metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 4| April 2013| Pages m202-m203

Poly[[di­aqua­bis­­{μ-4-[6-(4-carb­­oxy­phen­yl)-4,4′-bipyridin-2-yl]benzoato-κ2O:N1′}copper(II)] di­methyl­formamide tetra­solvate]

aDepartment of Ophthalmology, The First Hospital of Jilin University, Changchun, 130021, People's Republic of China, and bDepartment of Gastrointestinal Surgery, The First Hospital of Jilin University, Changchun, 130021, People's Republic of China
*Correspondence e-mail: doctorwangdg@163.com

(Received 28 February 2013; accepted 6 March 2013; online 13 March 2013)

In the title compound, {[Cu(C24H15N2O4)2(H2O)2]·4C3H7NO}n, the CuII ion, lying on an inversion center, is six-coordinated by two N atoms from two 4-[6-(4-carb­oxy­phen­yl)-4,4′-bipyridin-2-yl]benzoate (L) ligands, two deprotonated carboxyl­ate O atoms from two other symmetry-related L ligands and two water mol­ecules in a slightly distorted octa­hedral geometry. The CuII atoms are linked by the bridging ligands into a layer parallel to (101). The presence of intra­layer O—H⋯O hydrogen bonds and ππ inter­actions between the pyridine and benzene rings [centroid–centroid distances = 3.808 (2) and 3.927 (2) Å] stabilizes the layer. Further O—H⋯O hydrogen bonds link the layers and the dimethyl­formamide solvent mol­ecules.

Related literature

For the design of metal-organic coordination polymers, see: Ge & Song (2012[Ge, X. & Song, S. (2012). Acta Cryst. E68, m1413.]); Herm et al. (2011[Herm, Z. R., Swisher, J. A., Smit, B., Krishna, R. & Long, J. R. (2011). J. Am. Chem. Soc. 133, 5664-5667.]); Liu et al. (2010[Liu, Y., Xuan, W. & Cui, Y. (2010). Adv. Mater. 22, 4112-4135.]); Wang et al. (2010[Wang, G.-H., Lei, Y.-Q., Wang, N., He, R.-L., Jia, H.-Q., Hu, N.-H. & Xu, J.-W. (2010). Cryst. Growth Des. 10, 534-540.]). For a related structure, see: Xia et al. (2012[Xia, Q.-H., Guo, Z.-F., Liu, L., Wang, Z. & Li, B. (2012). Acta Cryst. E68, m1395.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu(C24H15N2O4)2(H2O)2]·4C3H7NO

  • Mr = 1182.73

  • Monoclinic, P 21 /n

  • a = 7.7161 (17) Å

  • b = 17.550 (4) Å

  • c = 20.947 (4) Å

  • β = 96.800 (4)°

  • V = 2816.6 (10) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.46 mm−1

  • T = 293 K

  • 0.27 × 0.25 × 0.20 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.885, Tmax = 0.913

  • 14622 measured reflections

  • 5226 independent reflections

  • 3371 reflections with I > 2σ(I)

  • Rint = 0.058

Refinement
  • R[F2 > 2σ(F2)] = 0.061

  • wR(F2) = 0.185

  • S = 1.04

  • 5226 reflections

  • 376 parameters

  • H-atom parameters constrained

  • Δρmax = 0.93 e Å−3

  • Δρmin = −0.39 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O4—H4A⋯O2i 0.82 1.86 2.584 (4) 146
O1W—H1A⋯O5ii 0.85 1.98 2.808 (5) 165
O1W—H1B⋯O2iii 0.85 1.95 2.758 (4) 159
Symmetry codes: (i) [x+{\script{1\over 2}}, -y+{\script{5\over 2}}, z-{\script{1\over 2}}]; (ii) x+1, y, z; (iii) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: XP in SHELXTL and DIAMOND (Brandenburg, 1999[Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Comment top

Metal-organic coordination polymers (MOCPs) with infinite one-, two- or three-dimensional structures are assembled with metal ions or polynuclear clusters as nodes and organic ligands as linkers (Herm et al., 2011; Liu et al., 2010). Recently, the chemists have devoted themselves to design and synthesize MOCPs, not only due to their potential applications in the realm of gas adsorption and separation, catalysis, magnetism, luminescence, host–guest chemistry and etc, but also for their aesthetic and often complicated architectures and topologies (Ge & Song, 2012; Wang et al., 2010). In order to extend the investigations in this field, we used a multifunctional ligand, 4,4'-(4,4'-bipyridine-2,6-diyl)dibenzoic acid (bpydbH2) to design and synthesize the title copper(II) complex and report its structure here.

The asymmetric unit of the title compound contains one CuII ion lying on an inversion center, one anionic bpydbH ligand, one aqua ligand and two lattice DMF molecules. As shown in Fig. 1, the CuII ion is six-coordinated by two N atoms from two bpydbH ligands, two deprotonated carboxylate O atoms from two other symmetry-related bpydbH ligands and two aqua ligands, furnishing a slightly distorted octahedral geometry. The bond distances and angles are in a normal range (Xia et al., 2012). The Cu nodes are extended by the bridging bpydbH linkers into a layer parallel to (101) (Fig. 2). The presence of intralayer O—H···O hydrogen bonds and ππ interactions between the pyridine and benzene rings [centroid–centroid diatances = 3.808 (2) and 3.927 (2) Å] stabilizes the single layer.

Related literature top

For the design of metal-organic coordination polymers, see: Ge & Song (2012); Herm et al. (2011); Liu et al. (2010); Wang et al. (2010). For a related structure, see: Xia et al. (2012).

Experimental top

Cu(NO3)2.3H2O (0.0063 g, 0.025 mmol) and bpydbH2 (0.0099 g, 0.025 mmol) were suspended in a mixed solvent of dimethylformamide (DMF) (4 ml) and H2O (0.5 ml), and heated in a 15 ml Teflon-lined stainless-steel autoclave at 80°C for 3 days. After the autoclave was cooled to room temperature slowly, green crystals were collected by filtration and washed with DMF, and dried in air (yield: 65% based on Cu).

Refinement top

H atoms on C and carboxyl O atoms were positioned geometrically and refined as riding atoms, with C—H = 0.93, 0.96 and O—H = 0.82 Å and with Uiso(H) = 1.2(1.5 for methyl and carboxyl)Ueq(C,O). H atoms of water molecules were located in a difference Fourier map and refined as riding atoms, with Uiso(H) = 1.5Ueq(O).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: XP in SHELXTL and DIAMOND (Brandenburg, 1999); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound. Displacement ellipsoids are drawn at the 30% probability level. [Symmetry codes: (i) 1/2 + x, 3/2 - y, -1/2 + z; (ii) 3/2 - x, -1/2 + y, 1/2 - z; (iii) 2 - x, 1 - y, -z.]
[Figure 2] Fig. 2. View of the layer structure of the title compound.
Poly[[diaquabis{µ-4-[6-(4-carboxyphenyl)-4,4'-bipyridin-2-yl]benzoato-κ2O:N1'}copper(II)] dimethylformamide tetrasolvate] top
Crystal data top
[Cu(C24H15N2O4)2(H2O)2]·4C3H7NOF(000) = 1238
Mr = 1182.73Dx = 1.395 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 5226 reflections
a = 7.7161 (17) Åθ = 1.0–26.0°
b = 17.550 (4) ŵ = 0.46 mm1
c = 20.947 (4) ÅT = 293 K
β = 96.800 (4)°Block, green
V = 2816.6 (10) Å30.27 × 0.25 × 0.20 mm
Z = 2
Data collection top
Bruker APEXII CCD
diffractometer
5226 independent reflections
Radiation source: fine-focus sealed tube3371 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.058
ϕ and ω scansθmax = 25.5°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 97
Tmin = 0.885, Tmax = 0.913k = 2121
14622 measured reflectionsl = 2025
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.061Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.185H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0891P)2 + 2.0095P]
where P = (Fo2 + 2Fc2)/3
5226 reflections(Δ/σ)max < 0.001
376 parametersΔρmax = 0.93 e Å3
0 restraintsΔρmin = 0.39 e Å3
Crystal data top
[Cu(C24H15N2O4)2(H2O)2]·4C3H7NOV = 2816.6 (10) Å3
Mr = 1182.73Z = 2
Monoclinic, P21/nMo Kα radiation
a = 7.7161 (17) ŵ = 0.46 mm1
b = 17.550 (4) ÅT = 293 K
c = 20.947 (4) Å0.27 × 0.25 × 0.20 mm
β = 96.800 (4)°
Data collection top
Bruker APEXII CCD
diffractometer
5226 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
3371 reflections with I > 2σ(I)
Tmin = 0.885, Tmax = 0.913Rint = 0.058
14622 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0610 restraints
wR(F2) = 0.185H-atom parameters constrained
S = 1.04Δρmax = 0.93 e Å3
5226 reflectionsΔρmin = 0.39 e Å3
376 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu11.00000.50000.00000.0362 (2)
C10.8452 (6)1.2336 (2)0.1386 (2)0.0432 (10)
C20.8060 (5)1.1653 (2)0.10151 (19)0.0347 (9)
C30.7251 (5)1.1715 (2)0.0455 (2)0.0369 (10)
H30.68541.21860.03300.044*
C40.7040 (5)1.1079 (2)0.0088 (2)0.0350 (9)
H40.65171.11280.02880.042*
C50.7592 (5)1.0363 (2)0.02669 (18)0.0286 (8)
C60.8380 (5)1.0305 (2)0.08253 (19)0.0352 (9)
H60.87620.98320.09530.042*
C70.8607 (5)1.0943 (2)0.11976 (19)0.0376 (10)
H70.91321.08940.15730.045*
C80.7389 (5)0.9695 (2)0.01565 (19)0.0302 (8)
C90.7683 (5)0.8950 (2)0.00365 (18)0.0304 (9)
H90.79720.88530.04470.036*
C100.7540 (5)0.83558 (19)0.03927 (18)0.0280 (8)
C110.7072 (5)0.8537 (2)0.09959 (18)0.0314 (9)
H110.69580.81540.12950.038*
C120.6774 (5)0.9291 (2)0.11507 (18)0.0299 (8)
C130.6253 (5)0.9511 (2)0.17864 (18)0.0301 (9)
C140.5242 (5)1.0156 (2)0.18392 (19)0.0358 (9)
H140.49241.04550.14780.043*
C150.4702 (5)1.0358 (2)0.24194 (19)0.0372 (10)
H150.40041.07860.24450.045*
C160.5196 (5)0.9925 (2)0.29668 (18)0.0312 (9)
C170.6242 (5)0.9290 (2)0.29215 (19)0.0378 (10)
H170.65860.89980.32850.045*
C180.6777 (5)0.9089 (2)0.23352 (19)0.0366 (9)
H180.74940.86670.23100.044*
C190.4600 (6)1.0145 (2)0.3597 (2)0.0361 (10)
C200.7944 (5)0.75539 (19)0.02344 (17)0.0288 (8)
C210.9191 (5)0.73870 (19)0.01677 (18)0.0307 (9)
H210.96890.77780.03840.037*
C220.9695 (5)0.6647 (2)0.02478 (19)0.0339 (9)
H221.05430.65490.05170.041*
C230.7732 (5)0.6214 (2)0.04100 (19)0.0360 (9)
H230.71970.58110.05980.043*
C240.7177 (5)0.6942 (2)0.05158 (18)0.0342 (9)
H240.62940.70250.07740.041*
C250.6692 (8)0.6406 (4)0.1720 (3)0.0829 (19)
H25A0.70590.67730.20160.124*
H25B0.61440.59840.19550.124*
H25C0.76890.62290.14420.124*
C260.5118 (8)0.7558 (3)0.1443 (3)0.0756 (16)
H26A0.57390.77410.17830.113*
H26B0.54930.78330.10550.113*
H26C0.38890.76330.15580.113*
C270.4770 (6)0.6364 (3)0.0897 (2)0.0543 (12)
H270.50820.58540.08430.065*
C280.4517 (16)1.2769 (5)0.2557 (5)0.203 (6)
H28A0.41531.26420.21480.304*
H28B0.56561.25610.25860.304*
H28C0.37031.25620.28950.304*
C290.4063 (11)1.3970 (6)0.2090 (4)0.157 (4)
H29A0.37871.36130.17700.235*
H29B0.30541.42740.22280.235*
H29C0.49991.42940.19120.235*
C300.5028 (11)1.3864 (4)0.3123 (4)0.119 (3)
H300.48601.43870.31660.142*
N10.6925 (4)0.98644 (16)0.07362 (15)0.0305 (7)
N20.9010 (4)0.60580 (17)0.00477 (15)0.0331 (8)
N30.5471 (5)0.6755 (2)0.13415 (19)0.0533 (10)
N40.4576 (6)1.3570 (2)0.2622 (2)0.0619 (11)
O10.5313 (4)0.98064 (14)0.40897 (13)0.0395 (7)
O20.3418 (4)1.06386 (16)0.35908 (14)0.0488 (8)
O30.9397 (5)1.23445 (17)0.18056 (16)0.0582 (9)
O40.7673 (4)1.29571 (17)0.11906 (16)0.0607 (9)
H4A0.79161.33240.14050.091*
O50.3740 (4)0.6624 (2)0.05498 (17)0.0651 (10)
O60.5670 (7)1.3545 (2)0.3567 (2)0.1082 (17)
O1W1.3019 (4)0.54357 (17)0.02770 (15)0.0552 (8)
H1A1.32360.58470.00870.083*
H1B1.28280.55520.06560.083*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0628 (5)0.0222 (3)0.0263 (4)0.0050 (3)0.0164 (3)0.0015 (3)
C10.054 (3)0.033 (2)0.042 (3)0.001 (2)0.005 (2)0.0034 (19)
C20.036 (2)0.031 (2)0.037 (2)0.0049 (17)0.0019 (18)0.0061 (17)
C30.040 (2)0.0251 (19)0.046 (3)0.0037 (16)0.010 (2)0.0004 (17)
C40.039 (2)0.0273 (19)0.041 (2)0.0008 (17)0.0146 (19)0.0013 (17)
C50.032 (2)0.0272 (19)0.027 (2)0.0010 (16)0.0060 (16)0.0009 (15)
C60.048 (2)0.0254 (18)0.033 (2)0.0009 (17)0.0094 (19)0.0029 (16)
C70.052 (3)0.035 (2)0.028 (2)0.0037 (18)0.0104 (19)0.0002 (17)
C80.034 (2)0.0256 (18)0.032 (2)0.0004 (16)0.0066 (17)0.0011 (16)
C90.037 (2)0.0284 (19)0.027 (2)0.0006 (16)0.0088 (17)0.0017 (16)
C100.033 (2)0.0240 (18)0.028 (2)0.0001 (15)0.0067 (16)0.0014 (15)
C110.042 (2)0.0257 (19)0.027 (2)0.0008 (16)0.0090 (17)0.0019 (16)
C120.036 (2)0.0275 (19)0.027 (2)0.0004 (16)0.0085 (17)0.0000 (16)
C130.038 (2)0.0284 (19)0.025 (2)0.0028 (16)0.0074 (17)0.0047 (15)
C140.048 (2)0.033 (2)0.027 (2)0.0025 (17)0.0097 (19)0.0007 (16)
C150.050 (2)0.030 (2)0.034 (2)0.0050 (18)0.0104 (19)0.0020 (17)
C160.041 (2)0.0259 (19)0.029 (2)0.0039 (16)0.0126 (17)0.0045 (16)
C170.051 (3)0.032 (2)0.032 (2)0.0009 (18)0.0092 (19)0.0052 (17)
C180.047 (2)0.031 (2)0.033 (2)0.0078 (18)0.0118 (19)0.0013 (17)
C190.050 (2)0.026 (2)0.035 (2)0.0054 (18)0.014 (2)0.0043 (17)
C200.039 (2)0.0239 (18)0.024 (2)0.0012 (16)0.0051 (16)0.0003 (15)
C210.043 (2)0.0225 (18)0.029 (2)0.0019 (16)0.0141 (17)0.0005 (15)
C220.047 (2)0.0275 (19)0.030 (2)0.0006 (17)0.0146 (18)0.0004 (16)
C230.052 (3)0.028 (2)0.030 (2)0.0039 (18)0.0140 (19)0.0014 (16)
C240.045 (2)0.031 (2)0.029 (2)0.0012 (17)0.0158 (18)0.0017 (16)
C250.081 (4)0.119 (5)0.052 (4)0.025 (4)0.022 (3)0.004 (3)
C260.097 (4)0.062 (3)0.069 (4)0.003 (3)0.017 (3)0.009 (3)
C270.056 (3)0.053 (3)0.054 (3)0.005 (2)0.005 (3)0.002 (2)
C280.303 (15)0.088 (6)0.196 (11)0.064 (8)0.057 (10)0.066 (7)
C290.132 (7)0.259 (12)0.082 (6)0.104 (8)0.025 (5)0.000 (6)
C300.167 (8)0.079 (5)0.123 (7)0.022 (5)0.067 (6)0.031 (5)
N10.0353 (17)0.0303 (17)0.0272 (18)0.0014 (13)0.0090 (14)0.0030 (13)
N20.049 (2)0.0260 (16)0.0265 (18)0.0009 (14)0.0128 (15)0.0000 (13)
N30.054 (2)0.062 (3)0.046 (2)0.000 (2)0.0151 (19)0.0015 (19)
N40.071 (3)0.059 (3)0.061 (3)0.012 (2)0.027 (2)0.019 (2)
O10.0655 (19)0.0274 (14)0.0276 (16)0.0003 (13)0.0135 (14)0.0001 (11)
O20.071 (2)0.0377 (16)0.0413 (19)0.0105 (15)0.0232 (15)0.0045 (13)
O30.082 (2)0.0458 (19)0.051 (2)0.0038 (17)0.0217 (19)0.0064 (15)
O40.081 (2)0.0349 (17)0.070 (2)0.0016 (16)0.0251 (19)0.0134 (16)
O50.060 (2)0.075 (2)0.064 (2)0.0093 (18)0.0235 (19)0.0012 (19)
O60.179 (5)0.077 (3)0.083 (3)0.005 (3)0.075 (3)0.021 (2)
O1W0.072 (2)0.0441 (18)0.053 (2)0.0041 (16)0.0239 (17)0.0006 (15)
Geometric parameters (Å, º) top
Cu1—O1i1.980 (3)C19—O21.256 (5)
Cu1—O1ii1.980 (3)C19—O11.260 (5)
Cu1—N22.015 (3)C20—C211.383 (5)
Cu1—N2iii2.015 (3)C20—C241.390 (5)
C1—O31.207 (5)C21—C221.371 (5)
C1—O41.332 (5)C21—H210.9300
C1—C21.480 (5)C22—N21.345 (5)
C2—C71.383 (5)C22—H220.9300
C2—C31.398 (5)C23—N21.342 (5)
C3—C41.375 (5)C23—C241.374 (5)
C3—H30.9300C23—H230.9300
C4—C51.393 (5)C24—H240.9300
C4—H40.9300C25—N31.439 (6)
C5—C61.385 (5)C25—H25A0.9600
C5—C81.490 (5)C25—H25B0.9600
C6—C71.388 (5)C25—H25C0.9600
C6—H60.9300C26—N31.447 (6)
C7—H70.9300C26—H26A0.9600
C8—N11.340 (5)C26—H26B0.9600
C8—C91.394 (5)C26—H26C0.9600
C9—C101.390 (5)C27—O51.226 (5)
C9—H90.9300C27—N31.323 (6)
C10—C111.392 (5)C27—H270.9300
C10—C201.487 (5)C28—N41.413 (9)
C11—C121.388 (5)C28—H28A0.9600
C11—H110.9300C28—H28B0.9600
C12—N11.343 (5)C28—H28C0.9600
C12—C131.487 (5)C29—N41.411 (8)
C13—C141.385 (5)C29—H29A0.9600
C13—C181.387 (5)C29—H29B0.9600
C14—C151.377 (5)C29—H29C0.9600
C14—H140.9300C30—O61.238 (8)
C15—C161.391 (5)C30—N41.255 (7)
C15—H150.9300C30—H300.9300
C16—C171.385 (5)O1—Cu1iv1.980 (3)
C16—C191.499 (5)O4—H4A0.8200
C17—C181.387 (5)O1W—H1A0.8501
C17—H170.9300O1W—H1B0.8489
C18—H180.9300
O1i—Cu1—O1ii180.0O2—C19—C16117.9 (4)
O1i—Cu1—N291.16 (11)O1—C19—C16116.7 (4)
O1ii—Cu1—N288.84 (11)C21—C20—C24117.2 (3)
O1i—Cu1—N2iii88.84 (11)C21—C20—C10121.0 (3)
O1ii—Cu1—N2iii91.16 (11)C24—C20—C10121.7 (3)
N2—Cu1—N2iii180.0C22—C21—C20120.2 (3)
O3—C1—O4123.2 (4)C22—C21—H21119.9
O3—C1—C2124.8 (4)C20—C21—H21119.9
O4—C1—C2112.0 (4)N2—C22—C21122.6 (4)
C7—C2—C3118.9 (3)N2—C22—H22118.7
C7—C2—C1119.8 (4)C21—C22—H22118.7
C3—C2—C1121.1 (4)N2—C23—C24123.0 (3)
C4—C3—C2120.0 (4)N2—C23—H23118.5
C4—C3—H3120.0C24—C23—H23118.5
C2—C3—H3120.0C23—C24—C20119.6 (4)
C3—C4—C5121.4 (4)C23—C24—H24120.2
C3—C4—H4119.3C20—C24—H24120.2
C5—C4—H4119.3N3—C25—H25A109.5
C6—C5—C4118.3 (3)N3—C25—H25B109.5
C6—C5—C8122.2 (3)H25A—C25—H25B109.5
C4—C5—C8119.5 (3)N3—C25—H25C109.5
C5—C6—C7120.8 (4)H25A—C25—H25C109.5
C5—C6—H6119.6H25B—C25—H25C109.5
C7—C6—H6119.6N3—C26—H26A109.5
C2—C7—C6120.6 (4)N3—C26—H26B109.5
C2—C7—H7119.7H26A—C26—H26B109.5
C6—C7—H7119.7N3—C26—H26C109.5
N1—C8—C9122.8 (3)H26A—C26—H26C109.5
N1—C8—C5115.0 (3)H26B—C26—H26C109.5
C9—C8—C5122.2 (3)O5—C27—N3124.9 (5)
C10—C9—C8119.2 (3)O5—C27—H27117.6
C10—C9—H9120.4N3—C27—H27117.6
C8—C9—H9120.4N4—C28—H28A109.5
C9—C10—C11117.7 (3)N4—C28—H28B109.5
C9—C10—C20122.1 (3)H28A—C28—H28B109.5
C11—C10—C20120.2 (3)N4—C28—H28C109.5
C12—C11—C10119.9 (3)H28A—C28—H28C109.5
C12—C11—H11120.1H28B—C28—H28C109.5
C10—C11—H11120.1N4—C29—H29A109.5
N1—C12—C11122.3 (3)N4—C29—H29B109.5
N1—C12—C13115.9 (3)H29A—C29—H29B109.5
C11—C12—C13121.8 (3)N4—C29—H29C109.5
C14—C13—C18118.8 (3)H29A—C29—H29C109.5
C14—C13—C12119.9 (3)H29B—C29—H29C109.5
C18—C13—C12121.3 (3)O6—C30—N4128.2 (7)
C15—C14—C13120.9 (4)O6—C30—H30115.9
C15—C14—H14119.6N4—C30—H30115.9
C13—C14—H14119.6C8—N1—C12118.2 (3)
C14—C15—C16120.3 (4)C23—N2—C22117.3 (3)
C14—C15—H15119.9C23—N2—Cu1121.6 (2)
C16—C15—H15119.9C22—N2—Cu1120.9 (3)
C17—C16—C15119.2 (4)C27—N3—C25121.1 (5)
C17—C16—C19120.7 (4)C27—N3—C26121.6 (4)
C15—C16—C19120.1 (3)C25—N3—C26117.3 (4)
C16—C17—C18120.2 (4)C30—N4—C29125.9 (7)
C16—C17—H17119.9C30—N4—C28120.2 (7)
C18—C17—H17119.9C29—N4—C28113.8 (7)
C17—C18—C13120.6 (4)C19—O1—Cu1iv128.1 (3)
C17—C18—H18119.7C1—O4—H4A109.5
C13—C18—H18119.7H1A—O1W—H1B107.4
O2—C19—O1125.4 (4)
O3—C1—C2—C78.6 (7)C19—C16—C17—C18179.6 (4)
O4—C1—C2—C7173.1 (4)C16—C17—C18—C131.0 (6)
O3—C1—C2—C3166.8 (4)C14—C13—C18—C172.5 (6)
O4—C1—C2—C311.4 (6)C12—C13—C18—C17178.2 (3)
C7—C2—C3—C41.3 (6)C17—C16—C19—O2167.7 (4)
C1—C2—C3—C4174.2 (4)C15—C16—C19—O212.3 (5)
C2—C3—C4—C51.1 (6)C17—C16—C19—O111.0 (5)
C3—C4—C5—C60.6 (6)C15—C16—C19—O1168.9 (4)
C3—C4—C5—C8178.0 (4)C9—C10—C20—C2130.9 (6)
C4—C5—C6—C70.2 (6)C11—C10—C20—C21146.3 (4)
C8—C5—C6—C7177.6 (4)C9—C10—C20—C24153.5 (4)
C3—C2—C7—C61.0 (6)C11—C10—C20—C2429.2 (5)
C1—C2—C7—C6174.6 (4)C24—C20—C21—C223.5 (6)
C5—C6—C7—C20.5 (6)C10—C20—C21—C22172.2 (4)
C6—C5—C8—N1167.3 (3)C20—C21—C22—N20.6 (6)
C4—C5—C8—N110.0 (5)N2—C23—C24—C200.7 (6)
C6—C5—C8—C911.9 (6)C21—C20—C24—C232.9 (6)
C4—C5—C8—C9170.7 (4)C10—C20—C24—C23172.8 (4)
N1—C8—C9—C101.8 (6)C9—C8—N1—C121.4 (5)
C5—C8—C9—C10177.3 (3)C5—C8—N1—C12177.9 (3)
C8—C9—C10—C111.2 (5)C11—C12—N1—C80.4 (5)
C8—C9—C10—C20176.1 (3)C13—C12—N1—C8179.9 (3)
C9—C10—C11—C120.3 (5)C24—C23—N2—C223.6 (6)
C20—C10—C11—C12177.1 (3)C24—C23—N2—Cu1171.8 (3)
C10—C11—C12—N10.1 (6)C21—C22—N2—C233.0 (6)
C10—C11—C12—C13179.4 (3)C21—C22—N2—Cu1172.4 (3)
N1—C12—C13—C1428.6 (5)O1i—Cu1—N2—C2334.5 (3)
C11—C12—C13—C14151.0 (4)O1ii—Cu1—N2—C23145.5 (3)
N1—C12—C13—C18150.7 (4)O1i—Cu1—N2—C22140.8 (3)
C11—C12—C13—C1829.8 (6)O1ii—Cu1—N2—C2239.2 (3)
C18—C13—C14—C152.7 (6)O5—C27—N3—C25179.0 (5)
C12—C13—C14—C15178.1 (4)O5—C27—N3—C262.5 (8)
C13—C14—C15—C161.3 (6)O6—C30—N4—C29171.2 (8)
C14—C15—C16—C170.3 (6)O6—C30—N4—C2810.0 (14)
C14—C15—C16—C19179.8 (4)O2—C19—O1—Cu1iv6.5 (6)
C15—C16—C17—C180.4 (6)C16—C19—O1—Cu1iv174.9 (2)
Symmetry codes: (i) x+3/2, y1/2, z+1/2; (ii) x+1/2, y+3/2, z1/2; (iii) x+2, y+1, z; (iv) x+3/2, y+1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4A···O2v0.821.862.584 (4)146
O1W—H1A···O5vi0.851.982.808 (5)165
O1W—H1B···O2i0.851.952.758 (4)159
Symmetry codes: (i) x+3/2, y1/2, z+1/2; (v) x+1/2, y+5/2, z1/2; (vi) x+1, y, z.

Experimental details

Crystal data
Chemical formula[Cu(C24H15N2O4)2(H2O)2]·4C3H7NO
Mr1182.73
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)7.7161 (17), 17.550 (4), 20.947 (4)
β (°) 96.800 (4)
V3)2816.6 (10)
Z2
Radiation typeMo Kα
µ (mm1)0.46
Crystal size (mm)0.27 × 0.25 × 0.20
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.885, 0.913
No. of measured, independent and
observed [I > 2σ(I)] reflections
14622, 5226, 3371
Rint0.058
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.061, 0.185, 1.04
No. of reflections5226
No. of parameters376
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.93, 0.39

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXTL (Sheldrick, 2008), XP in SHELXTL and DIAMOND (Brandenburg, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4A···O2i0.821.862.584 (4)146
O1W—H1A···O5ii0.851.982.808 (5)165
O1W—H1B···O2iii0.851.952.758 (4)159
Symmetry codes: (i) x+1/2, y+5/2, z1/2; (ii) x+1, y, z; (iii) x+3/2, y1/2, z+1/2.
 

Acknowledgements

The authors are grateful for financial aid from The First Hospital of Jilin University.

References

First citationBrandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationGe, X. & Song, S. (2012). Acta Cryst. E68, m1413.  CSD CrossRef IUCr Journals Google Scholar
First citationHerm, Z. R., Swisher, J. A., Smit, B., Krishna, R. & Long, J. R. (2011). J. Am. Chem. Soc. 133, 5664–5667.  Web of Science CrossRef CAS PubMed Google Scholar
First citationLiu, Y., Xuan, W. & Cui, Y. (2010). Adv. Mater. 22, 4112–4135.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, G.-H., Lei, Y.-Q., Wang, N., He, R.-L., Jia, H.-Q., Hu, N.-H. & Xu, J.-W. (2010). Cryst. Growth Des. 10, 534–540.  Web of Science CrossRef CAS Google Scholar
First citationXia, Q.-H., Guo, Z.-F., Liu, L., Wang, Z. & Li, B. (2012). Acta Cryst. E68, m1395.  CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 4| April 2013| Pages m202-m203
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds