organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Amino-1,3-thia­zolium di­hydrogen phosphate

aDepartment of Inorganic Chemistry, Faculty of Science, Charles University in Prague, Hlavova 2030, 128 40 Prague 2, Czech Republic, and bInstitute of Physics of the ASCR, Na Slovance 2, 182 21 Prague 8, Czech Republic
*Correspondence e-mail: irena.mat@atlas.cz

(Received 7 November 2011; accepted 18 November 2011; online 23 November 2011)

In the title compound, C3H5N2S+·H2PO4, the dihydrogen phosphate anions form infinite chains along [001] via short O—H⋯O hydrogen bonds. The 2-amino­thia­zolium cations inter­connect these chains into a three-dimensional network by short linear or bifurcated N—H⋯O and weak C—H⋯O hydrogen bonds.

Related literature

For metal complexes of 2-amino­thia­zole and its derivatives used in medicine, see: De et al. (2008[De, S., Adhikari, S., Tilak-Jain, J., Menon, V. P. & Devasagayam, T. P. A. (2008). Chem. Biol. Interact. 173, 215-223.]); Aridoss et al. (2009[Aridoss, G., Amirthaganesan, S., Kim, M. S., Kim, J. T. & Jeong, Y. T. (2009). Eur. J. Med. Chem. 44, 4199-4210.]); Cukurovali et al. (2006[Cukurovali, A., Yilmaz, I., Gur, S. & Kazaz, C. (2006). Eur. J. Med. Chem. 41, 201-207.]); Franklin et al. (2008[Franklin, P. X., Pillai, A. D., Rathod, P. D., Yerande, S., Nivsarkar, M., Padh, H., Vasu, K. K. & Sudarsanam, V. (2008). Eur. J. Med. Chem. 43, 129-134.]); Li et al. (2009[Li, J., Du, J., Xia, L., Liu, H., Yao, X. & Liu, M. (2009). Anal. Chim. Acta, 631, 29-39.]); Alexandru et al. (2010[Alexandru, M.-G., Velikovic, T. C., Jitaru, I., Grguric-Sipka, S. & Draghici, C. (2010). Cent. Eur. J. Chem. 8, 639-645.]); Mura et al. (2005[Mura, P., Piccioli, F., Gabbiani, C., Camalli, M. & Messori, L. (2005). Inorg. Chem. 44, 4897-4899.]). For the use of 2-amino­thia­zole in the decontamination of aqueous media or ethanol fuel, see: Cristante et al. (2006[Cristante, V. M., Araujo, A. B., Jorge, S. M. A., Florentino, A. O., Valente, J. S. P. & Padilha, P. M. (2006). J. Braz. Chem. Soc. 17, 453-457.], 2007[Cristante, V. M., Jorge, S. M. A., Valente, J. P. S., Saeki, M. J., Florentino, A. O. & Padilha, P. M. (2007). Thin Solid Films, 515, 5334-5340.]); Takeuchi et al. (2007[Takeuchi, R. M., Santos, A. L., Padilha, P. M. & Stradiotto, N. R. (2007). Talanta, 71, 771-777.]). For uses of 2-amino­thia­zole and its derivatives as anti­corrosive films, see: Ciftci et al. (2011[Ciftci, H., Testereci, H. N. & Oktem, Z. (2011). Polym. Bull. 66, 747-760.]); Solmaz (2011[Solmaz, R. (2011). Progr. Org. Coat. 70, 122-126.]). For non-linear optical properties and for structural properties of closely related compounds, see: Yesilel et al. (2008[Yesilel, O. Y., Odabaşoğlu, M. & Büyükgüngör, O. (2008). J. Mol. Struct. 874, 151-158.]); Matulková et al. (2007[Matulková, I., Němec, I., Císařová, I., Němec, P. & Mička, Z. (2007). J. Mol. Struct. 834-836, 328-335.], 2008[Matulková, I., Němec, I., Teubner, K., Němec, P. & Mička, Z. (2008). J. Mol. Struct. 837, 46-60.], 2011a[Matulková, I., Císařová, I. & Němec, I. (2011a). Acta Cryst. E67, o18-o19.],b[Matulková, I., Němec, I., Cihelka, J., Pojarová, M. & Dušek, M. (2011b). Acta Cryst. E67, o3216-o3217.]).

[Scheme 1]

Experimental

Crystal data
  • C3H5N2S+·H2PO4

  • Mr = 198.14

  • Monoclinic, P 21 /c

  • a = 9.7581 (2) Å

  • b = 9.8826 (2) Å

  • c = 8.2794 (1) Å

  • β = 90.680 (2)°

  • V = 798.37 (2) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 5.35 mm−1

  • T = 120 K

  • 0.47 × 0.17 × 0.13 mm

Data collection
  • Agilent Xcalibur Atlas Gemini ultra diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2010[Agilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, England.]) Tmin = 0.453, Tmax = 1.000

  • 7670 measured reflections

  • 1419 independent reflections

  • 1389 reflections with I > 2σ(I)

  • Rint = 0.025

Refinement
  • R[F2 > 2σ(F2)] = 0.027

  • wR(F2) = 0.070

  • S = 1.07

  • 1419 reflections

  • 100 parameters

  • H-atom parameters constrained

  • Δρmax = 0.30 e Å−3

  • Δρmin = −0.37 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N1⋯O2i 0.87 1.96 2.815 (2) 167
N1—H2N1⋯O1ii 0.80 2.31 3.076 (2) 162
N1—H2N1⋯O2ii 0.80 2.56 3.194 (2) 137
N2—H1N2⋯O3i 0.99 1.73 2.726 (2) 175
O1—H1O1⋯O2iii 0.90 1.61 2.504 (2) 176
O4—H1O4⋯O3iv 0.94 1.65 2.593 (2) 179
C2—H1C2⋯O4v 0.93 2.40 3.268 (2) 155
Symmetry codes: (i) x, y+1, z; (ii) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (iv) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (v) -x+2, -y+1, -z.

Data collection: CrysAlis PRO (Agilent, 2010[Agilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

2-Aminothiazole and its derivatives have been investigated as potential compounds for the modification of TiO2 or SiO2 particles used for the sorption and photocatalytic reduction of Hg(II) (Cristante et al., 2006) or phenol (Cristante et al., 2007) in aqueous solutions. 2-Aminothiazole can be also used for electrode modification (Ciftci et al., 2011; Solmaz, 2011) or for the detection of metal impurities (Takeuchi et al., 2007) in ethanol fuel.

Metal complexes of 2-aminothiazole and its derivatives have been studied for treatment of Alzheimers disease (Li et al., 2009), antitumor activity (Alexandru et al., 2010), and activity against leukemia (Mura et al., 2005). Thiazole derivatives have been used as antioxidants (De et al., 2008), antibacterial drugs (Aridoss et al., 2009) and fungicides (Cukurovali et al., 2006). Anti-inflammatory, analgesic and antipyretic activities were observed for thiazolyl and benzothiazolyl derivatives (Franklin et al., 2008).

Only one salt, bis(2-aminothiazolium) squarate dihydrate (Yesilel et al., 2008), was studied in detail for the extensive system of hydrogen bonds, which are very attractive not only in the biological and biochemical processes but also in the field of material and supramolecular chemistry.

The title salt was prepared during the research motivated by the study of salts or cocrystals of the highly related aminotriazoles (Matulková et al., 2011a, 2008, 2007) and 2-aminothiazole (Matulková et al., 2011b), while searching for materials with potential non-linear optical properties. Unfortunately, the title salt, 2-aminothiazolium dihydrogen phosphate (Fig. 1), crystallizes in the monoclinic system in the centrosymmetric space group P21/c, which excludes the existence of the second order non-linear optical properties. The crystal structure of the title compound is based on chains of anions interconnected via two O—H···O hydrogen bonds with donor-acceptor distances 2.504 (2) and 2.596 (2) Å. Chains are interconnected by 2-aminothiazolium(1+) cations via N—H···O (2.728 (2)–3.202 (3) Å) and weak C—H···O (3.271 (3) Å) hydrogen bond interactions into a three-dimensional network. Each cation interacts with three anionic chains by means of two linear hydrogen bonds towards one of the chains, one linear hydrogen bond to another chain and one bifurcated hydrogen bond to the third chain (Fig. 3). The anionic chains are oriented along the axis c (see Fig. 2).

Related literature top

For metal complexes of 2-aminothiazole and its derivatives used in medicine, see: De et al. (2008); Aridoss et al. (2009); Cukurovali et al. (2006); Franklin et al. (2008); Li et al. (2009); Alexandru et al. (2010); Mura et al. (2005). Forthe us of 2-aminothiazole in the decontamination of aqueous media or ethanol fuel, see: Cristante et al. (2006, 2007); Takeuchi et al. (2007). For uses of 2-aminothiazole and its derivatives as anticorrosive films, see: Ciftci et al. (2011); Solmaz (2011). For non-linear optical properties and for structural properties of closely related compounds, see: Yesilel et al. (2008); Matulková et al. (2007, 2008, 2011a,b).

Experimental top

Crystals of the title compound were obtained from a solution of 1.0 g of 2-aminothiazole (97%, Aldrich) and 0.67 ml of phosphoric acid (85%, Lachema) in 200 ml of water. The solution was left to crystallize at room temperature for several weeks. The colourless crystals obtained were filtered off, washed with methanol and dried in vacuum desiccator over KOH.

Refinement top

H atoms attached to C atoms were calculated in geometrically idealized positions, Csp2 - H = 0.93 Å. The positions of H atoms attached to O and N atoms were localized in difference Fourier maps. All hydrogen atoms were constrained to ride on their parent atoms during refinement, with Uiso(H) = 1.2 Ueq(pivot atom).

Structure description top

2-Aminothiazole and its derivatives have been investigated as potential compounds for the modification of TiO2 or SiO2 particles used for the sorption and photocatalytic reduction of Hg(II) (Cristante et al., 2006) or phenol (Cristante et al., 2007) in aqueous solutions. 2-Aminothiazole can be also used for electrode modification (Ciftci et al., 2011; Solmaz, 2011) or for the detection of metal impurities (Takeuchi et al., 2007) in ethanol fuel.

Metal complexes of 2-aminothiazole and its derivatives have been studied for treatment of Alzheimers disease (Li et al., 2009), antitumor activity (Alexandru et al., 2010), and activity against leukemia (Mura et al., 2005). Thiazole derivatives have been used as antioxidants (De et al., 2008), antibacterial drugs (Aridoss et al., 2009) and fungicides (Cukurovali et al., 2006). Anti-inflammatory, analgesic and antipyretic activities were observed for thiazolyl and benzothiazolyl derivatives (Franklin et al., 2008).

Only one salt, bis(2-aminothiazolium) squarate dihydrate (Yesilel et al., 2008), was studied in detail for the extensive system of hydrogen bonds, which are very attractive not only in the biological and biochemical processes but also in the field of material and supramolecular chemistry.

The title salt was prepared during the research motivated by the study of salts or cocrystals of the highly related aminotriazoles (Matulková et al., 2011a, 2008, 2007) and 2-aminothiazole (Matulková et al., 2011b), while searching for materials with potential non-linear optical properties. Unfortunately, the title salt, 2-aminothiazolium dihydrogen phosphate (Fig. 1), crystallizes in the monoclinic system in the centrosymmetric space group P21/c, which excludes the existence of the second order non-linear optical properties. The crystal structure of the title compound is based on chains of anions interconnected via two O—H···O hydrogen bonds with donor-acceptor distances 2.504 (2) and 2.596 (2) Å. Chains are interconnected by 2-aminothiazolium(1+) cations via N—H···O (2.728 (2)–3.202 (3) Å) and weak C—H···O (3.271 (3) Å) hydrogen bond interactions into a three-dimensional network. Each cation interacts with three anionic chains by means of two linear hydrogen bonds towards one of the chains, one linear hydrogen bond to another chain and one bifurcated hydrogen bond to the third chain (Fig. 3). The anionic chains are oriented along the axis c (see Fig. 2).

For metal complexes of 2-aminothiazole and its derivatives used in medicine, see: De et al. (2008); Aridoss et al. (2009); Cukurovali et al. (2006); Franklin et al. (2008); Li et al. (2009); Alexandru et al. (2010); Mura et al. (2005). Forthe us of 2-aminothiazole in the decontamination of aqueous media or ethanol fuel, see: Cristante et al. (2006, 2007); Takeuchi et al. (2007). For uses of 2-aminothiazole and its derivatives as anticorrosive films, see: Ciftci et al. (2011); Solmaz (2011). For non-linear optical properties and for structural properties of closely related compounds, see: Yesilel et al. (2008); Matulková et al. (2007, 2008, 2011a,b).

Computing details top

Data collection: CrysAlis PRO (Agilent, 2010); cell refinement: CrysAlis PRO (Agilent, 2010); data reduction: CrysAlis PRO (Agilent, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of 2-aminothiazolium dihydrogen phosphate. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. Packing scheme of the anions in the crystals of 2-aminothiazolium dihydrogen phosphate (projection to ac plane). Dashed lines indicate the hydrogen bonds.
[Figure 3] Fig. 3. Packing scheme of the structure of 2-aminothiazolium dihydrogen phosphate (projection to ac plane). Hydrogen bonds are indicated by dashed lines.
2-Amino-1,3-thiazolium dihydrogen phosphate top
Crystal data top
C3H5N2S+·H2PO4F(000) = 408
Mr = 198.14Dx = 1.648 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.5418 Å
Hall symbol: -P 2ybcCell parameters from 6931 reflections
a = 9.7581 (2) Åθ = 4.5–66.8°
b = 9.8826 (2) ŵ = 5.35 mm1
c = 8.2794 (1) ÅT = 120 K
β = 90.680 (2)°Plate, colourless
V = 798.37 (2) Å30.47 × 0.17 × 0.13 mm
Z = 4
Data collection top
Agilent Xcalibur Atlas Gemini ultra
diffractometer
1419 independent reflections
Radiation source: Enhance Ultra (Cu) X-ray Source1389 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.025
Detector resolution: 10.3874 pixels mm-1θmax = 66.9°, θmin = 4.5°
Rotation method data acquisition using ω scansh = 1111
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2010)
k = 1111
Tmin = 0.453, Tmax = 1.000l = 97
7670 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.027Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.070H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0339P)2 + 0.5451P]
where P = (Fo2 + 2Fc2)/3
1419 reflections(Δ/σ)max = 0.001
100 parametersΔρmax = 0.30 e Å3
0 restraintsΔρmin = 0.37 e Å3
Crystal data top
C3H5N2S+·H2PO4V = 798.37 (2) Å3
Mr = 198.14Z = 4
Monoclinic, P21/cCu Kα radiation
a = 9.7581 (2) ŵ = 5.35 mm1
b = 9.8826 (2) ÅT = 120 K
c = 8.2794 (1) Å0.47 × 0.17 × 0.13 mm
β = 90.680 (2)°
Data collection top
Agilent Xcalibur Atlas Gemini ultra
diffractometer
1419 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2010)
1389 reflections with I > 2σ(I)
Tmin = 0.453, Tmax = 1.000Rint = 0.025
7670 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0270 restraints
wR(F2) = 0.070H-atom parameters constrained
S = 1.07Δρmax = 0.30 e Å3
1419 reflectionsΔρmin = 0.37 e Å3
100 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. The hydrogen atoms were be localized from the difference Fourier map. Despite of that,all hydrogen atoms connected to C were constrained to ideal positions. The distance in N—H and O—H groups were left unrestrained. The isotropic temperature parameters of hydrogen atoms were calculated as 1.2*Ueq of the parent atom.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.66442 (17)0.80237 (17)0.1326 (2)0.0234 (4)
C20.85753 (17)0.75229 (19)0.0086 (2)0.0283 (4)
H1C20.93670.77160.06570.034*
C30.81429 (18)0.62710 (18)0.0206 (2)0.0301 (4)
H1C30.85910.54920.01320.036*
N10.57066 (15)0.87839 (15)0.20091 (19)0.0303 (4)
H1N10.58290.96480.21680.036*
H2N10.50990.84870.25400.036*
N20.77265 (14)0.85134 (15)0.05485 (17)0.0237 (3)
H1N20.78370.95090.04540.028*
O10.66404 (15)0.33219 (15)0.06047 (15)0.0400 (4)
H1O10.66360.33670.04810.048*
O20.65458 (14)0.14664 (14)0.25914 (15)0.0338 (3)
O30.80601 (12)0.12283 (11)0.01267 (14)0.0243 (3)
O40.87030 (12)0.28418 (13)0.23071 (15)0.0301 (3)
H1O40.84690.31890.33260.036*
P10.74805 (4)0.21447 (4)0.14002 (5)0.02120 (14)
S10.66311 (4)0.62775 (4)0.13014 (5)0.02763 (15)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0219 (8)0.0251 (9)0.0234 (9)0.0034 (6)0.0016 (6)0.0005 (6)
C20.0210 (8)0.0331 (9)0.0310 (9)0.0010 (7)0.0049 (7)0.0035 (8)
C30.0220 (9)0.0288 (10)0.0398 (10)0.0024 (7)0.0051 (7)0.0049 (7)
N10.0277 (8)0.0262 (8)0.0373 (9)0.0053 (6)0.0157 (7)0.0039 (6)
N20.0216 (7)0.0245 (7)0.0250 (7)0.0023 (5)0.0050 (5)0.0015 (6)
O10.0515 (9)0.0436 (8)0.0247 (7)0.0265 (7)0.0028 (6)0.0091 (6)
O20.0347 (7)0.0371 (7)0.0300 (7)0.0138 (6)0.0155 (5)0.0113 (6)
O30.0287 (6)0.0216 (6)0.0227 (6)0.0031 (5)0.0089 (5)0.0001 (4)
O40.0228 (6)0.0444 (8)0.0231 (6)0.0071 (5)0.0070 (5)0.0071 (5)
P10.0201 (2)0.0230 (2)0.0207 (2)0.00071 (15)0.00549 (16)0.00254 (15)
S10.0252 (2)0.0228 (2)0.0351 (3)0.00293 (15)0.00515 (18)0.00053 (16)
Geometric parameters (Å, º) top
C1—N11.317 (2)N1—H2N10.7980
C1—N21.334 (2)N2—H1N20.9934
C1—S11.726 (2)O1—P11.564 (1)
C2—C31.330 (3)O1—H1O10.8996
C2—N21.389 (2)O2—P11.508 (1)
C2—H1C20.9300O3—P11.505 (1)
C3—S11.741 (2)O4—P11.562 (1)
C3—H1C30.9300O4—H1O40.9413
N1—H1N10.8718
N1—C1—N2123.9 (2)C1—N2—C2113.9 (2)
N1—C1—S1124.79 (13)C1—N2—H1N2119.0
N2—C1—S1111.3 (2)C2—N2—H1N2127.1
C3—C2—N2113.3 (2)P1—O1—H1O1117.0
C3—C2—H1C2123.4P1—O4—H1O4113.5
N2—C2—H1C2123.4O3—P1—O2115.19 (7)
C2—C3—S1111.3 (1)O3—P1—O4108.11 (7)
C2—C3—H1C3124.3O2—P1—O4110.24 (7)
S1—C3—H1C3124.3O3—P1—O1110.61 (7)
C1—N1—H1N1121.9O2—P1—O1106.73 (8)
C1—N1—H2N1123.4O4—P1—O1105.54 (8)
H1N1—N1—H2N1112.3C1—S1—C390.21 (8)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N1···O2i0.871.962.815 (2)167
N1—H2N1···O1ii0.802.313.076 (2)162
N1—H2N1···O2ii0.802.563.194 (2)137
N2—H1N2···O3i0.991.732.726 (2)175
O1—H1O1···O2iii0.901.612.504 (2)176
O4—H1O4···O3iv0.941.652.593 (2)179
C2—H1C2···O4v0.932.403.268 (2)155
Symmetry codes: (i) x, y+1, z; (ii) x+1, y+1/2, z+1/2; (iii) x, y+1/2, z1/2; (iv) x, y+1/2, z+1/2; (v) x+2, y+1, z.

Experimental details

Crystal data
Chemical formulaC3H5N2S+·H2PO4
Mr198.14
Crystal system, space groupMonoclinic, P21/c
Temperature (K)120
a, b, c (Å)9.7581 (2), 9.8826 (2), 8.2794 (1)
β (°) 90.680 (2)
V3)798.37 (2)
Z4
Radiation typeCu Kα
µ (mm1)5.35
Crystal size (mm)0.47 × 0.17 × 0.13
Data collection
DiffractometerAgilent Xcalibur Atlas Gemini ultra
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2010)
Tmin, Tmax0.453, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
7670, 1419, 1389
Rint0.025
(sin θ/λ)max1)0.596
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.027, 0.070, 1.07
No. of reflections1419
No. of parameters100
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.30, 0.37

Computer programs: CrysAlis PRO (Agilent, 2010), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2003), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N1···O2i0.871.962.815 (2)167
N1—H2N1···O1ii0.802.313.076 (2)162
N1—H2N1···O2ii0.802.563.194 (2)137
N2—H1N2···O3i0.991.732.726 (2)175
O1—H1O1···O2iii0.901.612.504 (2)176
O4—H1O4···O3iv0.941.652.593 (2)179
C2—H1C2···O4v0.932.403.268 (2)155
Symmetry codes: (i) x, y+1, z; (ii) x+1, y+1/2, z+1/2; (iii) x, y+1/2, z1/2; (iv) x, y+1/2, z+1/2; (v) x+2, y+1, z.
 

Acknowledgements

This work was supported financially by the Czech Science Foundation (grant No. 203/09/0878) and is part of the Long-term Research Plan of the Ministry of Education of the Czech Republic (No. MSM 0021620857), the Institutional research plan No. AVOZ10100521 of the Institute of Physics and the project Praemium Academiae of the Academy of Science of the Czech Republic.

References

First citationAgilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, England.  Google Scholar
First citationAlexandru, M.-G., Velikovic, T. C., Jitaru, I., Grguric-Sipka, S. & Draghici, C. (2010). Cent. Eur. J. Chem. 8, 639–645.  Web of Science CSD CrossRef CAS Google Scholar
First citationAridoss, G., Amirthaganesan, S., Kim, M. S., Kim, J. T. & Jeong, Y. T. (2009). Eur. J. Med. Chem. 44, 4199–4210.  Web of Science CrossRef PubMed CAS Google Scholar
First citationCiftci, H., Testereci, H. N. & Oktem, Z. (2011). Polym. Bull. 66, 747–760.  CAS Google Scholar
First citationCristante, V. M., Araujo, A. B., Jorge, S. M. A., Florentino, A. O., Valente, J. S. P. & Padilha, P. M. (2006). J. Braz. Chem. Soc. 17, 453–457.  Web of Science CrossRef CAS Google Scholar
First citationCristante, V. M., Jorge, S. M. A., Valente, J. P. S., Saeki, M. J., Florentino, A. O. & Padilha, P. M. (2007). Thin Solid Films, 515, 5334–5340.  CrossRef CAS Google Scholar
First citationCukurovali, A., Yilmaz, I., Gur, S. & Kazaz, C. (2006). Eur. J. Med. Chem. 41, 201–207.  Web of Science CrossRef PubMed CAS Google Scholar
First citationDe, S., Adhikari, S., Tilak-Jain, J., Menon, V. P. & Devasagayam, T. P. A. (2008). Chem. Biol. Interact. 173, 215–223.  Web of Science CrossRef PubMed CAS Google Scholar
First citationFranklin, P. X., Pillai, A. D., Rathod, P. D., Yerande, S., Nivsarkar, M., Padh, H., Vasu, K. K. & Sudarsanam, V. (2008). Eur. J. Med. Chem. 43, 129–134.  Web of Science CrossRef PubMed CAS Google Scholar
First citationLi, J., Du, J., Xia, L., Liu, H., Yao, X. & Liu, M. (2009). Anal. Chim. Acta, 631, 29–39.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMatulková, I., Císařová, I. & Němec, I. (2011a). Acta Cryst. E67, o18–o19.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMatulková, I., Němec, I., Cihelka, J., Pojarová, M. & Dušek, M. (2011b). Acta Cryst. E67, o3216–o3217.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMatulková, I., Němec, I., Císařová, I., Němec, P. & Mička, Z. (2007). J. Mol. Struct. 834–836, 328–335.  Google Scholar
First citationMatulková, I., Němec, I., Teubner, K., Němec, P. & Mička, Z. (2008). J. Mol. Struct. 837, 46–60.  Google Scholar
First citationMura, P., Piccioli, F., Gabbiani, C., Camalli, M. & Messori, L. (2005). Inorg. Chem. 44, 4897–4899.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSolmaz, R. (2011). Progr. Org. Coat. 70, 122–126.  Web of Science CrossRef CAS Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTakeuchi, R. M., Santos, A. L., Padilha, P. M. & Stradiotto, N. R. (2007). Talanta, 71, 771–777.  Web of Science CrossRef PubMed CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYesilel, O. Y., Odabaşoğlu, M. & Büyükgüngör, O. (2008). J. Mol. Struct. 874, 151–158.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds