metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2,9-Di­methyl-1,10-phenanthrolin-1-ium tetra­chloridoferrate(III) methanol monosolvate

aDepartment of Chemistry, Shahid Beheshti University, G. C., Evin, Tehran 1983963113, Iran
*Correspondence e-mail: n-safari@sbu.ac.ir

(Received 29 May 2012; accepted 1 June 2012; online 13 June 2012)

In the title compound, (C14H13N2)[FeCl4]·CH3OH, the 2,9-dimethyl-1,10-phenanthrolin-1-ium cation, FeCl4 anion and methanol solvent mol­ecule lie on a twofold rotation axis. Due to symmetry, the H atom on the N atom of the cation is half-occupied. In the anion, the FeIII atom has a tetra­hedral geometry. H atoms of the methanol mol­ecule are disordered over two sets of sites around the twofold axis. In the crystal, ππ contacts between the pyridine rings and between the pyridine and benzene rings [centroid–centroid distances = 3.6535 (16) and 3.5522 (17) Å] and inter­molecular O—H⋯N and N—H⋯O hydrogen bonds stabilize the structure.

Related literature

For related structures, see: Abboud et al. (2005[Abboud, K., Harrowfield, J. M., James, B. D., Skelton, B. W. & White, A. H. (2005). Inorg. Chim. Acta, 358, 1293-1297.]); Amani et al. (2007[Amani, V., Safari, N. & Khavasi, H. R. (2007). Polyhedron, 26, 4257-4262.], 2009[Amani, V., Safari, N., Notash, B. & Khavasi, H. R. (2009). J. Coord. Chem. 62, 1939-1950.]); Khavasi et al. (2008[Khavasi, H. R., Amani, V. & Safari, N. (2008). Z. Kristallogr. New Cryst. Struct. 223, 41-42.]); Moreno et al. (2006[Moreno, M. A., Haukka, M., Kallinen, M. & Pakkanen, T. A. (2006). Appl. Organomet. Chem. 20, 51-69.]); Morsali (2005[Morsali, A. (2005). Anal. Sci. 21, x21-x22.]); Veidis et al. (1981[Veidis, M. V., Witten, E. H., Reiff, W. M., Brennan, T. F. & Garafalo, A. R. (1981). Inorg. Chim. Acta, 54, L133-L135.]); Yousefi et al. (2007[Yousefi, M., Ahmadi, R., Amani, V. & Khavasi, H. R. (2007). Acta Cryst. E63, m3114-m3115.]); Yu et al. (2006[Yu, Y.-Q., Ding, C.-F., Zhang, M.-L., Li, X.-M. & Zhang, S.-S. (2006). Acta Cryst. E62, o2187-o2189.]).

[Scheme 1]

Experimental

Crystal data
  • (C14H13N2)[FeCl4]·CH4O

  • Mr = 438.96

  • Monoclinic, C 2/c

  • a = 13.067 (3) Å

  • b = 20.377 (4) Å

  • c = 7.2810 (15) Å

  • β = 109.03 (3)°

  • V = 1832.7 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.41 mm−1

  • T = 120 K

  • 0.20 × 0.15 × 0.10 mm

Data collection
  • Stoe IPDS-2T diffractometer

  • Absorption correction: numerical (X-SHAPE and X-RED; Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA, X-RED and X-SHAPE. Stoe & Cie, Darmstadt, Germany.]) Tmin = 0.766, Tmax = 0.872

  • 9967 measured reflections

  • 2464 independent reflections

  • 2075 reflections with I > 2σ(I)

  • Rint = 0.049

Refinement
  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.099

  • S = 1.10

  • 2464 reflections

  • 112 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.84 e Å−3

  • Δρmin = −0.84 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N1 0.84 2.33 2.751 (4) 112
N1—H1D⋯O1 0.65 (12) 2.10 (10) 2.751 (4) 175 (14)

Data collection: X-AREA (Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA, X-RED and X-SHAPE. Stoe & Cie, Darmstadt, Germany.]); cell refinement: X-AREA; data reduction: X-RED (Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA, X-RED and X-SHAPE. Stoe & Cie, Darmstadt, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

In the recent years, we reported the synthesis and crystal structures of iron(III) proton transfer complexes, such as [Fe(bipy)Cl4][bipy.H] (Amani et al., 2007), [Fe(phen)Cl4][phen.H] (Khavasi et al., 2008), [Fe(4,4'-dmbpy)Cl4][4,4'-dmbpy.H] (Amani et al., 2009) (bipy = 2,2'-bipyridine, phen = 1,10-phenanthroline, 4,4'-dmbpy = 4,4'-dimethyl-2,2'-bipyridine). Several proton transfer systems using 2,9-dimethyl-1,10-phenanthroline as proton donor molecules, such as [Me2phen.H](ClO4) (Morsali, 2005), [Me2phen.H](NO3) (Yu et al., 2006), [Me2phen.H][Ru(CO)3Cl3] (Moreno et al., 2006) and [Me2phen.H]2[PtCl6] (Yousefi et al., 2007) (Me2phen.H = 2,9-dimethyl-1,10-phenanthrolinium) have been synthesized and characterized by single-crystal X-ray diffraction methods. Also, the structure of [Me2phen.H][FeCl4] was reported (Veidis et al., 1981). We report herein the synthesis and crystal structure of the title compound.

The molecular structure of the title compound is shown in Fig. 1. The asymmetric unit of the title compound contains half of a protonated 2,9-dimethyl-1,10-phenanthrolinium cation, half of a FeCl4- anion and half of a methanol solvent molecule. In the anion, the FeIII atom has a tetrahedral coordination. The Fe—Cl bond lengths and angles are within normal range (Abboud et al., 2005; Amani et al., 2007). In the crystal, intermolecular O—H···N and N—H···O hydrogen bonds (Table 1) and ππ interactions between the pyridine and benzene rings, Cg1···Cg1i = 3.6535 (16) and Cg1···Cg2ii = 3.5522 (17) Å [Cg1 and Cg2 are the centroids of the N1/C2–C6 ring and the C5, C6, C7, C5iii, C6iii, C7iii ring; symmetry codes: (i) x, 1-y, -1/2+z; (ii) 2-x, 1-y, -z; (iii) 2-x, y, 1/2-z], stabilize the structure (Fig. 2).

Related literature top

For related structures, see: Abboud et al. (2005); Amani et al. (2007, 2009); Khavasi et al. (2008); Moreno et al. (2006); Morsali (2005); Veidis et al. (1981); Yousefi et al. (2007); Yu et al. (2006).

Experimental top

For the preparation of the title compound, a solution of 2,9-dimethyl-1,10-phenanthroline (0.25 g, 1.20 mmol) in acetonitrile (10 ml) was added to a solution of FeCl3.6H2O (0.11 g, 0.40 mmol) in methanol (10 ml) and the resulting yellow solution was stirred at 313 K for 2 h. This solution was left to evaporate slowly at room temperature. After 5 days, yellow needle crystals of the title compound were isolated (yield: 0.13 g, 74.0%; m. p. 426 K).

Refinement top

H atoms bonded to N atom was found in difference Fourier map and refined isotropically. H atoms bonded to C and O atoms were positioned geometrically and refined as riding atoms, with O—H = 0.84, C—H = 0.95 (aromatic) and 0.98 (methyl) Å and with Uiso(H) = 1.2(1.5 for methyl and hydroxyl)Ueq(C,O)). H atoms of the methanol solvent molecule are disordered over two sets of sites around a twofold axis.

Structure description top

In the recent years, we reported the synthesis and crystal structures of iron(III) proton transfer complexes, such as [Fe(bipy)Cl4][bipy.H] (Amani et al., 2007), [Fe(phen)Cl4][phen.H] (Khavasi et al., 2008), [Fe(4,4'-dmbpy)Cl4][4,4'-dmbpy.H] (Amani et al., 2009) (bipy = 2,2'-bipyridine, phen = 1,10-phenanthroline, 4,4'-dmbpy = 4,4'-dimethyl-2,2'-bipyridine). Several proton transfer systems using 2,9-dimethyl-1,10-phenanthroline as proton donor molecules, such as [Me2phen.H](ClO4) (Morsali, 2005), [Me2phen.H](NO3) (Yu et al., 2006), [Me2phen.H][Ru(CO)3Cl3] (Moreno et al., 2006) and [Me2phen.H]2[PtCl6] (Yousefi et al., 2007) (Me2phen.H = 2,9-dimethyl-1,10-phenanthrolinium) have been synthesized and characterized by single-crystal X-ray diffraction methods. Also, the structure of [Me2phen.H][FeCl4] was reported (Veidis et al., 1981). We report herein the synthesis and crystal structure of the title compound.

The molecular structure of the title compound is shown in Fig. 1. The asymmetric unit of the title compound contains half of a protonated 2,9-dimethyl-1,10-phenanthrolinium cation, half of a FeCl4- anion and half of a methanol solvent molecule. In the anion, the FeIII atom has a tetrahedral coordination. The Fe—Cl bond lengths and angles are within normal range (Abboud et al., 2005; Amani et al., 2007). In the crystal, intermolecular O—H···N and N—H···O hydrogen bonds (Table 1) and ππ interactions between the pyridine and benzene rings, Cg1···Cg1i = 3.6535 (16) and Cg1···Cg2ii = 3.5522 (17) Å [Cg1 and Cg2 are the centroids of the N1/C2–C6 ring and the C5, C6, C7, C5iii, C6iii, C7iii ring; symmetry codes: (i) x, 1-y, -1/2+z; (ii) 2-x, 1-y, -z; (iii) 2-x, y, 1/2-z], stabilize the structure (Fig. 2).

For related structures, see: Abboud et al. (2005); Amani et al. (2007, 2009); Khavasi et al. (2008); Moreno et al. (2006); Morsali (2005); Veidis et al. (1981); Yousefi et al. (2007); Yu et al. (2006).

Computing details top

Data collection: X-AREA (Stoe & Cie, 2002); cell refinement: X-AREA (Stoe & Cie, 2002); data reduction: X-RED (Stoe & Cie, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound. Displacement ellipsoids are drawn at the 50% probability level. [Symmetry code: (i) 2-x, y, 1/2-z.]
[Figure 2] Fig. 2. Crystal packing diagram for the title compound. Hydrogen bonds are shown as dashed lines.
2,9-Dimethyl-1,10-phenanthrolin-1-ium tetrachloridoferrate(III) methanol monosolvate top
Crystal data top
(C14H13N2)[FeCl4]·CH4OF(000) = 892
Mr = 438.96Dx = 1.591 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 2464 reflections
a = 13.067 (3) Åθ = 3.1–29.2°
b = 20.377 (4) ŵ = 1.41 mm1
c = 7.2810 (15) ÅT = 120 K
β = 109.03 (3)°Needle, yellow
V = 1832.7 (7) Å30.20 × 0.15 × 0.10 mm
Z = 4
Data collection top
Stoe IPDS-2T
diffractometer
2464 independent reflections
Radiation source: fine-focus sealed tube2075 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.049
ω scansθmax = 29.2°, θmin = 3.1°
Absorption correction: numerical
(X-SHAPE and X-RED; Stoe & Cie, 2002)
h = 1717
Tmin = 0.766, Tmax = 0.872k = 2727
9967 measured reflectionsl = 99
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.099H atoms treated by a mixture of independent and constrained refinement
S = 1.10 w = 1/[σ2(Fo2) + (0.0412P)2 + 3.5467P]
where P = (Fo2 + 2Fc2)/3
2464 reflections(Δ/σ)max = 0.001
112 parametersΔρmax = 0.84 e Å3
0 restraintsΔρmin = 0.84 e Å3
Crystal data top
(C14H13N2)[FeCl4]·CH4OV = 1832.7 (7) Å3
Mr = 438.96Z = 4
Monoclinic, C2/cMo Kα radiation
a = 13.067 (3) ŵ = 1.41 mm1
b = 20.377 (4) ÅT = 120 K
c = 7.2810 (15) Å0.20 × 0.15 × 0.10 mm
β = 109.03 (3)°
Data collection top
Stoe IPDS-2T
diffractometer
2464 independent reflections
Absorption correction: numerical
(X-SHAPE and X-RED; Stoe & Cie, 2002)
2075 reflections with I > 2σ(I)
Tmin = 0.766, Tmax = 0.872Rint = 0.049
9967 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0450 restraints
wR(F2) = 0.099H atoms treated by a mixture of independent and constrained refinement
S = 1.10Δρmax = 0.84 e Å3
2464 reflectionsΔρmin = 0.84 e Å3
112 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Fe11.00000.15100 (2)0.25000.01928 (13)
Cl10.85420 (5)0.21251 (3)0.17847 (11)0.03440 (18)
Cl20.99637 (5)0.08774 (3)0.00604 (10)0.03183 (17)
O11.00000.68189 (19)0.25000.139 (3)
H10.97660.66820.13500.208*0.50
N10.89657 (16)0.56531 (10)0.1150 (3)0.0181 (4)
C10.7488 (2)0.63346 (14)0.0768 (4)0.0304 (6)
H1A0.72250.65220.02350.046*
H1B0.68830.62910.19850.046*
H1C0.80390.66240.09740.046*
C20.79690 (19)0.56745 (13)0.0131 (3)0.0232 (5)
C30.7407 (2)0.50876 (14)0.0831 (4)0.0290 (6)
H30.66920.51030.17290.035*
C40.7888 (2)0.44989 (14)0.0223 (4)0.0305 (6)
H40.75080.41050.07090.037*
C50.8949 (2)0.44681 (12)0.1129 (4)0.0242 (5)
C60.94610 (18)0.50710 (11)0.1799 (3)0.0178 (4)
C70.9500 (2)0.38679 (12)0.1836 (4)0.0323 (6)
H70.91570.34620.13630.039*
C81.00000.7446 (2)0.25000.073 (2)
H8A0.93050.76060.25640.088*0.50
H8B1.01070.76060.13070.088*0.50
H8C1.05870.76060.36290.088*0.50
H1D0.924 (9)0.592 (5)0.147 (16)0.088*0.50
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Fe10.0158 (2)0.0150 (2)0.0223 (2)0.0000.00025 (17)0.000
Cl10.0220 (3)0.0221 (3)0.0523 (4)0.0066 (2)0.0028 (3)0.0083 (3)
Cl20.0328 (3)0.0324 (3)0.0289 (3)0.0084 (3)0.0083 (3)0.0095 (2)
O10.154 (5)0.0212 (19)0.141 (5)0.0000.090 (5)0.000
N10.0187 (9)0.0185 (9)0.0181 (9)0.0025 (7)0.0074 (7)0.0004 (7)
C10.0194 (11)0.0393 (15)0.0290 (13)0.0023 (10)0.0030 (9)0.0067 (11)
C20.0200 (11)0.0314 (13)0.0195 (11)0.0052 (9)0.0085 (9)0.0008 (9)
C30.0216 (11)0.0415 (15)0.0254 (12)0.0124 (10)0.0097 (10)0.0077 (11)
C40.0309 (13)0.0343 (14)0.0327 (14)0.0189 (11)0.0192 (11)0.0154 (11)
C50.0307 (12)0.0204 (11)0.0297 (13)0.0092 (10)0.0211 (10)0.0062 (9)
C60.0192 (10)0.0181 (10)0.0193 (10)0.0012 (8)0.0107 (9)0.0012 (8)
C70.0450 (15)0.0153 (11)0.0507 (17)0.0049 (10)0.0349 (14)0.0062 (10)
C80.099 (5)0.026 (2)0.070 (4)0.0000.005 (4)0.000
Geometric parameters (Å, º) top
Fe1—Cl22.1826 (8)C2—C31.409 (4)
Fe1—Cl2i2.1826 (8)C3—C41.359 (4)
Fe1—Cl1i2.1966 (8)C3—H30.9500
Fe1—Cl12.1966 (8)C4—C51.416 (4)
O1—C81.277 (6)C4—H40.9500
O1—H10.8400C5—C61.408 (3)
N1—C21.333 (3)C5—C71.427 (4)
N1—C61.360 (3)C6—C6i1.445 (4)
N1—H1D0.64 (11)C7—C7i1.349 (6)
C1—C21.493 (4)C7—H70.9500
C1—H1A0.9800C8—H8A0.9800
C1—H1B0.9800C8—H8B0.9800
C1—H1C0.9800C8—H8C0.9800
Cl2—Fe1—Cl2i107.61 (5)C4—C3—H3120.0
Cl2—Fe1—Cl1i108.48 (3)C2—C3—H3120.0
Cl2i—Fe1—Cl1i110.92 (4)C3—C4—C5120.6 (2)
Cl2—Fe1—Cl1110.92 (4)C3—C4—H4119.7
Cl2i—Fe1—Cl1108.48 (3)C5—C4—H4119.7
Cl1i—Fe1—Cl1110.41 (4)C6—C5—C4116.7 (2)
C8—O1—H1109.5C6—C5—C7119.7 (2)
C2—N1—C6121.2 (2)C4—C5—C7123.6 (2)
C2—N1—H1D122 (10)N1—C6—C5121.5 (2)
C6—N1—H1D117 (10)N1—C6—C6i119.29 (12)
C2—C1—H1A109.5C5—C6—C6i119.25 (14)
C2—C1—H1B109.5C7i—C7—C5121.03 (16)
H1A—C1—H1B109.5C7i—C7—H7119.5
C2—C1—H1C109.5C5—C7—H7119.5
H1A—C1—H1C109.5O1—C8—H8A109.5
H1B—C1—H1C109.5O1—C8—H8B109.5
N1—C2—C3120.0 (2)H8A—C8—H8B109.5
N1—C2—C1117.6 (2)O1—C8—H8C109.5
C3—C2—C1122.3 (2)H8A—C8—H8C109.5
C4—C3—C2120.0 (2)H8B—C8—H8C109.5
C6—N1—C2—C30.3 (3)C2—N1—C6—C6i179.5 (3)
C6—N1—C2—C1179.8 (2)C4—C5—C6—N11.1 (3)
N1—C2—C3—C41.0 (4)C7—C5—C6—N1179.5 (2)
C1—C2—C3—C4179.1 (3)C4—C5—C6—C6i179.2 (3)
C2—C3—C4—C50.6 (4)C7—C5—C6—C6i0.2 (4)
C3—C4—C5—C60.4 (4)C6—C5—C7—C7i1.1 (5)
C3—C4—C5—C7179.7 (3)C4—C5—C7—C7i178.2 (3)
C2—N1—C6—C50.8 (3)
Symmetry code: (i) x+2, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.842.332.751 (4)112
N1—H1D···O10.65 (12)2.10 (10)2.751 (4)175 (14)

Experimental details

Crystal data
Chemical formula(C14H13N2)[FeCl4]·CH4O
Mr438.96
Crystal system, space groupMonoclinic, C2/c
Temperature (K)120
a, b, c (Å)13.067 (3), 20.377 (4), 7.2810 (15)
β (°) 109.03 (3)
V3)1832.7 (7)
Z4
Radiation typeMo Kα
µ (mm1)1.41
Crystal size (mm)0.20 × 0.15 × 0.10
Data collection
DiffractometerStoe IPDS2T
Absorption correctionNumerical
(X-SHAPE and X-RED; Stoe & Cie, 2002)
Tmin, Tmax0.766, 0.872
No. of measured, independent and
observed [I > 2σ(I)] reflections
9967, 2464, 2075
Rint0.049
(sin θ/λ)max1)0.685
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.099, 1.10
No. of reflections2464
No. of parameters112
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.84, 0.84

Computer programs: X-AREA (Stoe & Cie, 2002), X-RED (Stoe & Cie, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.842.33002.751 (4)112.00
N1—H1D···O10.65 (12)2.10 (10)2.751 (4)175 (14)
 

Acknowledgements

We are grateful to the Shahid Beheshti University for financial support.

References

First citationAbboud, K., Harrowfield, J. M., James, B. D., Skelton, B. W. & White, A. H. (2005). Inorg. Chim. Acta, 358, 1293–1297.  Web of Science CSD CrossRef CAS Google Scholar
First citationAmani, V., Safari, N. & Khavasi, H. R. (2007). Polyhedron, 26, 4257–4262.  Web of Science CSD CrossRef CAS Google Scholar
First citationAmani, V., Safari, N., Notash, B. & Khavasi, H. R. (2009). J. Coord. Chem. 62, 1939–1950.  Web of Science CSD CrossRef CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationKhavasi, H. R., Amani, V. & Safari, N. (2008). Z. Kristallogr. New Cryst. Struct. 223, 41–42.  CAS Google Scholar
First citationMoreno, M. A., Haukka, M., Kallinen, M. & Pakkanen, T. A. (2006). Appl. Organomet. Chem. 20, 51–69.  Web of Science CSD CrossRef CAS Google Scholar
First citationMorsali, A. (2005). Anal. Sci. 21, x21–x22.  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (2002). X-AREA, X-RED and X-SHAPE. Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationVeidis, M. V., Witten, E. H., Reiff, W. M., Brennan, T. F. & Garafalo, A. R. (1981). Inorg. Chim. Acta, 54, L133–L135.  CSD CrossRef CAS Web of Science Google Scholar
First citationYousefi, M., Ahmadi, R., Amani, V. & Khavasi, H. R. (2007). Acta Cryst. E63, m3114–m3115.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationYu, Y.-Q., Ding, C.-F., Zhang, M.-L., Li, X.-M. & Zhang, S.-S. (2006). Acta Cryst. E62, o2187–o2189.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds