organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

9-Butyl-9H-carbazole

aDepartment of Applied Chemistry, College of Science, Nanjing University of Technology, Nanjing 210009, People's Republic of China
*Correspondence e-mail: zhuhj@njut.edu.cn

(Received 16 December 2008; accepted 17 February 2009; online 21 February 2009)

The title compound, C16H17N, is a carbazole derivative that has been designed and synthesized as a potential organic electronic device, such as an OLED. The tricyclic aromatic ring system is essentially planar, the two outer rings making a dihedral angle of 4.8 (1)°. No classical hydrogen bonds are observed in the crystal structure.

Related literature

For typical bond lengths in organic structures, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]); For general background and related structures, see: Yang et al. (2004[Yang, J. X., Tao, X. T., Yuan, C. X., Yan, Y. X., Wang, L., Liu, Z., Ren, Y. & Jiang, M. H. (2004). J. Am. Chem. Soc. 127, 3278-3279.]).

[Scheme 1]

Experimental

Crystal data
  • C16H17N

  • Mr = 223.31

  • Orthorhombic, P 21 21 21

  • a = 5.544 (1) Å

  • b = 11.276 (2) Å

  • c = 20.369 (4) Å

  • V = 1273.4 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.07 mm−1

  • T = 298 K

  • 0.30 × 0.20 × 0.10 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.980, Tmax = 0.993

  • 2671 measured reflections

  • 1372 independent reflections

  • 1500 reflections with I > 2σ(I)

  • Rint = 0.062

  • 3 standard reflections every 200 reflections intensity decay: 1%

Refinement
  • R[F2 > 2σ(F2)] = 0.059

  • wR(F2) = 0.147

  • S = 1.00

  • 1372 reflections

  • 154 parameters

  • H-atom parameters constrained

  • Δρmax = 0.17 e Å−3

  • Δρmin = −0.14 e Å−3

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994[Enraf-Nonius (1994). CAD-4 EXPRESS. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The title compound, C16H17N, is a carbazole derivative that has been designed and synthesized as a potential organic electronic device, such as OLED (Yang et al., 2004). We report herein the crystal structure of the title compound, (I), which is of interest to us in the field.

The molecular structure of (I) is shown in Fig. 1. The bond lengths and angles are within normal ranges (Allen et al., 1987). The tricyclic aromatic ring system is essentially planar. There are no classical hydrogen bonds observed in the crystal structure.

Related literature top

For typical bond lengths in organic structures, see: Allen et al. (1987); For general background and related structures, see: Yang et al. (2004).

Experimental top

The title compound, (I), was prepared by a method reported in literature (Yang et al., 2004). The crystals were obtained by dissolving (I) (0.2 g) in petroleum ether (b.p. 60–90 °C) (50 ml) and evaporating the solvent slowly at room temperature for about 3 d.

Refinement top

In the absence of significant anomalous dispersion effects, Friedel pairs were averaged. H atoms were positioned geometrically, C—H = 0.93 and 0.97 Å for aromatic and methyl H, and constrained to ride on their parent atoms, with Uiso(H) = xUeq(C/O), where x = 1.2 for aromatic H and x = 1.5 for other H.

Computing details top

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994); cell refinement: CAD-4 EXPRESS (Enraf–Nonius, 1994); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.
9-Butyl-9H-carbazole top
Crystal data top
C16H17NF(000) = 480
Mr = 223.31Dx = 1.165 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 25 reflections
a = 5.544 (1) Åθ = 9–13°
b = 11.276 (2) ŵ = 0.07 mm1
c = 20.369 (4) ÅT = 298 K
V = 1273.4 (4) Å3Needle, colourless
Z = 40.30 × 0.20 × 0.10 mm
Data collection top
Enraf–Nonius CAD-4
diffractometer
1500 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.062
Graphite monochromatorθmax = 25.3°, θmin = 2.0°
ω/2θ scansh = 06
Absorption correction: ψ scan
(North et al., 1968)
k = 013
Tmin = 0.980, Tmax = 0.993l = 2424
2671 measured reflections3 standard reflections every 200 reflections
1372 independent reflections intensity decay: 1%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.059Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.147H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.06P)2 + 0.13P]
where P = (Fo2 + 2Fc2)/3
1372 reflections(Δ/σ)max < 0.001
154 parametersΔρmax = 0.17 e Å3
0 restraintsΔρmin = 0.14 e Å3
Crystal data top
C16H17NV = 1273.4 (4) Å3
Mr = 223.31Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 5.544 (1) ŵ = 0.07 mm1
b = 11.276 (2) ÅT = 298 K
c = 20.369 (4) Å0.30 × 0.20 × 0.10 mm
Data collection top
Enraf–Nonius CAD-4
diffractometer
1500 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.062
Tmin = 0.980, Tmax = 0.9933 standard reflections every 200 reflections
2671 measured reflections intensity decay: 1%
1372 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0590 restraints
wR(F2) = 0.147H-atom parameters constrained
S = 1.00Δρmax = 0.17 e Å3
1372 reflectionsΔρmin = 0.14 e Å3
154 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N0.1136 (6)0.1561 (2)0.16013 (14)0.0639 (8)
C10.0693 (11)0.1920 (4)0.0678 (2)0.1075 (18)
H1A0.22010.22940.07820.161*
H1B0.05700.25020.06800.161*
H1C0.07960.15630.02510.161*
C20.0144 (8)0.0965 (3)0.1188 (2)0.0770 (12)
H2A0.14470.03910.11910.092*
H2B0.00740.13290.16190.092*
C30.2163 (8)0.0341 (3)0.10593 (19)0.0748 (12)
H3A0.20510.00500.06360.090*
H3B0.34410.09260.10300.090*
C40.2869 (8)0.0583 (3)0.1576 (2)0.0784 (12)
H4A0.29520.02050.20030.094*
H4B0.44560.08940.14740.094*
C50.0714 (7)0.1694 (3)0.20522 (18)0.0642 (9)
C60.1348 (8)0.0987 (4)0.25810 (19)0.0764 (12)
H6A0.05070.02940.26760.092*
C70.3244 (11)0.1343 (4)0.2957 (2)0.0937 (15)
H7A0.36600.08990.33250.112*
C80.4570 (10)0.2346 (4)0.2807 (2)0.0953 (15)
H8A0.58910.25480.30650.114*
C90.3964 (8)0.3046 (4)0.2283 (2)0.0810 (12)
H9A0.48780.37130.21820.097*
C100.1954 (7)0.2748 (3)0.18976 (18)0.0620 (9)
C110.0777 (7)0.3272 (3)0.13483 (17)0.0621 (9)
C120.1083 (9)0.4315 (3)0.0996 (2)0.0741 (12)
H12A0.23520.48240.10950.089*
C130.0510 (11)0.4591 (3)0.0499 (2)0.0903 (15)
H13A0.03200.52950.02660.108*
C140.2388 (11)0.3834 (4)0.0341 (2)0.0879 (14)
H14A0.34390.40400.00040.105*
C150.2736 (9)0.2782 (3)0.06719 (19)0.0759 (11)
H15A0.39810.22690.05590.091*
C160.1142 (7)0.2517 (3)0.11837 (18)0.0621 (9)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N0.0568 (19)0.0591 (15)0.0759 (19)0.0061 (15)0.0073 (18)0.0044 (14)
C10.124 (5)0.098 (3)0.100 (3)0.004 (4)0.009 (4)0.027 (3)
C20.069 (3)0.083 (2)0.079 (3)0.001 (2)0.012 (3)0.003 (2)
C30.072 (3)0.069 (2)0.083 (3)0.009 (2)0.005 (2)0.002 (2)
C40.071 (3)0.068 (2)0.097 (3)0.016 (2)0.007 (3)0.003 (2)
C50.067 (2)0.0624 (19)0.063 (2)0.0042 (19)0.008 (2)0.0021 (17)
C60.074 (3)0.086 (3)0.070 (2)0.010 (2)0.007 (3)0.005 (2)
C70.106 (4)0.102 (3)0.073 (3)0.017 (3)0.011 (3)0.005 (2)
C80.090 (4)0.117 (3)0.079 (3)0.015 (3)0.015 (3)0.035 (3)
C90.069 (3)0.087 (3)0.087 (3)0.003 (2)0.004 (3)0.018 (2)
C100.061 (2)0.066 (2)0.059 (2)0.0000 (18)0.002 (2)0.0108 (17)
C110.062 (2)0.0638 (18)0.060 (2)0.002 (2)0.009 (2)0.0041 (16)
C120.082 (3)0.061 (2)0.080 (3)0.010 (2)0.017 (3)0.0081 (19)
C130.120 (4)0.069 (2)0.081 (3)0.006 (3)0.017 (3)0.005 (2)
C140.100 (4)0.091 (3)0.072 (3)0.017 (3)0.004 (3)0.008 (2)
C150.070 (3)0.077 (2)0.081 (3)0.006 (2)0.010 (2)0.002 (2)
C160.061 (2)0.0595 (17)0.066 (2)0.0048 (19)0.004 (2)0.0030 (17)
Geometric parameters (Å, º) top
N—C161.373 (4)C6—H6A0.9300
N—C51.385 (4)C7—C81.384 (6)
N—C41.463 (4)C7—H7A0.9300
C1—C21.527 (5)C8—C91.369 (5)
C1—H1A0.9600C8—H8A0.9300
C1—H1B0.9600C9—C101.403 (5)
C1—H1C0.9600C9—H9A0.9300
C2—C31.483 (6)C10—C111.423 (5)
C2—H2A0.9700C11—C121.388 (4)
C2—H2B0.9700C11—C161.403 (5)
C3—C41.532 (5)C12—C131.380 (6)
C3—H3A0.9700C12—H12A0.9300
C3—H3B0.9700C13—C141.384 (6)
C4—H4A0.9700C13—H13A0.9300
C4—H4B0.9700C14—C151.378 (5)
C5—C61.385 (5)C14—H14A0.9300
C5—C101.409 (4)C15—C161.399 (5)
C6—C71.361 (6)C15—H15A0.9300
C16—N—C5109.1 (3)C5—C6—H6A121.2
C16—N—C4124.6 (3)C6—C7—C8121.8 (4)
C5—N—C4126.2 (3)C6—C7—H7A119.1
C2—C1—H1A109.5C8—C7—H7A119.1
C2—C1—H1B109.5C9—C8—C7120.9 (5)
H1A—C1—H1B109.5C9—C8—H8A119.6
C2—C1—H1C109.5C7—C8—H8A119.6
H1A—C1—H1C109.5C8—C9—C10119.5 (4)
H1B—C1—H1C109.5C8—C9—H9A120.2
C3—C2—C1112.7 (4)C10—C9—H9A120.2
C3—C2—H2A109.0C9—C10—C5117.7 (4)
C1—C2—H2A109.0C9—C10—C11134.8 (4)
C3—C2—H2B109.0C5—C10—C11107.6 (3)
C1—C2—H2B109.0C12—C11—C16118.9 (4)
H2A—C2—H2B107.8C12—C11—C10134.5 (4)
C2—C3—C4114.9 (4)C16—C11—C10106.5 (3)
C2—C3—H3A108.5C13—C12—C11119.5 (4)
C4—C3—H3A108.5C13—C12—H12A120.3
C2—C3—H3B108.5C11—C12—H12A120.3
C4—C3—H3B108.5C12—C13—C14120.9 (4)
H3A—C3—H3B107.5C12—C13—H13A119.6
N—C4—C3111.6 (3)C14—C13—H13A119.6
N—C4—H4A109.3C15—C14—C13121.5 (4)
C3—C4—H4A109.3C15—C14—H14A119.2
N—C4—H4B109.3C13—C14—H14A119.2
C3—C4—H4B109.3C14—C15—C16117.4 (4)
H4A—C4—H4B108.0C14—C15—H15A121.3
C6—C5—N129.9 (4)C16—C15—H15A121.3
C6—C5—C10122.4 (4)N—C16—C15129.1 (4)
N—C5—C10107.7 (3)N—C16—C11109.1 (3)
C7—C6—C5117.7 (4)C15—C16—C11121.8 (3)
C7—C6—H6A121.2
C1—C2—C3—C4177.0 (3)C9—C10—C11—C123.9 (7)
C16—N—C4—C382.4 (4)C5—C10—C11—C12176.8 (4)
C5—N—C4—C399.4 (4)C9—C10—C11—C16179.1 (4)
C2—C3—C4—N64.0 (4)C5—C10—C11—C160.2 (4)
C16—N—C5—C6176.8 (4)C16—C11—C12—C130.6 (5)
C4—N—C5—C61.6 (6)C10—C11—C12—C13176.1 (4)
C16—N—C5—C102.0 (4)C11—C12—C13—C140.8 (6)
C4—N—C5—C10179.6 (3)C12—C13—C14—C150.1 (7)
N—C5—C6—C7178.7 (4)C13—C14—C15—C161.2 (6)
C10—C5—C6—C70.1 (5)C5—N—C16—C15177.2 (4)
C5—C6—C7—C82.6 (6)C4—N—C16—C151.2 (6)
C6—C7—C8—C92.3 (7)C5—N—C16—C111.9 (4)
C7—C8—C9—C100.7 (6)C4—N—C16—C11179.7 (3)
C8—C9—C10—C53.2 (5)C14—C15—C16—N177.5 (4)
C8—C9—C10—C11177.5 (4)C14—C15—C16—C111.5 (5)
C6—C5—C10—C93.0 (5)C12—C11—C16—N178.6 (3)
N—C5—C10—C9178.1 (3)C10—C11—C16—N1.0 (4)
C6—C5—C10—C11177.6 (3)C12—C11—C16—C150.6 (5)
N—C5—C10—C111.3 (4)C10—C11—C16—C15178.1 (3)

Experimental details

Crystal data
Chemical formulaC16H17N
Mr223.31
Crystal system, space groupOrthorhombic, P212121
Temperature (K)298
a, b, c (Å)5.544 (1), 11.276 (2), 20.369 (4)
V3)1273.4 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.07
Crystal size (mm)0.30 × 0.20 × 0.10
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.980, 0.993
No. of measured, independent and
observed [I > 2σ(I)] reflections
2671, 1372, 1500
Rint0.062
(sin θ/λ)max1)0.601
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.059, 0.147, 1.00
No. of reflections1372
No. of parameters154
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.17, 0.14

Computer programs: CAD-4 EXPRESS (Enraf–Nonius, 1994), XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

The authors thank the Center of Testing and Analysis, Nanjing University, for the data collection.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationEnraf–Nonius (1994). CAD-4 EXPRESS. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.  Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYang, J. X., Tao, X. T., Yuan, C. X., Yan, Y. X., Wang, L., Liu, Z., Ren, Y. & Jiang, M. H. (2004). J. Am. Chem. Soc. 127, 3278–3279.  Web of Science CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds