6120.5
C3—C2—C1125.3 (3)C2—C7—C6120.5 (3)
C4—C3—C2120.2 (3)C2—C7—C8116.2 (3)
C4—C3—Br1119.9 (2)C6—C7—C8123.3 (3)
C2—C3—Br1119.9 (2)N2—C8—C7125.1 (3)
C3—C4—C5120.3 (3)N2—C8—H8117.4
C3—C4—H4119.8C7—C8—H8117.4
C1—N1—N2—C80.1 (5)C4—C5—C6—C71.0 (5)
N2—N1—C1—C20.0 (6)C3—C2—C7—C61.0 (4)
N1—C1—C2—C70.9 (5)C1—C2—C7—C6179.1 (3)
N1—C1—C2—C3178.9 (4)C3—C2—C7—C8178.3 (3)
C7—C2—C3—C40.1 (4)C1—C2—C7—C81.6 (4)
C1—C2—C3—C4179.8 (3)C5—C6—C7—C20.6 (4)
C7—C2—C3—Br1179.8 (2)C5—C6—C7—C8178.7 (3)
C1—C2—C3—Br10.0 (4)N1—N2—C8—C70.7 (5)
C2—C3—C4—C51.6 (5)C2—C7—C8—N21.6 (5)
Br1—C3—C4—C5178.7 (2)C6—C7—C8—N2179.1 (3)
C3—C4—C5—C62.0 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···N10.82 (2)2.07 (3)2.887 (3)175 (5)

Experimental details

Crystal data
Chemical formulaC8H5BrN2·0.5H2O
Mr218.06
Crystal system, space groupOrthorhombic, Fdd2
Temperature (K)113
a, b, c (Å)13.5000 (18), 29.964 (5), 7.5565 (5)
V3)3056.7 (7)
Z16
Radiation typeMo Kα
µ (mm1)5.31
Crystal size (mm)0.30 × 0.22 × 0.18
Data collection
DiffractometerRigaku Saturn724 CCD
Absorption correctionMulti-scan
(CrystalClear; Rigaku/MSC, 2002)
Tmin, Tmax0.299, 0.448
No. of measured, independent and
observed [I > 2σ(I)] reflections
7799, 1819, 1781
Rint0.064
(sin θ/λ)max1)0.657
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.029, 0.074, 1.06
No. of reflections1819
No. of parameters109
No. of restraints2
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.74, 0.77
Absolute structureFlack (1983), 839 Friedel pairs
Absolute structure parameter0.002 (10)

Computer programs: CrystalClear (Rigaku/MSC, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Crystal Impact, 2009), CrystalStructure (Rigaku/MSC, 2006).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···N10.82 (2)2.07 (3)2.887 (3)175 (5)
 

Acknowledgements

The authors thank Professor Wang, Department of Chemistry, Nankai University, for providing experimental facilities.

References

First citationCaira, M. R., Georgescu, E., Georgescu, F., Albota, F., Dumitrascu, F. & Lorea, D. (2011). Monatsh. Chem. 142, 743–748.  Web of Science CSD CrossRef CAS Google Scholar
First citationCrystal Impact (2009). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationMusa, A. Y., Jalgham, R. T. T. & Mohamad, A. B. (2012). Corros. Sci. 56, 175–183.  Web of Science CrossRef Google Scholar
First citationRigaku/MSC (2002). CrystalClear. Rigaku/MSC, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku/MSC (2006). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds