Download citation
Download citation
link to html
In the title mol­ecule, C15H11F3N4O, the quinoline unit is nearly planar. The dihedral angle between the pyridine ring and the fused benzene ring is 2.45 (6)°. The triazole ring makes dihedral angles of 63.7 (1) and 64.7 (1)° with the pyridine and benzene rings, respectively. The ethanone group is coplanar with the attached triazole ring, except for the methyl H atoms. C—H...O, C—H...N and C—H...F hydrogen bonds are found in the crystal structure.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807059193/im2045sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807059193/im2045Isup2.hkl
Contains datablock I

CCDC reference: 673019

Key indicators

  • Single-crystal X-ray study
  • T = 200 K
  • Mean [sigma](C-C) = 0.002 Å
  • R factor = 0.043
  • wR factor = 0.126
  • Data-to-parameter ratio = 22.0

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT062_ALERT_4_C Rescale T(min) & T(max) by ..................... 0.97 PLAT230_ALERT_2_C Hirshfeld Test Diff for C4 - C5 .. 6.87 su PLAT432_ALERT_2_C Short Inter X...Y Contact C12 .. C12 .. 3.12 Ang.
Alert level G ABSTM02_ALERT_3_G When printed, the submitted absorption T values will be replaced by the scaled T values. Since the ratio of scaled T's is identical to the ratio of reported T values, the scaling does not imply a change to the absorption corrections used in the study. Ratio of Tmax expected/reported 0.972 Tmax scaled 0.972 Tmin scaled 0.935
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 3 ALERT level C = Check and explain 1 ALERT level G = General alerts; check 0 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 2 ALERT type 2 Indicator that the structure model may be wrong or deficient 1 ALERT type 3 Indicator that the structure quality may be low 1 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

Comment top

1,2,3-Triazoles and their benzoderivatives have attracted considerable attention because of their theoretical interest and synthetic value. They also find numerous applications in industry and agriculture due to their extensive biological activities and successful application as fluorescent whiteners, light stabilizers and optical brightening agents (Sanghvi, et al., 1990). Many 1,2,3-triazoles are found to be potent antimicrobial (Chen, et al., 2000; Sherement, et al., 2004), analgesic (Kreutzberger & Stratmann, 1980), anti- inflammatory, local anesthetic (Banu, et al., 1999), anticonvulsant (Peter & Roger, 2004), antineoplastic (Passannanti, et al., 1998), antimalarial (Jilino & Stevens, 1998) and antiviral agents (Safonova, et al., 2003). Some of them also exhibited antiproliferative (Manfredini, et al., 2000) and anticancer activity (Melo, et al., 2003). A good number of derivatives of 1,2,3-triazoles are used as DNA cleaving agents and potassium channel activators (Biagi, et al., 2004).

In the title molecule, C15H11F3N4O, Fig.1., the quinoline unit is nearly planar. The dihedral angle between the pyridine ring and the fused benzene ring is 2.45 (6)°. The triazole ring makes a dihedral angle of 63.7 (1)° and 64.7 (1)°, with that of pyridine and benzene rings respectively. The ethanone group is coplanar with the attached triazole ring, except the methyl H atoms. C—H···O, C—H···N and C—H···F hydrogen bonds are found in the crystal structure; see Fig.2 and hydrogen bond table. Furthermore, there is a short intermolecular C12···C12 contact which is caused by an intermolecular hydrogen bond H12 is involved in as well as by π-stacking effects.

Related literature top

For the uses of 1,2,3-triazoles and their benzo derivatives, see Banu et al. (1999); Biagi et al. (2004); Chen et al. (2000); Jilino & Stevens (1998); Kreutzberger & Stratmann (1980); Manfredini et al. (2000); Melo et al. (2003); Passannanti et al. (1988); Peter & Roger (2004); Safonova et al. (2003); Sanghvi et al. (1990); Sherement et al. (2004).

Experimental top

4-Azido-8-trifluoromethyl quinoline (15 g, 0.06 mol) was treated with acetylacetone (6.4 g, 0.06 mol) in methanol (75 ml) and the mixture was cooled to 273 K. Sodium methoxide (3.5 g, 0.06 mol) was added under nitrogen atmosphere to the above mixture and then stirred at ambient temperature for 6–8 h. Progress of the reaction was monitored by TLC (ethylacetate:n-hexane: 2:3, v/v). The reaction mass was poured into ice cold water, precipitated solid was filtered and washed with water. The crude product was recrystallized from methanol. Yield 13.5 g (65%).

Refinement top

H atoms were positioned geometrically and allowed to ride on their parent atoms, with C—H = 0.95–0.98 Å and Uiso=1.2–1.5 times Ueq(C).

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2007); cell refinement: CrysAlis CCD (Oxford Diffraction, 2007); data reduction: CrysAlis RED (Oxford Diffraction, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing the atom-numbering scheme and displacement ellipsoids drawn at the 50% probability level. H atoms are shown as small spheres of arbitrary radius.
[Figure 2] Fig. 2. The packing of the title compound, viewed down the c axis. Dashed lines indicate hydrogen bonds. H atoms not involved in hydrogen bonding have been omitted.
1-{5-Methyl-1-[8-(trifluoromethyl)quinolin-4-yl]-1H-1,2,3-triazol- 4-yl}ethanone top
Crystal data top
C15H11F3N4OF(000) = 656
Mr = 320.28Dx = 1.544 Mg m3
Monoclinic, P21/nMelting point: 459(1) K
Hall symbol: -P 2ynMo Kα radiation, λ = 0.71073 Å
a = 11.7974 (4) ÅCell parameters from 5005 reflections
b = 8.2946 (2) Åθ = 4.6–32.5°
c = 14.6706 (4) ŵ = 0.13 mm1
β = 106.273 (3)°T = 200 K
V = 1378.07 (7) Å3Plate, colourless
Z = 40.44 × 0.37 × 0.22 mm
Data collection top
Oxford Diffraction Gemini
diffractometer
4615 independent reflections
Radiation source: fine-focus sealed tube2511 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
Detector resolution: 10.5081 pixels mm-1θmax = 32.6°, θmin = 4.6°
ϕ and ω scansh = 1717
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2007)
k = 1211
Tmin = 0.962, Tmax = 1.000l = 2220
13863 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.126H-atom parameters constrained
S = 0.96 w = 1/[σ2(Fo2) + (0.0712P)2]
where P = (Fo2 + 2Fc2)/3
4615 reflections(Δ/σ)max < 0.001
210 parametersΔρmax = 0.30 e Å3
0 restraintsΔρmin = 0.24 e Å3
Crystal data top
C15H11F3N4OV = 1378.07 (7) Å3
Mr = 320.28Z = 4
Monoclinic, P21/nMo Kα radiation
a = 11.7974 (4) ŵ = 0.13 mm1
b = 8.2946 (2) ÅT = 200 K
c = 14.6706 (4) Å0.44 × 0.37 × 0.22 mm
β = 106.273 (3)°
Data collection top
Oxford Diffraction Gemini
diffractometer
4615 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2007)
2511 reflections with I > 2σ(I)
Tmin = 0.962, Tmax = 1.000Rint = 0.027
13863 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0430 restraints
wR(F2) = 0.126H-atom parameters constrained
S = 0.96Δρmax = 0.30 e Å3
4615 reflectionsΔρmin = 0.24 e Å3
210 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
F10.65453 (7)0.13558 (11)0.67581 (5)0.0531 (3)
F20.73949 (7)0.09155 (11)0.67264 (5)0.0470 (3)
F30.83628 (7)0.12893 (9)0.67695 (5)0.0445 (3)
O410.87328 (10)0.13080 (14)0.00685 (7)0.0567 (4)
N10.77553 (9)0.04634 (13)0.22873 (7)0.0309 (3)
N20.67283 (10)0.11480 (14)0.17371 (7)0.0410 (4)
N30.66767 (9)0.08334 (14)0.08593 (7)0.0380 (3)
N110.86194 (9)0.09327 (13)0.52759 (7)0.0303 (3)
C40.76499 (10)0.00397 (14)0.08307 (8)0.0296 (3)
C50.83557 (10)0.02833 (14)0.17441 (8)0.0281 (3)
C60.95054 (10)0.11275 (16)0.21160 (9)0.0343 (4)
C120.92664 (11)0.15856 (14)0.47733 (8)0.0308 (3)
C130.90248 (10)0.14431 (15)0.37815 (8)0.0317 (4)
C140.80417 (10)0.06296 (15)0.32991 (8)0.0279 (3)
C14A0.72793 (10)0.00695 (14)0.37893 (8)0.0268 (3)
C150.62311 (11)0.09220 (15)0.33425 (9)0.0321 (4)
C160.55839 (11)0.16221 (16)0.38699 (9)0.0359 (4)
C170.59412 (11)0.15093 (15)0.48661 (9)0.0342 (4)
C180.69379 (10)0.06727 (15)0.53191 (8)0.0289 (4)
C18A0.76407 (10)0.00955 (14)0.47940 (8)0.0267 (3)
C190.73096 (11)0.05847 (17)0.63863 (9)0.0350 (4)
C410.78389 (12)0.05745 (16)0.00728 (9)0.0370 (4)
C420.69031 (14)0.0203 (2)0.09740 (9)0.0514 (5)
H6A0.975950.105270.281050.0515*
H6B1.009880.062220.185630.0515*
H6C0.941530.226370.192630.0515*
H120.994020.219210.510190.0370*
H130.953830.190590.345700.0380*
H150.597820.100560.266990.0385*
H160.488320.219320.356210.0431*
H170.548730.201760.522630.0410*
H42A0.698850.092800.147790.0771*
H42B0.698630.091680.115900.0771*
H42C0.612240.035350.087460.0771*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
F10.0538 (5)0.0722 (7)0.0382 (4)0.0185 (4)0.0211 (4)0.0015 (4)
F20.0608 (5)0.0461 (5)0.0365 (4)0.0014 (4)0.0178 (4)0.0109 (3)
F30.0427 (4)0.0504 (5)0.0361 (4)0.0019 (4)0.0042 (3)0.0039 (3)
O410.0561 (7)0.0696 (8)0.0486 (6)0.0104 (6)0.0216 (5)0.0131 (5)
N10.0315 (5)0.0346 (6)0.0267 (5)0.0062 (4)0.0083 (4)0.0024 (4)
N20.0389 (6)0.0516 (8)0.0316 (6)0.0177 (5)0.0082 (5)0.0046 (5)
N30.0402 (6)0.0415 (7)0.0313 (5)0.0097 (5)0.0084 (5)0.0037 (5)
N110.0289 (5)0.0302 (6)0.0310 (5)0.0015 (4)0.0072 (4)0.0024 (4)
C40.0316 (6)0.0274 (6)0.0294 (6)0.0006 (5)0.0079 (5)0.0011 (5)
C50.0300 (6)0.0243 (6)0.0326 (6)0.0015 (5)0.0130 (5)0.0004 (5)
C60.0290 (6)0.0344 (7)0.0406 (7)0.0041 (5)0.0115 (5)0.0005 (5)
C120.0267 (6)0.0285 (6)0.0343 (6)0.0011 (5)0.0037 (5)0.0000 (5)
C130.0292 (6)0.0337 (7)0.0333 (6)0.0029 (5)0.0107 (5)0.0065 (5)
C140.0296 (6)0.0290 (7)0.0249 (5)0.0078 (5)0.0071 (5)0.0020 (5)
C14A0.0282 (6)0.0259 (6)0.0258 (6)0.0053 (5)0.0066 (5)0.0014 (5)
C150.0310 (6)0.0334 (7)0.0287 (6)0.0007 (5)0.0033 (5)0.0072 (5)
C160.0288 (6)0.0369 (7)0.0393 (7)0.0044 (5)0.0051 (5)0.0088 (6)
C170.0309 (6)0.0344 (7)0.0389 (7)0.0014 (5)0.0126 (5)0.0020 (5)
C180.0286 (6)0.0299 (7)0.0288 (6)0.0023 (5)0.0091 (5)0.0014 (5)
C18A0.0261 (6)0.0244 (6)0.0293 (6)0.0019 (5)0.0072 (5)0.0032 (5)
C190.0351 (7)0.0401 (8)0.0314 (6)0.0052 (6)0.0119 (5)0.0020 (6)
C410.0464 (8)0.0334 (7)0.0332 (7)0.0026 (6)0.0145 (6)0.0018 (6)
C420.0752 (11)0.0481 (9)0.0289 (7)0.0060 (8)0.0115 (7)0.0021 (6)
Geometric parameters (Å, º) top
F1—C191.3399 (16)C14A—C18A1.4216 (16)
F2—C191.3339 (17)C15—C161.3601 (19)
F3—C191.3454 (16)C16—C171.4061 (18)
O41—C411.2160 (19)C17—C181.3667 (18)
N1—N21.3762 (16)C18—C18A1.4300 (17)
N1—C51.3553 (16)C18—C191.5047 (17)
N1—C141.4337 (15)C41—C421.4979 (19)
N2—N31.2986 (14)C6—H6A0.9800
N3—C41.3680 (16)C6—H6B0.9800
N11—C121.3172 (16)C6—H6C0.9800
N11—C18A1.3630 (16)C12—H120.9500
C4—C51.3800 (16)C13—H130.9500
C4—C411.4728 (17)C15—H150.9500
C5—C61.4876 (17)C16—H160.9500
C12—C131.4071 (16)C17—H170.9500
C13—C141.3570 (17)C42—H42A0.9800
C14—C14A1.4230 (17)C42—H42B0.9800
C14A—C151.4158 (18)C42—H42C0.9800
F1···C6i3.3366 (15)C12···C13ii3.5320 (17)
F2···N112.8876 (13)C13···N11ii3.3713 (16)
F3···N112.9431 (13)C13···C63.4080 (18)
F3···C6ii3.2730 (15)C13···C12ii3.5320 (17)
F1···H42Aiii2.5200C15···N2vi3.4457 (18)
F1···H6Ci2.8300C15···N1vi3.4485 (17)
F1···H172.3100C15···N23.1005 (17)
F2···H42Aiv2.7700C16···C4vi3.4724 (18)
F2···H16v2.8100C16···C5vi3.4972 (18)
F3···H42Bvi2.4800C17···O41i3.1961 (18)
F3···H6Bii2.8000C17···C17v3.4415 (18)
F3···H13ii2.6400C41···N11vi3.3399 (17)
O41···C63.0801 (16)C41···C12vi3.5387 (19)
O41···C17vii3.1961 (18)C5···H133.1000
O41···H6B2.8900C13···H15iv3.0000
O41···H6C2.9200C13···H6A2.7900
O41···H17vii2.4300C14···H6A2.7200
N1···C15iv3.4485 (17)C14A···H6Civ3.0600
N2···C153.1005 (17)C19···H42Bvi3.0600
N2···C6iv3.3807 (17)H6A···C132.7900
N2···C15iv3.4457 (18)H6A···C142.7200
N11···C41iv3.3399 (17)H6A···N11ii2.9200
N11···F32.9431 (13)H6B···O412.8900
N11···C13ii3.3713 (16)H6B···F3ii2.8000
N11···F22.8876 (13)H6C···O412.9200
N11···C12ii3.2696 (17)H6C···C14Avi3.0600
N1···H152.6200H6C···F1vii2.8300
N2···H152.5500H12···N3ix2.6100
N3···H12viii2.6100H13···C53.1000
N3···H42C2.6300H13···H15iv2.3500
N11···H6Aii2.9200H13···F3ii2.6400
C4···C12vi3.5509 (17)H15···N12.6200
C4···C16iv3.4724 (18)H15···N22.5500
C5···C16iv3.4972 (18)H15···C13vi3.0000
C6···C133.4080 (18)H15···H13vi2.3500
C6···O413.0801 (16)H16···F2v2.8100
C6···F1vii3.3366 (15)H17···F12.3100
C6···N2vi3.3807 (17)H17···O41i2.4300
C6···F3ii3.2730 (15)H42A···F1x2.5200
C12···C4iv3.5509 (17)H42A···F2vi2.7700
C12···C12ii3.1164 (17)H42B···F3iv2.4800
C12···C41iv3.5387 (19)H42B···C19iv3.0600
C12···N11ii3.2696 (17)H42C···N32.6300
N2—N1—C5111.28 (9)F1—C19—F3105.70 (10)
N2—N1—C14118.75 (10)F1—C19—C18111.55 (11)
C5—N1—C14129.97 (11)F2—C19—F3106.55 (10)
N1—N2—N3106.72 (10)F2—C19—C18113.82 (11)
N2—N3—C4109.29 (10)F3—C19—C18112.30 (11)
C12—N11—C18A117.30 (10)O41—C41—C4119.73 (12)
N3—C4—C5109.33 (10)O41—C41—C42122.08 (12)
N3—C4—C41121.81 (11)C4—C41—C42118.19 (12)
C5—C4—C41128.87 (11)C5—C6—H6A109.00
N1—C5—C4103.39 (10)C5—C6—H6B109.00
N1—C5—C6124.93 (10)C5—C6—H6C109.00
C4—C5—C6131.69 (11)H6A—C6—H6B109.00
N11—C12—C13124.27 (11)H6A—C6—H6C109.00
C12—C13—C14118.49 (11)H6B—C6—H6C109.00
N1—C14—C13120.45 (11)N11—C12—H12118.00
N1—C14—C14A119.02 (10)C13—C12—H12118.00
C13—C14—C14A120.53 (11)C12—C13—H13121.00
C14—C14A—C15124.28 (11)C14—C13—H13121.00
C14—C14A—C18A115.87 (11)C14A—C15—H15120.00
C15—C14A—C18A119.83 (11)C16—C15—H15120.00
C14A—C15—C16120.44 (12)C15—C16—H16120.00
C15—C16—C17120.68 (12)C17—C16—H16120.00
C16—C17—C18120.38 (12)C16—C17—H17120.00
C17—C18—C18A120.93 (11)C18—C17—H17120.00
C17—C18—C19119.39 (11)C41—C42—H42A109.00
C18A—C18—C19119.67 (11)C41—C42—H42B109.00
N11—C18A—C14A123.45 (11)C41—C42—H42C109.00
N11—C18A—C18118.84 (10)H42A—C42—H42B109.00
C14A—C18A—C18117.71 (11)H42A—C42—H42C109.00
F1—C19—F2106.37 (10)H42B—C42—H42C109.00
C5—N1—N2—N30.27 (14)C12—C13—C14—C14A0.38 (18)
C14—N1—N2—N3179.85 (11)N1—C14—C14A—C150.63 (18)
N2—N1—C5—C40.37 (13)N1—C14—C14A—C18A177.90 (11)
N2—N1—C5—C6179.34 (11)C13—C14—C14A—C15179.30 (12)
C14—N1—C5—C4179.89 (12)C13—C14—C14A—C18A2.17 (17)
C14—N1—C5—C60.2 (2)C14—C14A—C15—C16176.69 (12)
N2—N1—C14—C13116.76 (13)C18A—C14A—C15—C161.79 (19)
N2—N1—C14—C14A63.17 (15)C14—C14A—C18A—N113.21 (17)
C5—N1—C14—C1362.72 (18)C14—C14A—C18A—C18176.32 (11)
C5—N1—C14—C14A117.34 (14)C15—C14A—C18A—N11178.19 (11)
N1—N2—N3—C40.04 (13)C15—C14A—C18A—C182.28 (17)
N2—N3—C4—C50.19 (14)C14A—C15—C16—C170.2 (2)
N2—N3—C4—C41179.89 (12)C15—C16—C17—C180.9 (2)
C18A—N11—C12—C131.42 (18)C16—C17—C18—C18A0.36 (19)
C12—N11—C18A—C14A1.48 (18)C16—C17—C18—C19179.32 (12)
C12—N11—C18A—C18178.05 (11)C17—C18—C18A—N11179.22 (12)
N3—C4—C5—N10.34 (13)C17—C18—C18A—C14A1.23 (18)
N3—C4—C5—C6179.35 (12)C19—C18—C18A—N111.82 (17)
C41—C4—C5—N1179.97 (12)C19—C18—C18A—C14A177.73 (11)
C41—C4—C5—C60.3 (2)C17—C18—C19—F11.58 (17)
N3—C4—C41—O41177.86 (13)C17—C18—C19—F2121.95 (13)
N3—C4—C41—C422.76 (19)C17—C18—C19—F3116.87 (13)
C5—C4—C41—O411.8 (2)C18A—C18—C19—F1179.45 (11)
C5—C4—C41—C42177.60 (13)C18A—C18—C19—F259.08 (16)
N11—C12—C13—C142.36 (19)C18A—C18—C19—F362.10 (16)
C12—C13—C14—N1179.56 (11)
Symmetry codes: (i) x1/2, y+1/2, z+1/2; (ii) x+2, y, z+1; (iii) x, y, z+1; (iv) x+3/2, y1/2, z+1/2; (v) x+1, y, z+1; (vi) x+3/2, y+1/2, z+1/2; (vii) x+1/2, y+1/2, z1/2; (viii) x1/2, y1/2, z1/2; (ix) x+1/2, y1/2, z+1/2; (x) x, y, z1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C12—H12···N3ix0.952.613.559 (2)173.00
C15—H15···N20.952.553.101 (2)117.00
C17—H17···F10.952.312.668 (2)102.00
C17—H17···O41i0.952.433.196 (2)138.00
C42—H42A···F1x0.982.523.373 (2)146.00
C42—H42B···F3iv0.982.483.434 (2)165.00
Symmetry codes: (i) x1/2, y+1/2, z+1/2; (iv) x+3/2, y1/2, z+1/2; (ix) x+1/2, y1/2, z+1/2; (x) x, y, z1.

Experimental details

Crystal data
Chemical formulaC15H11F3N4O
Mr320.28
Crystal system, space groupMonoclinic, P21/n
Temperature (K)200
a, b, c (Å)11.7974 (4), 8.2946 (2), 14.6706 (4)
β (°) 106.273 (3)
V3)1378.07 (7)
Z4
Radiation typeMo Kα
µ (mm1)0.13
Crystal size (mm)0.44 × 0.37 × 0.22
Data collection
DiffractometerOxford Diffraction Gemini
diffractometer
Absorption correctionMulti-scan
(CrysAlis RED; Oxford Diffraction, 2007)
Tmin, Tmax0.962, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
13863, 4615, 2511
Rint0.027
(sin θ/λ)max1)0.758
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.126, 0.96
No. of reflections4615
No. of parameters210
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.30, 0.24

Computer programs: CrysAlis CCD (Oxford Diffraction, 2007), CrysAlis RED (Oxford Diffraction, 2007), SHELXS97 (Sheldrick, 1990), SHELXL97 (Sheldrick, 1997), ORTEP-3 (Farrugia, 1997), PLATON (Spek, 2003).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C12—H12···N3i0.952.613.559 (2)173.00
C15—H15···N20.952.553.101 (2)117.00
C17—H17···F10.952.312.668 (2)102.00
C17—H17···O41ii0.952.433.196 (2)138.00
C42—H42A···F1iii0.982.523.373 (2)146.00
C42—H42B···F3iv0.982.483.434 (2)165.00
Symmetry codes: (i) x+1/2, y1/2, z+1/2; (ii) x1/2, y+1/2, z+1/2; (iii) x, y, z1; (iv) x+3/2, y1/2, z+1/2.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds