metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 7| July 2011| Pages m906-m907

cis-Di­chloridobis­(5,5′-di­methyl-2,2′-bi­pyridine)­manganese(II) 2.5-hydrate

aNúcleo de Espectroscopia e Estrutura Molecular (NEEM), Department of Chemistry - Federal University of Juiz de Fora - Minas Gerais, 36036-900, Brazil
*Correspondence e-mail: renata.diniz@ufjf.edu.br

(Received 4 May 2011; accepted 6 June 2011; online 11 June 2011)

The metal site in the title compound [MnCl2(C12H12N2)2]·2.5H2O has a distorted octa­hedral geometry, coordinated by four N atoms of two 5,5′-dimethyl-2,2′-dipyridine ligands and two Cl atoms. Two and a half water molecules of hydration per complex unit are observed in the crystal structure. The compounds extend along the c axis with O—H⋯Cl, O—H⋯O, C—H⋯Cl and C—H⋯O hydrogen bonds and ππ inter­actions [centroid-centroid distance = 3.70 (2) Å] contributing substanti­ally to the crystal packing. The Mn and one of the water O atoms, the latter being half-occupied, are located on special positions, in this case a rotation axis of order 2.

Related literature

For the structures and applications of bipyridine and analogous ligands, see: Hazell (2004[Hazell, A. (2004). Polyhedron, 23, 2081-2083.]); Bakir et al. (1992[Bakir, M., Paulson, S., Goodson, P. & Sullivan, B. P. (1992). Inorg. Chem. 31, 1127-1129.]); Cordes et al. (1982[Cordes, A. W., Durham, B., Swepston, P. N., Pennington, W. T., Condren, S. M., Jensen, R. & Walsh, J. L. (1982). J. Coord. Chem. 11, 251-260.]); Hung-Low et al. (2009[Hung-Low, F., Renz, A. & Klausmeyer, K. K. (2009). Polyhedron, 28, 407-415.]). For the structure and applications of 5,5′-dimethyl-2,2′-dipyridine, see: Marandi et al. (2009[Marandi, F., Pantenburg, I. & Meyer, G. (2009). Z. Anorg. Allg. Chem. 635, 2558-2562.]); van Albada et al. (2005[Albada, G. A. van, Mutikainen, I., Turpeinen, U. & Reedijk, J. (2005). Acta Cryst. E61, m1411-m1412.]). For weak inter­molecular inter­actions, see: Calhorda (2000[Calhorda, M. J. (2000). Chem. Commun. pp. 801-809.]); Desiraju (1996[Desiraju, G. R. (1996). Acc. Chem. Res. 29, 441-449.]); Janiak (2000[Janiak, C. (2000). J. Chem. Soc. Dalton Trans. pp. 3885-3896.]).

[Scheme 1]

Experimental

Crystal data
  • [MnCl2(C12H12N2)2]·2.5H2O

  • Mr = 539.35

  • Monoclinic, C 2/c

  • a = 18.6703 (9) Å

  • b = 14.0598 (4) Å

  • c = 12.0536 (7) Å

  • β = 122.430 (7)°

  • V = 2670.6 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.72 mm−1

  • T = 293 K

  • 0.47 × 0.35 × 0.34 mm

Data collection
  • Oxford Diffraction Xcalibur Atlas Gemini ultra diffractometer

  • Absorption correction: analytical [CrysAlis PRO (Oxford Diffraction, 2008[Oxford Diffraction (2008). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]) based on expressions derived by Clark & Reid (1995[Clark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887-897.])] Tmin = 0.470, Tmax = 0.697

  • 11860 measured reflections

  • 3317 independent reflections

  • 2499 reflections with I > 2σ(I)

  • Rint = 0.025

Refinement
  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.150

  • S = 1.09

  • 3317 reflections

  • 155 parameters

  • H-atom parameters constrained

  • Δρmax = 0.72 e Å−3

  • Δρmin = −0.31 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1A⋯Cl1 0.84 2.42 3.243 (3) 168
O1—H1B⋯Cl1i 0.81 2.73 3.358 (4) 136
O2—H2A⋯O1 0.86 2.16 2.951 (6) 153
C3—H3⋯O1ii 0.93 2.49 3.257 (5) 140
C6—H6A⋯Cl1i 0.96 2.79 3.717 (4) 162
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].

Data collection: CrysAlis PRO (Oxford Diffraction, 2008[Oxford Diffraction (2008). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Bipyridine and analogous ligands are commonly used in the formation of different complexes with a general variety of transition metals (Hazell, 2004; Bakir et al., 1992; Cordes et al.,1982; Hung-Low et al.,2009;). The ligand 5,5'-Dimethyl-2,2'-dipyridine (abbreviated as dmdpy) acts as a chelator and usually gives rise to monomeric compounds (Marandi et al., 2009). Only a limited number of X-ray crystal structures with the ligand dmdpy has been published (van Albada et al., 2005). In this study we used the ligand 5,5'-dimethyl-2,2'-dipyridine and manganese chloride tetrahydrate. This mixture resulted in the compound [Mn(C12H12N2)2Cl2] × 2.5 H2O (Scheme 1).

The molecular structure of the complex unit of the titlecompound [Mn(C12H12N2)2Cl2] × 2.5 H2O is shown in Figure 1. The metal site is coordinated by four nitrogen atoms N1, N2, N1i and N2i of the ligand dmdpy and two chlorides Cl1 and Cl1i adopting a distorted octahedral geometry as evidenced by the Mn—N1 distances (2.3111 (19) Å), Mn—N2 (2.245 (2) Å) and Mn—Cl1 (2.4702 (6) Å). The Mn atom is located in a special position, which in this case is a rotation axis of order 2.

The compound crystallizes in the monoclinic system and its unit cell is shown in Figure 2. The compound [Mn(C12H12N2)2Cl2] × 2.5 H2O is a complex that stretches along the crystallographic c axis with the molecular entities being interconnected by weak hydrogen bonds (Desiraju, 1996; Calhorda, 2000) shown in Figure 2. These hydrogen bonds are formed by the interaction between oxygen atoms of water molecules O1 and O2 and the chlorine atom Cl1 which is coordinated to the metal. The distances O1—O2 and O1—Cl1 charge 2.951 (6) Å and 3.243 (3) Å, respectively. π-π interactions between aromatic rings of the nitrogen ligand dmdpy are also shown in Figure 2. These interactions contribute substantially to the crystal packing (Janiak, 2000). In this compound the centroid-centroid distance is 3.70 (2) Å, and there was a substantial overlap between the aromatic rings of the ligand dmdpy, being centroid-plane distance of 3.45 (1)Å and the horizontal displacement of 1.37 (2) Å.

Related literature top

For the structures and applications of bipyridine and analogous ligands, see: Hazell (2004); Bakir et al. (1992); Cordes et al. (1982); Hung-Low et al. (2009). For the structure and applications of 5,5'-dimethyl-2,2'-dipyridine, see: Marandi et al. (2009); van Albada et al. (2005). For weak intermolecular interactions, see: Calhorda (2000); Desiraju (1996); Janiak (2000).

Experimental top

All chemicals were obtained commercially and used without further purification. The complex was synthesized by mixing of 0.38 mmol of dmdpy dissolved in ethanol and 0.38 mmol of MnCl2 × 4 H2O dissolved in water. The mixture was placed under agitation for 40 h. After a few weeks, yellow single crystals suitable for the analysis of X-ray diffraction were obtained (yield: 39%).

Refinement top

H atoms were positioned geometrically and refined using the riding model approximation with C—H = 0.95 Å, and Uiso(H) was refined in group. H atoms of water molecule were located from electron density map, fixed in these positions and assigned the same isotropic displacement parameters for all H atoms.

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2008); cell refinement: CrysAlis PRO (Oxford Diffraction, 2008); data reduction: CrysAlis PRO (Oxford Diffraction, 2008); program(s) used to solve structure: SHELXL97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and Mercury (Macrae et al., 2006); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. Molecular structure of the complex unit of the title compound [Mn(C12H12N2)2Cl2] × 2.5 H2O. Water molecules were omitted for better visualization. Symmetry code: i (1 - x, y, 1/2 - z).
[Figure 2] Fig. 2. Unit cell of the compound [Mn(C12H12N2)2Cl2] × 2.5 H2O (z = 4), hydrogen bonds chain extending along the c axis and π-π interactions between the rings aromatic ligand dmdpy are depicted as dashed lines.
cis-Dichloridobis(5,5'-dimethyl-2,2'-bipyridine)manganese(II) 2.5-hydrate top
Crystal data top
[MnCl2(C12H12N2)2]·2.5H2OF(000) = 1120
Mr = 539.35Dx = 1.341 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 6304 reflections
a = 18.6703 (9) Åθ = 2.9–29.4°
b = 14.0598 (4) ŵ = 0.72 mm1
c = 12.0536 (7) ÅT = 293 K
β = 122.430 (7)°Prismatic, yellow
V = 2670.6 (2) Å30.47 × 0.35 × 0.34 mm
Z = 4
Data collection top
Oxford Diffraction Xcalibur Atlas Gemini ultra
diffractometer
3317 independent reflections
Radiation source: Enhance (Mo) X-ray Source2499 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.025
Detector resolution: 10.4186 pixels mm-1θmax = 29.4°, θmin = 2.9°
ω scansh = 2523
Absorption correction: analytical
[CrysAlis PRO (Oxford Diffraction, 2008) based on expressions derived by Clark & Reid (1995)]
k = 1418
Tmin = 0.470, Tmax = 0.697l = 1616
11860 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043H-atom parameters constrained
wR(F2) = 0.150 w = 1/[σ2(Fo2) + (0.094P)2 + 0.4813P]
where P = (Fo2 + 2Fc2)/3
S = 1.09(Δ/σ)max < 0.001
3317 reflectionsΔρmax = 0.72 e Å3
155 parametersΔρmin = 0.31 e Å3
0 restraintsExtinction correction: SHELXL
Primary atom site location: structure-invariant direct methodsAbsolute structure: no
Crystal data top
[MnCl2(C12H12N2)2]·2.5H2OV = 2670.6 (2) Å3
Mr = 539.35Z = 4
Monoclinic, C2/cMo Kα radiation
a = 18.6703 (9) ŵ = 0.72 mm1
b = 14.0598 (4) ÅT = 293 K
c = 12.0536 (7) Å0.47 × 0.35 × 0.34 mm
β = 122.430 (7)°
Data collection top
Oxford Diffraction Xcalibur Atlas Gemini ultra
diffractometer
3317 independent reflections
Absorption correction: analytical
[CrysAlis PRO (Oxford Diffraction, 2008) based on expressions derived by Clark & Reid (1995)]
2499 reflections with I > 2σ(I)
Tmin = 0.470, Tmax = 0.697Rint = 0.025
11860 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0430 restraints
wR(F2) = 0.150H-atom parameters constrained
S = 1.09Δρmax = 0.72 e Å3
3317 reflectionsΔρmin = 0.31 e Å3
155 parametersAbsolute structure: no
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Mn0.50000.31073 (3)0.25000.03326 (18)
Cl10.56731 (3)0.43196 (4)0.42532 (6)0.0429 (2)
N10.42155 (12)0.19415 (12)0.0968 (2)0.0391 (4)
N20.38759 (11)0.27687 (13)0.26398 (18)0.0359 (4)
C10.37348 (15)0.32044 (16)0.3488 (2)0.0407 (5)
H10.41200.36670.40340.049*
C50.33239 (14)0.20969 (15)0.1835 (2)0.0368 (5)
C40.26252 (15)0.18577 (17)0.1891 (3)0.0466 (6)
H40.22490.13930.13340.056*
C20.30477 (16)0.30103 (17)0.3606 (3)0.0447 (6)
C30.24897 (16)0.2312 (2)0.2779 (3)0.0523 (7)
H30.20230.21500.28240.063*
C70.35069 (14)0.16493 (14)0.0903 (2)0.0386 (5)
C80.29693 (17)0.09802 (17)0.0022 (2)0.0511 (6)
H80.24750.07940.00720.061*
C110.43965 (16)0.15765 (17)0.0132 (2)0.0477 (6)
H110.48840.17920.01820.057*
C100.39085 (19)0.08913 (18)0.0818 (3)0.0552 (7)
C90.3180 (2)0.05955 (18)0.0865 (3)0.0580 (7)
H90.28330.01350.14700.070*
C60.2939 (2)0.3543 (2)0.4579 (3)0.0689 (9)
H6A0.33910.39950.50360.103*
H6B0.29500.31050.51990.103*
H6C0.24050.38720.41280.103*
C120.4172 (2)0.0531 (2)0.1719 (3)0.0782 (10)
H12A0.46920.08340.15060.117*
H12B0.37370.06730.26130.117*
H12C0.42570.01450.16140.117*
O10.5956 (2)0.4141 (2)0.7145 (3)0.1311 (14)
H1A0.58030.41870.63560.197*
H1B0.56990.45480.72720.197*
O20.50000.2629 (5)0.75000.112 (3)0.50
H2A0.53820.29040.74220.168*0.50
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mn0.0241 (3)0.0282 (3)0.0388 (3)0.0000.0111 (2)0.000
Cl10.0341 (3)0.0394 (3)0.0431 (3)0.0026 (2)0.0127 (3)0.0082 (2)
N10.0330 (10)0.0304 (9)0.0398 (10)0.0005 (7)0.0101 (8)0.0025 (7)
N20.0286 (9)0.0321 (9)0.0364 (9)0.0054 (7)0.0105 (8)0.0017 (7)
C10.0339 (11)0.0390 (12)0.0416 (12)0.0089 (9)0.0153 (10)0.0011 (9)
C50.0307 (11)0.0281 (10)0.0350 (11)0.0042 (8)0.0067 (9)0.0071 (8)
C40.0370 (12)0.0404 (13)0.0477 (14)0.0143 (10)0.0130 (11)0.0020 (10)
C20.0415 (13)0.0437 (13)0.0475 (14)0.0073 (10)0.0230 (11)0.0053 (10)
C30.0403 (13)0.0560 (16)0.0563 (15)0.0153 (12)0.0231 (12)0.0050 (12)
C70.0364 (11)0.0249 (9)0.0354 (11)0.0015 (9)0.0065 (9)0.0046 (8)
C80.0501 (14)0.0383 (12)0.0428 (13)0.0147 (11)0.0102 (12)0.0001 (10)
C110.0422 (13)0.0402 (12)0.0487 (14)0.0020 (10)0.0163 (11)0.0068 (11)
C100.0615 (17)0.0373 (13)0.0454 (14)0.0039 (12)0.0146 (13)0.0061 (10)
C90.0666 (18)0.0354 (13)0.0454 (15)0.0120 (12)0.0125 (13)0.0077 (10)
C60.0645 (18)0.080 (2)0.079 (2)0.0247 (17)0.0493 (17)0.0175 (17)
C120.092 (3)0.068 (2)0.060 (2)0.0055 (18)0.0315 (19)0.0192 (15)
O10.166 (3)0.157 (3)0.110 (2)0.121 (3)0.101 (2)0.068 (2)
O20.092 (5)0.047 (4)0.135 (7)0.0000.020 (5)0.000
Geometric parameters (Å, º) top
Mn—Cl12.4702 (6)C7—C81.391 (3)
Mn—N12.3111 (19)C8—C91.382 (5)
Mn—N22.245 (2)C9—C101.394 (6)
O1—H1B0.8100C10—C121.502 (6)
O1—H1A0.8400C10—C111.397 (4)
O2—H2A0.8600C1—H10.9300
O2—H2Ai0.8600C3—H30.9300
N1—C111.326 (4)C4—H40.9300
N1—C71.347 (3)C6—H6A0.9600
N2—C51.350 (2)C6—H6B0.9600
N2—C11.334 (3)C6—H6C0.9600
C1—C21.391 (5)C8—H80.9300
C2—C31.389 (4)C9—H90.9300
C2—C61.494 (5)C11—H110.9300
C3—C41.381 (4)C12—H12B0.9600
C4—C51.383 (4)C12—H12C0.9600
C5—C71.480 (3)C12—H12A0.9600
Cl1···C13.581 (3)O1iv···C3ii3.257 (5)
Cl1···O13.243 (3)N1···N1ii3.259 (3)
Cl1···Cl1ii3.5759 (9)N1···N2ii3.233 (3)
Cl1···N1ii3.3695 (18)N1···N22.681 (3)
Cl1···O1iii3.358 (4)N2···C11ii3.337 (4)
O1···O22.951 (6)C3···O1v3.257 (5)
O1···Cl1iii3.358 (4)
Cl1—Mn—N1170.62 (6)N1—C7—C5116.49 (19)
Cl1—Mn—N298.59 (5)C5—C7—C8122.4 (3)
Cl1—Mn—Cl1ii92.74 (2)C7—C8—C9119.1 (3)
Cl1—Mn—N1ii89.55 (5)C8—C9—C10120.7 (3)
Cl1—Mn—N2ii98.24 (5)C9—C10—C12124.2 (3)
N1—Mn—N272.07 (8)C11—C10—C12120.2 (4)
Cl1ii—Mn—N189.55 (5)C9—C10—C11115.6 (3)
N1—Mn—N1ii89.65 (7)N1—C11—C10124.8 (3)
N1—Mn—N2ii90.40 (8)C2—C1—H1118.00
Cl1ii—Mn—N298.24 (5)N2—C1—H1118.00
N1ii—Mn—N290.40 (8)C4—C3—H3120.00
N2—Mn—N2ii155.51 (7)C2—C3—H3120.00
Cl1ii—Mn—N1ii170.62 (6)C5—C4—H4120.00
Cl1ii—Mn—N2ii98.59 (5)C3—C4—H4120.00
N1ii—Mn—N2ii72.07 (8)C2—C6—H6C109.00
H1A—O1—H1B107.00C2—C6—H6A110.00
H2A—O2—H2Ai127.00C2—C6—H6B110.00
Mn—N1—C11124.8 (2)H6B—C6—H6C109.00
Mn—N1—C7116.40 (15)H6A—C6—H6C109.00
C7—N1—C11118.7 (2)H6A—C6—H6B110.00
C1—N2—C5118.9 (2)C9—C8—H8120.00
Mn—N2—C5118.63 (17)C7—C8—H8120.00
Mn—N2—C1122.49 (17)C8—C9—H9120.00
N2—C1—C2124.1 (2)C10—C9—H9120.00
C3—C2—C6123.5 (3)N1—C11—H11118.00
C1—C2—C3116.3 (3)C10—C11—H11118.00
C1—C2—C6120.2 (3)C10—C12—H12B109.00
C2—C3—C4120.3 (3)C10—C12—H12C109.00
C3—C4—C5119.6 (3)H12A—C12—H12C110.00
N2—C5—C7116.4 (2)H12B—C12—H12C109.00
N2—C5—C4120.8 (2)H12A—C12—H12B110.00
C4—C5—C7122.8 (2)C10—C12—H12A109.00
N1—C7—C8121.1 (2)
N2—Mn—N1—C70.40 (15)Mn—N2—C1—C2179.72 (19)
N2—Mn—N1—C11177.7 (2)C5—N2—C1—C20.1 (3)
Cl1ii—Mn—N1—C798.41 (15)Mn—N2—C5—C4179.52 (18)
Cl1ii—Mn—N1—C1178.9 (2)Mn—N2—C5—C71.1 (2)
N1ii—Mn—N1—C790.94 (16)C1—N2—C5—C40.3 (3)
N1ii—Mn—N1—C1191.8 (2)C1—N2—C5—C7179.10 (19)
N2ii—Mn—N1—C7163.01 (16)N2—C1—C2—C30.4 (4)
N2ii—Mn—N1—C1119.7 (2)N2—C1—C2—C6179.4 (3)
Cl1—Mn—N2—C11.11 (17)C1—C2—C3—C40.7 (4)
Cl1—Mn—N2—C5178.73 (15)C6—C2—C3—C4179.1 (3)
N1—Mn—N2—C1179.78 (19)C2—C3—C4—C50.5 (4)
N1—Mn—N2—C50.38 (15)C3—C4—C5—N20.0 (4)
Cl1ii—Mn—N2—C192.95 (17)C3—C4—C5—C7179.4 (2)
Cl1ii—Mn—N2—C587.21 (16)N2—C5—C7—N11.4 (3)
N1ii—Mn—N2—C190.71 (17)N2—C5—C7—C8176.9 (2)
N1ii—Mn—N2—C589.13 (16)C4—C5—C7—N1179.2 (2)
N2ii—Mn—N2—C1134.05 (18)C4—C5—C7—C82.5 (3)
N2ii—Mn—N2—C545.8 (3)N1—C7—C8—C91.5 (3)
Mn—N1—C7—C51.1 (2)C5—C7—C8—C9179.7 (2)
Mn—N1—C7—C8177.24 (16)C7—C8—C9—C101.8 (4)
C11—N1—C7—C5178.5 (2)C8—C9—C10—C110.8 (4)
C11—N1—C7—C80.2 (3)C8—C9—C10—C12178.3 (3)
Mn—N1—C11—C10178.1 (2)C9—C10—C11—N10.6 (4)
C7—N1—C11—C100.9 (4)C12—C10—C11—N1179.7 (3)
Symmetry codes: (i) x+1, y, z+3/2; (ii) x+1, y, z+1/2; (iii) x+1, y+1, z+1; (iv) x+3/2, y+1/2, z+1; (v) x1/2, y+1/2, z1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···Cl10.842.423.243 (3)168
O1—H1B···Cl1iii0.812.733.358 (4)136
O2—H2A···O10.862.162.951 (6)153
C3—H3···O1v0.932.493.257 (5)140
C6—H6A···Cl1iii0.962.793.717 (4)162
Symmetry codes: (iii) x+1, y+1, z+1; (v) x1/2, y+1/2, z1/2.

Experimental details

Crystal data
Chemical formula[MnCl2(C12H12N2)2]·2.5H2O
Mr539.35
Crystal system, space groupMonoclinic, C2/c
Temperature (K)293
a, b, c (Å)18.6703 (9), 14.0598 (4), 12.0536 (7)
β (°) 122.430 (7)
V3)2670.6 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.72
Crystal size (mm)0.47 × 0.35 × 0.34
Data collection
DiffractometerOxford Diffraction Xcalibur Atlas Gemini ultra
diffractometer
Absorption correctionAnalytical
[CrysAlis PRO (Oxford Diffraction, 2008) based on expressions derived by Clark & Reid (1995)]
Tmin, Tmax0.470, 0.697
No. of measured, independent and
observed [I > 2σ(I)] reflections
11860, 3317, 2499
Rint0.025
(sin θ/λ)max1)0.692
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.150, 1.09
No. of reflections3317
No. of parameters155
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.72, 0.31
Absolute structureNo

Computer programs: CrysAlis PRO (Oxford Diffraction, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and Mercury (Macrae et al., 2006), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···Cl10.842.423.243 (3)168
O1—H1B···Cl1i0.812.733.358 (4)136
O2—H2A···O10.862.162.951 (6)153
C3—H3···O1ii0.932.493.257 (5)140
C6—H6A···Cl1i0.962.793.717 (4)162
Symmetry codes: (i) x+1, y+1, z+1; (ii) x1/2, y+1/2, z1/2.
 

Acknowledgements

The authors thank CNPq, CAPES and FAPEMIG (Brazil­ian agencies) for financial support, and LabCri (Federal University of Minas Gerais) for measuring the X-ray diffraction data.

References

First citationAlbada, G. A. van, Mutikainen, I., Turpeinen, U. & Reedijk, J. (2005). Acta Cryst. E61, m1411–m1412.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBakir, M., Paulson, S., Goodson, P. & Sullivan, B. P. (1992). Inorg. Chem. 31, 1127–1129.  CrossRef CAS Google Scholar
First citationCalhorda, M. J. (2000). Chem. Commun. pp. 801–809.  Web of Science CrossRef Google Scholar
First citationClark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887–897.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationCordes, A. W., Durham, B., Swepston, P. N., Pennington, W. T., Condren, S. M., Jensen, R. & Walsh, J. L. (1982). J. Coord. Chem. 11, 251–260.  CrossRef CAS Google Scholar
First citationDesiraju, G. R. (1996). Acc. Chem. Res. 29, 441–449.  CrossRef CAS PubMed Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationHazell, A. (2004). Polyhedron, 23, 2081–2083.  Web of Science CrossRef CAS Google Scholar
First citationHung-Low, F., Renz, A. & Klausmeyer, K. K. (2009). Polyhedron, 28, 407–415.  Web of Science CSD CrossRef CAS Google Scholar
First citationJaniak, C. (2000). J. Chem. Soc. Dalton Trans. pp. 3885–3896.  Web of Science CrossRef Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMarandi, F., Pantenburg, I. & Meyer, G. (2009). Z. Anorg. Allg. Chem. 635, 2558–2562.  CrossRef CAS Google Scholar
First citationOxford Diffraction (2008). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 7| July 2011| Pages m906-m907
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds