Download citation
Download citation
link to html
The title compound, C13H12N4O2S2, was synthesized via condensation of 5-chloro­methyl-3-(3-methoxy­phen­yl)-1,2,4-oxadiazole with (5-methyl-1,3,4-thia­diazol-2-yl)methane­thiol. The benzene and oxadiazole rings are coplanar due to the extended aromatic system. The angle between this plane and the thia­diazole ring is 77.8 (3)°.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S160053680705934X/im2042sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S160053680705934X/im2042Isup2.hkl
Contains datablock I

CCDC reference: 674664

Key indicators

  • Single-crystal X-ray study
  • T = 293 K
  • Mean [sigma](C-C) = 0.004 Å
  • R factor = 0.046
  • wR factor = 0.128
  • Data-to-parameter ratio = 14.7

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT154_ALERT_1_C The su's on the Cell Angles are Equal (x 10000) 3000 Deg. PLAT322_ALERT_2_C Check Hybridisation of S1 in Main Residue . ?
Alert level G PLAT199_ALERT_1_G Check the Reported _cell_measurement_temperature 293 K PLAT200_ALERT_1_G Check the Reported _diffrn_ambient_temperature . 293 K
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 2 ALERT level C = Check and explain 2 ALERT level G = General alerts; check 3 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 1 ALERT type 2 Indicator that the structure model may be wrong or deficient 0 ALERT type 3 Indicator that the structure quality may be low 0 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

Comment top

1,2,4-Oxadiazoles represent an important class of five-membered heterocycles. Some derivatives of 1,2,4-oxadiazoles have anti-inflammatory (Nicolaides et al., 1998) and antipicornaviral (Romero, 2001) properties. We are focusing our synthetic and structural studies on new oxindole derivatives. The thioether compounds exhibited considerably strong inhibiting activity to Staphylococcus aureus (Talar & Dejai, 1996). We report here the structure of its close analogue with thiadiazole sulfanylether group, (I). This compound crystallizes in the triclinic system, space group P1. There are three rings in the molecule. The benzene and oxadiazole ring are of course coplanar due to the extended aromatic system. The angle between the before mentioned plane and the thiadiazole moiety is 102.2 (3)°. There is no classic hydrogen bond in the crystal structure. The molecular structure of (I) is shown in Fig. 1. Bond lengths and angles are given in Table 1.

Related literature top

For related literature, see: Nicolaides et al. (1998); Romero (2001); Talar & Dejai (1996).

Experimental top

(5-Methyl-[1,3,4]thiadiazol-2-yl)methanethiol (20 mmol) was dissolved in ethanol (70 ml) and water (70 mmol). Sodium acetate (20 mmol) was added to this mixture. Then 5-chlormethyl-3-(3-(methoxy)phenyl)-[1,2,4]oxadiazole (40 mmol) was added. The resulting mixture was refluxed for 8 h. After cooling and filtrating, crude compound (I) was gained. Pure compound (I) was obstained by crystallization from a mixture of ethyl acetate (8 ml) and light petrolum (bp. 333–363 K) (6 ml). Crystals of (I) suitable for X-ray diffraction were obstained by slow evaporation of an ethanolic solution. 1H NMR (CDCl3, δ, p.p.m.): 7.21–7.22 (m, 1H), 7.03–7.04 (m, 1H), 6.95–6.97 (m, 1H), 6.75–6.76 (m, 1H), 4.18–4.19 (s, 2H), 3.72–3.73 (s, 3H), 2.32–2.33 (s, 3H).

Refinement top

All H atoms bonded to the C atoms were placed geometrically at distances of 0.93–0.96 Å and included in the refinement using a riding motion approximation with Uiso(H) = 1.2 or 1.5Ueq of the carrier atom.

Computing details top

Data collection: CAD-4 Software (Enraf–Nonius, 1989); cell refinement: CAD-4 Software (Enraf–Nonius, 1989); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Siemens, 1996); software used to prepare material for publication: SHELXL97 (Sheldrick, 1997).

Figures top
[Figure 1] Fig. 1. Molecular structure of (I), showing displacement ellipsoids at the 30% probability level.
3-(3-Methoxyphenyl)-5-[(5-methyl-1,3,4-thiadiazol-2-yl)sulfanylmethyl]- 1,2,4-oxadiazole top
Crystal data top
C13H12N4O2S2Z = 2
Mr = 320.39F(000) = 332
Triclinic, P1Dx = 1.490 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 6.139 (1) ÅCell parameters from 25 reflections
b = 9.890 (2) Åθ = 9–13°
c = 12.658 (3) ŵ = 0.38 mm1
α = 72.45 (3)°T = 293 K
β = 85.91 (3)°Block, colourless
γ = 77.12 (3)°0.30 × 0.10 × 0.10 mm
V = 714.3 (3) Å3
Data collection top
Nonius CAD-4
diffractometer
2063 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.042
Graphite monochromatorθmax = 26.0°, θmin = 1.7°
ω/2θ scansh = 77
Absorption correction: ψ scan
(North et al., 1968)
k = 1112
Tmin = 0.894, Tmax = 0.963l = 015
3078 measured reflections3 standard reflections every 200 reflections
2802 independent reflections intensity decay: none
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.128H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0486P)2 + 0.4476P]
where P = (Fo2 + 2Fc2)/3
2802 reflections(Δ/σ)max = 0.002
191 parametersΔρmax = 0.19 e Å3
0 restraintsΔρmin = 0.28 e Å3
Crystal data top
C13H12N4O2S2γ = 77.12 (3)°
Mr = 320.39V = 714.3 (3) Å3
Triclinic, P1Z = 2
a = 6.139 (1) ÅMo Kα radiation
b = 9.890 (2) ŵ = 0.38 mm1
c = 12.658 (3) ÅT = 293 K
α = 72.45 (3)°0.30 × 0.10 × 0.10 mm
β = 85.91 (3)°
Data collection top
Nonius CAD-4
diffractometer
2063 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.042
Tmin = 0.894, Tmax = 0.9633 standard reflections every 200 reflections
3078 measured reflections intensity decay: none
2802 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0460 restraints
wR(F2) = 0.128H-atom parameters constrained
S = 1.06Δρmax = 0.19 e Å3
2802 reflectionsΔρmin = 0.28 e Å3
191 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.10119 (14)0.96648 (9)0.81705 (7)0.0591 (3)
O10.0772 (3)0.5239 (2)0.82199 (18)0.0542 (5)
N10.1954 (4)0.8596 (3)0.9446 (2)0.0597 (7)
C10.3048 (6)1.1241 (4)0.8789 (3)0.0724 (10)
H1B0.42641.11010.93020.109*
H1C0.36231.16620.80490.109*
H1D0.22481.18780.89600.109*
S20.37028 (13)0.66652 (9)0.84080 (7)0.0526 (2)
O20.3255 (4)0.1410 (3)0.4522 (2)0.0658 (6)
N20.0301 (4)0.7422 (3)0.9376 (2)0.0572 (7)
C20.1523 (5)0.9826 (3)0.8873 (2)0.0512 (7)
N30.1928 (4)0.3948 (2)0.74697 (19)0.0436 (6)
C30.1342 (5)0.7819 (3)0.8740 (2)0.0455 (7)
N40.1791 (4)0.4826 (3)0.7427 (2)0.0542 (6)
C40.2916 (5)0.4923 (3)0.8934 (2)0.0451 (7)
H4B0.42580.41610.90540.054*
H4C0.21770.48630.96460.054*
C50.1416 (4)0.4666 (3)0.8184 (2)0.0431 (7)
C60.0109 (4)0.4076 (3)0.7011 (2)0.0395 (6)
C70.0365 (4)0.3450 (3)0.6138 (2)0.0413 (6)
C80.2466 (5)0.3615 (3)0.5687 (3)0.0530 (8)
H8A0.37420.41070.59630.064*
C90.2626 (5)0.3047 (4)0.4837 (3)0.0578 (8)
H9A0.40180.31720.45330.069*
C100.0764 (5)0.2296 (3)0.4427 (3)0.0508 (7)
H10A0.09030.19140.38540.061*
C110.1300 (5)0.2115 (3)0.4868 (2)0.0463 (7)
C120.1486 (5)0.2702 (3)0.5724 (2)0.0440 (7)
H12A0.28840.25840.60190.053*
C130.3205 (6)0.0859 (4)0.3617 (3)0.0632 (9)
H13A0.46920.03990.34620.095*
H13B0.26240.16400.29770.095*
H13C0.22660.01630.37980.095*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0622 (5)0.0439 (4)0.0664 (5)0.0132 (4)0.0141 (4)0.0110 (4)
O10.0392 (11)0.0621 (13)0.0624 (13)0.0001 (10)0.0046 (10)0.0288 (11)
N10.0627 (17)0.0475 (15)0.0632 (17)0.0066 (13)0.0197 (14)0.0159 (13)
C10.079 (2)0.052 (2)0.073 (2)0.0034 (18)0.0129 (19)0.0144 (18)
S20.0426 (4)0.0518 (5)0.0632 (5)0.0071 (3)0.0029 (3)0.0195 (4)
O20.0509 (13)0.0825 (16)0.0708 (15)0.0001 (12)0.0045 (11)0.0421 (13)
N20.0592 (16)0.0441 (14)0.0604 (16)0.0060 (12)0.0170 (13)0.0114 (12)
C20.0551 (18)0.0469 (17)0.0480 (17)0.0052 (14)0.0051 (14)0.0137 (14)
N30.0405 (13)0.0424 (13)0.0441 (13)0.0010 (10)0.0007 (10)0.0125 (11)
C30.0503 (17)0.0431 (15)0.0437 (16)0.0086 (13)0.0007 (13)0.0143 (13)
N40.0429 (14)0.0585 (16)0.0656 (17)0.0059 (12)0.0008 (12)0.0281 (13)
C40.0441 (16)0.0431 (15)0.0453 (16)0.0005 (12)0.0021 (13)0.0153 (13)
C50.0396 (15)0.0364 (14)0.0450 (16)0.0030 (12)0.0012 (12)0.0039 (12)
C60.0341 (14)0.0359 (14)0.0427 (15)0.0057 (11)0.0032 (11)0.0049 (12)
C70.0392 (15)0.0378 (14)0.0404 (15)0.0071 (11)0.0021 (12)0.0032 (12)
C80.0361 (15)0.0587 (19)0.062 (2)0.0088 (14)0.0015 (14)0.0154 (16)
C90.0414 (17)0.072 (2)0.062 (2)0.0154 (15)0.0060 (15)0.0185 (17)
C100.0559 (19)0.0518 (17)0.0480 (17)0.0179 (15)0.0039 (14)0.0139 (14)
C110.0437 (16)0.0451 (16)0.0478 (16)0.0082 (13)0.0006 (13)0.0110 (13)
C120.0397 (15)0.0446 (15)0.0467 (16)0.0101 (12)0.0039 (12)0.0103 (13)
C130.072 (2)0.067 (2)0.0543 (19)0.0092 (18)0.0069 (17)0.0286 (17)
Geometric parameters (Å, º) top
S1—C31.719 (3)C4—C51.480 (4)
S1—C21.737 (3)C4—H4B0.9700
O1—C51.340 (3)C4—H4C0.9700
O1—N41.420 (3)C6—C71.453 (4)
N1—C21.288 (4)C7—C121.373 (4)
N1—N21.382 (3)C7—C81.403 (4)
C1—C21.479 (4)C8—C91.374 (4)
C1—H1B0.9600C8—H8A0.9300
C1—H1C0.9600C9—C101.377 (4)
C1—H1D0.9600C9—H9A0.9300
S2—C31.745 (3)C10—C111.374 (4)
S2—C41.811 (3)C10—H10A0.9300
O2—C111.362 (3)C11—C121.397 (4)
O2—C131.413 (4)C12—H12A0.9300
N2—C31.299 (4)C13—H13A0.9600
N3—C51.291 (3)C13—H13B0.9600
N3—C61.381 (3)C13—H13C0.9600
N4—C61.308 (3)
C3—S1—C287.03 (15)O1—C5—C4118.0 (3)
C5—O1—N4106.0 (2)N4—C6—N3113.8 (2)
C2—N1—N2113.3 (3)N4—C6—C7122.9 (2)
C2—C1—H1B109.5N3—C6—C7123.3 (2)
C2—C1—H1C109.5C12—C7—C8118.9 (3)
H1B—C1—H1C109.5C12—C7—C6119.6 (3)
C2—C1—H1D109.5C8—C7—C6121.4 (3)
H1B—C1—H1D109.5C9—C8—C7119.6 (3)
H1C—C1—H1D109.5C9—C8—H8A120.2
C3—S2—C4101.41 (14)C7—C8—H8A120.2
C11—O2—C13118.5 (2)C8—C9—C10121.3 (3)
C3—N2—N1112.0 (2)C8—C9—H9A119.4
N1—C2—C1123.9 (3)C10—C9—H9A119.4
N1—C2—S1113.4 (2)C11—C10—C9119.7 (3)
C1—C2—S1122.7 (2)C11—C10—H10A120.1
C5—N3—C6103.2 (2)C9—C10—H10A120.1
N2—C3—S1114.2 (2)O2—C11—C10124.9 (3)
N2—C3—S2126.1 (2)O2—C11—C12115.6 (3)
S1—C3—S2119.65 (17)C10—C11—C12119.5 (3)
C6—N4—O1103.5 (2)C7—C12—C11121.0 (3)
C5—C4—S2113.3 (2)C7—C12—H12A119.5
C5—C4—H4B108.9C11—C12—H12A119.5
S2—C4—H4B108.9O2—C13—H13A109.5
C5—C4—H4C108.9O2—C13—H13B109.5
S2—C4—H4C108.9H13A—C13—H13B109.5
H4B—C4—H4C107.7O2—C13—H13C109.5
N3—C5—O1113.5 (3)H13A—C13—H13C109.5
N3—C5—C4128.4 (2)H13B—C13—H13C109.5
C2—N1—N2—C30.1 (4)O1—N4—C6—C7178.8 (2)
N2—N1—C2—C1178.5 (3)C5—N3—C6—N40.4 (3)
N2—N1—C2—S10.1 (4)C5—N3—C6—C7179.0 (2)
C3—S1—C2—N10.1 (3)N4—C6—C7—C12178.6 (3)
C3—S1—C2—C1178.5 (3)N3—C6—C7—C120.8 (4)
N1—N2—C3—S10.0 (3)N4—C6—C7—C80.1 (4)
N1—N2—C3—S2178.1 (2)N3—C6—C7—C8179.5 (3)
C2—S1—C3—N20.1 (2)C12—C7—C8—C90.9 (4)
C2—S1—C3—S2178.2 (2)C6—C7—C8—C9177.8 (3)
C4—S2—C3—N210.8 (3)C7—C8—C9—C101.0 (5)
C4—S2—C3—S1167.13 (17)C8—C9—C10—C110.4 (5)
C5—O1—N4—C60.5 (3)C13—O2—C11—C102.3 (4)
C3—S2—C4—C579.9 (2)C13—O2—C11—C12176.6 (3)
C6—N3—C5—O10.0 (3)C9—C10—C11—O2179.2 (3)
C6—N3—C5—C4179.7 (3)C9—C10—C11—C120.3 (4)
N4—O1—C5—N30.3 (3)C8—C7—C12—C110.2 (4)
N4—O1—C5—C4179.9 (2)C6—C7—C12—C11178.5 (2)
S2—C4—C5—N397.6 (3)O2—C11—C12—C7179.4 (2)
S2—C4—C5—O182.1 (3)C10—C11—C12—C70.4 (4)
O1—N4—C6—N30.6 (3)

Experimental details

Crystal data
Chemical formulaC13H12N4O2S2
Mr320.39
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)6.139 (1), 9.890 (2), 12.658 (3)
α, β, γ (°)72.45 (3), 85.91 (3), 77.12 (3)
V3)714.3 (3)
Z2
Radiation typeMo Kα
µ (mm1)0.38
Crystal size (mm)0.30 × 0.10 × 0.10
Data collection
DiffractometerNonius CAD-4
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.894, 0.963
No. of measured, independent and
observed [I > 2σ(I)] reflections
3078, 2802, 2063
Rint0.042
(sin θ/λ)max1)0.616
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.128, 1.06
No. of reflections2802
No. of parameters191
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.19, 0.28

Computer programs: CAD-4 Software (Enraf–Nonius, 1989), XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXTL (Siemens, 1996).

 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds