Download citation
Download citation
link to html
The title compound, C12H9ClN4OS2, was synthesized via condensation of 5-chloro­methyl-3-(4-chloro­phen­yl)-1,2,4-oxadiazole with 5-mercapto-2-methyl-1,3,4-thia­diazole. The benzene and oxadiazole rings are coplanar due to the extended aromatic system. The angle between this plane and the thia­diazole ring is 82.2 (3)°.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S160053680705177X/im2041sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S160053680705177X/im2041Isup2.hkl
Contains datablock I

CCDC reference: 669143

Key indicators

  • Single-crystal X-ray study
  • T = 293 K
  • Mean [sigma](C-C) = 0.007 Å
  • R factor = 0.057
  • wR factor = 0.159
  • Data-to-parameter ratio = 15.0

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT340_ALERT_3_C Low Bond Precision on C-C Bonds (x 1000) Ang ... 7
Alert level G PLAT199_ALERT_1_G Check the Reported _cell_measurement_temperature 293 K PLAT200_ALERT_1_G Check the Reported _diffrn_ambient_temperature . 293 K
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 1 ALERT level C = Check and explain 2 ALERT level G = General alerts; check 2 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 0 ALERT type 2 Indicator that the structure model may be wrong or deficient 1 ALERT type 3 Indicator that the structure quality may be low 0 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

Comment top

1,2,4-Oxadiazoles represent an important class of five-membered heterocycles. Some derivatives of 1,2,4-oxadiazoles have anti-inflammatory (Nicolaides et al., 1998) and antipicornaviral (Romero, 2001) properties. We are focusing our synthetic and structural studies on new oxindole derivatives. The sulfurether compounds exhibited considerably strong inhibiting activity to Staphylococcus aureus (Talar & Dejai, 1996). We report here the structure of its close analogue with a thiadiazole sulfanylether group present in the molecule, (I). This compound crystallizes in the monoclinic system, space group P21/c. There are three rings in the molecule. The benzene and oxadiazole ring are of course coplanar due to the extended aromatic system. The angle between the before mentioned plane and the thiadiazole moiety measures to 82.2 (3)°. There is no classic hydrogen bond in the molecular structure. The molecular structure of (I) is shown in Fig. 1. The bond lengths and angles are given in Table 1.

Related literature top

For related literature, see: Nicolaides et al. (1998); Romero (2001); Talar & Dejai (1996).

Experimental top

5-Mercapto-2-methyl-1,3,4-thiadiazole (20 mmol) was dissolved in ethanol (70 ml) and water (70 mmol). Sodium acetate (20 mmol) was added to this mixture. Then 3-[4-(chloro)phenyl]-5-chloromethyl-1,2,4-oxadiazole (40 mmol) was added. The resulting mixture was refluxed for 8 h. After cooling and filtrating, crude compound (I) was gained. Pure compound (I) was obstained by recrystallization from a mixture of ethyl acetate (8 ml) and light petrolum (bp. 333–363 K) (4 ml). Crystals of (I) suitable for X-ray diffraction were obstained by slow evaporation of an ethanolic solution. 1H NMR (CDCl3, δ, p.p.m.): 7.45–7.47(m, 2H), 7.35–7.36 (m, 2H), 4.17–4.18 (s, 2H), 2.35–2.36 (s,3H).

Refinement top

All H atoms bonded to the C atoms were placed geometrically at distances of 0.93–0.96 Å and included in the refinement using a riding motion approximation with Uiso(H) = 1.2 or 1.5Ueq of the carrier atom.

Structure description top

1,2,4-Oxadiazoles represent an important class of five-membered heterocycles. Some derivatives of 1,2,4-oxadiazoles have anti-inflammatory (Nicolaides et al., 1998) and antipicornaviral (Romero, 2001) properties. We are focusing our synthetic and structural studies on new oxindole derivatives. The sulfurether compounds exhibited considerably strong inhibiting activity to Staphylococcus aureus (Talar & Dejai, 1996). We report here the structure of its close analogue with a thiadiazole sulfanylether group present in the molecule, (I). This compound crystallizes in the monoclinic system, space group P21/c. There are three rings in the molecule. The benzene and oxadiazole ring are of course coplanar due to the extended aromatic system. The angle between the before mentioned plane and the thiadiazole moiety measures to 82.2 (3)°. There is no classic hydrogen bond in the molecular structure. The molecular structure of (I) is shown in Fig. 1. The bond lengths and angles are given in Table 1.

For related literature, see: Nicolaides et al. (1998); Romero (2001); Talar & Dejai (1996).

Computing details top

Data collection: CAD-4 Software (Enraf–Nonius, 1989); cell refinement: CAD-4 Software (Enraf–Nonius, 1989); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Siemens, 1996); software used to prepare material for publication: SHELXL97 (Sheldrick, 1997).

Figures top
[Figure 1] Fig. 1. A view of the molecular structure of (I), showing displacement ellipsoids at the 30% probability level.
2-{[3-(4-Chlorophenyl)-1,2,4-oxadiazol-5-yl]methylsulfanyl}-5-methyl- 1,3,4-thiadiazole top
Crystal data top
C12H9ClN4OS2F(000) = 664
Mr = 324.80Dx = 1.544 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 25 reflections
a = 5.857 (1) Åθ = 9–13°
b = 27.104 (5) ŵ = 0.57 mm1
c = 9.026 (2) ÅT = 293 K
β = 102.85 (3)°Block, colourless
V = 1397.0 (5) Å30.40 × 0.20 × 0.10 mm
Z = 4
Data collection top
Enraf–Nonius CAD-4
diffractometer
1783 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.043
Graphite monochromatorθmax = 26.0°, θmin = 1.5°
ω/2θ scansh = 77
Absorption correction: ψ scan
(North et al., 1968)
k = 033
Tmin = 0.804, Tmax = 0.945l = 011
2999 measured reflections3 standard reflections every 200 reflections
2733 independent reflections intensity decay: none
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.057Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.159H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.06P)2 + 1.5P]
where P = (Fo2 + 2Fc2)/3
2733 reflections(Δ/σ)max < 0.001
182 parametersΔρmax = 0.31 e Å3
0 restraintsΔρmin = 0.36 e Å3
Crystal data top
C12H9ClN4OS2V = 1397.0 (5) Å3
Mr = 324.80Z = 4
Monoclinic, P21/nMo Kα radiation
a = 5.857 (1) ŵ = 0.57 mm1
b = 27.104 (5) ÅT = 293 K
c = 9.026 (2) Å0.40 × 0.20 × 0.10 mm
β = 102.85 (3)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
1783 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.043
Tmin = 0.804, Tmax = 0.9453 standard reflections every 200 reflections
2999 measured reflections intensity decay: none
2733 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0570 restraints
wR(F2) = 0.159H-atom parameters constrained
S = 1.05Δρmax = 0.31 e Å3
2733 reflectionsΔρmin = 0.36 e Å3
182 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl1.1111 (2)0.13088 (5)1.04622 (16)0.0869 (5)
O0.5610 (6)0.09306 (13)0.4953 (4)0.0756 (10)
S10.6416 (2)0.25547 (5)0.78126 (12)0.0620 (4)
N10.7360 (6)0.23958 (14)0.5242 (4)0.0604 (10)
C10.9769 (8)0.30697 (17)0.6594 (5)0.0669 (12)
H1B1.02820.31010.56600.100*
H1C1.10780.29850.74000.100*
H1D0.91140.33770.68260.100*
S20.2753 (2)0.17581 (4)0.71433 (13)0.0600 (3)
N20.5640 (6)0.20583 (15)0.5361 (4)0.0634 (10)
C20.7962 (7)0.26766 (16)0.6434 (4)0.0546 (10)
C30.4946 (7)0.21095 (16)0.6626 (4)0.0529 (10)
N30.4483 (6)0.05758 (13)0.6854 (4)0.0558 (9)
N40.7201 (7)0.05395 (15)0.5459 (5)0.0727 (11)
C40.2231 (8)0.13062 (17)0.5637 (5)0.0622 (11)
H4B0.07290.11490.55930.075*
H4C0.21590.14710.46730.075*
C50.4090 (8)0.09241 (16)0.5865 (5)0.0568 (11)
C60.6443 (7)0.03463 (16)0.6587 (4)0.0552 (11)
C70.7599 (7)0.00683 (16)0.7487 (4)0.0528 (10)
C80.9555 (8)0.02945 (18)0.7194 (5)0.0658 (12)
H8A1.01640.01870.63830.079*
C91.0614 (8)0.06754 (19)0.8081 (6)0.0719 (13)
H9A1.19290.08270.78650.086*
C100.9735 (8)0.08369 (17)0.9301 (5)0.0625 (11)
C110.7767 (8)0.06139 (18)0.9601 (5)0.0683 (13)
H11A0.71590.07201.04140.082*
C120.6719 (8)0.02366 (18)0.8695 (5)0.0638 (12)
H12A0.53850.00900.88950.077*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl0.0857 (9)0.0915 (10)0.0884 (10)0.0198 (7)0.0295 (7)0.0077 (8)
O0.091 (2)0.081 (2)0.067 (2)0.0018 (19)0.0442 (18)0.0078 (18)
S10.0772 (7)0.0716 (8)0.0434 (6)0.0138 (6)0.0266 (5)0.0068 (5)
N10.066 (2)0.077 (3)0.0416 (19)0.0086 (19)0.0185 (17)0.0008 (18)
C10.081 (3)0.070 (3)0.054 (3)0.012 (2)0.025 (2)0.007 (2)
S20.0631 (7)0.0634 (7)0.0582 (7)0.0014 (5)0.0238 (5)0.0031 (5)
N20.075 (2)0.077 (3)0.0411 (19)0.010 (2)0.0197 (17)0.0036 (18)
C20.060 (2)0.066 (3)0.039 (2)0.004 (2)0.0143 (18)0.008 (2)
C30.062 (2)0.057 (3)0.041 (2)0.0049 (19)0.0156 (18)0.0045 (19)
N30.061 (2)0.062 (2)0.050 (2)0.0076 (17)0.0250 (16)0.0032 (18)
N40.087 (3)0.072 (3)0.074 (3)0.007 (2)0.050 (2)0.004 (2)
C40.057 (2)0.067 (3)0.062 (3)0.010 (2)0.011 (2)0.007 (2)
C50.066 (3)0.062 (3)0.047 (2)0.015 (2)0.024 (2)0.006 (2)
C60.069 (3)0.060 (3)0.047 (2)0.011 (2)0.036 (2)0.015 (2)
C70.060 (2)0.057 (3)0.049 (2)0.0140 (19)0.0288 (19)0.0159 (19)
C80.070 (3)0.073 (3)0.069 (3)0.009 (2)0.046 (2)0.011 (3)
C90.064 (3)0.081 (3)0.082 (3)0.001 (3)0.043 (3)0.015 (3)
C100.062 (3)0.070 (3)0.060 (3)0.002 (2)0.023 (2)0.008 (2)
C110.076 (3)0.078 (3)0.062 (3)0.003 (3)0.040 (2)0.000 (3)
C120.073 (3)0.073 (3)0.059 (3)0.008 (2)0.044 (2)0.002 (2)
Geometric parameters (Å, º) top
Cl—C101.735 (5)N4—C61.307 (5)
O—C51.341 (5)C4—C51.483 (6)
O—N41.418 (5)C4—H4B0.9700
S1—C31.713 (4)C4—H4C0.9700
S1—C21.726 (4)C6—C71.461 (6)
N1—C21.301 (5)C7—C81.376 (6)
N1—N21.382 (5)C7—C121.383 (5)
C1—C21.486 (6)C8—C91.368 (7)
C1—H1B0.9600C8—H8A0.9300
C1—H1C0.9600C9—C101.386 (6)
C1—H1D0.9600C9—H9A0.9300
S2—C31.744 (4)C10—C111.380 (6)
S2—C41.805 (5)C11—C121.367 (6)
N2—C31.302 (5)C11—H11A0.9300
N3—C51.284 (5)C12—H12A0.9300
N3—C61.373 (5)
C5—O—N4105.7 (3)N3—C5—O113.3 (4)
C3—S1—C287.5 (2)N3—C5—C4128.5 (4)
C2—N1—N2113.0 (3)O—C5—C4118.2 (4)
C2—C1—H1B109.5N4—C6—N3113.4 (4)
C2—C1—H1C109.5N4—C6—C7123.0 (4)
H1B—C1—H1C109.5N3—C6—C7123.6 (3)
C2—C1—H1D109.5C8—C7—C12118.5 (4)
H1B—C1—H1D109.5C8—C7—C6122.6 (4)
H1C—C1—H1D109.5C12—C7—C6118.9 (4)
C3—S2—C4100.4 (2)C9—C8—C7120.8 (4)
C3—N2—N1111.9 (4)C9—C8—H8A119.6
N1—C2—C1123.8 (4)C7—C8—H8A119.6
N1—C2—S1113.3 (3)C8—C9—C10120.2 (4)
C1—C2—S1122.9 (3)C8—C9—H9A119.9
N2—C3—S1114.3 (3)C10—C9—H9A119.9
N2—C3—S2124.7 (3)C11—C10—C9119.4 (5)
S1—C3—S2121.0 (2)C11—C10—Cl120.0 (4)
C5—N3—C6103.8 (3)C9—C10—Cl120.5 (4)
C6—N4—O103.8 (3)C12—C11—C10119.6 (4)
C5—C4—S2111.9 (3)C12—C11—H11A120.2
C5—C4—H4B109.2C10—C11—H11A120.2
S2—C4—H4B109.2C11—C12—C7121.5 (4)
C5—C4—H4C109.2C11—C12—H12A119.3
S2—C4—H4C109.2C7—C12—H12A119.3
H4B—C4—H4C107.9
C2—N1—N2—C32.3 (5)O—N4—C6—N30.4 (5)
N2—N1—C2—C1179.9 (4)O—N4—C6—C7178.7 (4)
N2—N1—C2—S10.9 (5)C5—N3—C6—N41.2 (5)
C3—S1—C2—N10.5 (3)C5—N3—C6—C7177.9 (4)
C3—S1—C2—C1178.6 (4)N4—C6—C7—C81.4 (7)
N1—N2—C3—S12.7 (5)N3—C6—C7—C8179.6 (4)
N1—N2—C3—S2178.4 (3)N4—C6—C7—C12177.7 (4)
C2—S1—C3—N21.8 (4)N3—C6—C7—C121.4 (6)
C2—S1—C3—S2179.2 (3)C12—C7—C8—C90.3 (7)
C4—S2—C3—N27.5 (4)C6—C7—C8—C9178.7 (4)
C4—S2—C3—S1171.4 (3)C7—C8—C9—C100.5 (7)
C5—O—N4—C60.5 (4)C8—C9—C10—C110.8 (7)
C3—S2—C4—C576.7 (3)C8—C9—C10—Cl178.3 (4)
C6—N3—C5—O1.6 (5)C9—C10—C11—C120.2 (7)
C6—N3—C5—C4178.0 (4)Cl—C10—C11—C12178.9 (4)
N4—O—C5—N31.3 (5)C10—C11—C12—C70.6 (7)
N4—O—C5—C4178.2 (4)C8—C7—C12—C110.9 (7)
S2—C4—C5—N371.5 (5)C6—C7—C12—C11178.1 (4)
S2—C4—C5—O108.0 (4)

Experimental details

Crystal data
Chemical formulaC12H9ClN4OS2
Mr324.80
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)5.857 (1), 27.104 (5), 9.026 (2)
β (°) 102.85 (3)
V3)1397.0 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.57
Crystal size (mm)0.40 × 0.20 × 0.10
Data collection
DiffractometerEnraf–Nonius CAD-4
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.804, 0.945
No. of measured, independent and
observed [I > 2σ(I)] reflections
2999, 2733, 1783
Rint0.043
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.057, 0.159, 1.05
No. of reflections2733
No. of parameters182
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.31, 0.36

Computer programs: CAD-4 Software (Enraf–Nonius, 1989), XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXTL (Siemens, 1996).

 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds