metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

catena-Poly[[(ethane­diol-κ2O,O′)zinc]-μ-oxalato-κ4O1,O2:O1′,O2′]

aCollege of Chemistry and Chemical Engineering, Hunan Institute of Engineering, Xiangtan 411104, People's Republic of China, and bThe People's Hospital of Xiangtan County, Xiangtan 411104, People's Republic of China
*Correspondence e-mail: tzd0517@163.com

(Received 18 May 2012; accepted 28 May 2012; online 2 June 2012)

In the title complex, [Zn(C2O4)(C2H6O2)]n, the ZnII ion is in a distorted octa­hedral environment formed by two O atoms from an ethyl­ene glycol mol­ecule and four O atoms from two oxalate anions. The oxalate anions link the ZnII ions, forming a zigzag chain along [010]. The zigzag chains are extended into a three-dimensional network by O—H⋯O hydrogen bonds.

Related literature

For related structures of complexes with oxalates, see: Jin & Lin (2011[Jin, Z.-N. & Lin, H. (2011). Acta Cryst. E67, m680.]); Shen & Lush (2012[Shen, F. M. & Lush, S. F. (2012). Acta Cryst. E68, m21-m22.]).

[Scheme 1]

Experimental

Crystal data
  • [Zn(C2O4)(C2H6O2)]

  • Mr = 215.46

  • Orthorhombic, P b c a

  • a = 7.6411 (15) Å

  • b = 9.3603 (19) Å

  • c = 19.589 (4) Å

  • V = 1401.1 (5) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 3.49 mm−1

  • T = 293 K

  • 0.26 × 0.25 × 0.24 mm

Data collection
  • Rigaku SCXmini CCD diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.464, Tmax = 0.488

  • 11048 measured reflections

  • 1258 independent reflections

  • 1064 reflections with I > 2σ(I)

  • Rint = 0.068

Refinement
  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.133

  • S = 0.97

  • 1258 reflections

  • 108 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.41 e Å−3

  • Δρmin = −0.29 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O5—H5⋯O1i 0.82 (1) 1.88 (2) 2.689 (5) 170 (7)
O6—H6⋯O2ii 0.82 (1) 1.91 (2) 2.717 (5) 169 (6)
Symmetry codes: (i) [x+{\script{1\over 2}}, y, -z+{\script{3\over 2}}]; (ii) -x+1, -y+1, -z+2.

Data collection: CrystalClear (Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: XP in SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and DIAMOND (Brandenburg & Putz, 1999[Brandenburg, K. & Putz, H. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Oxalate is a very useful ligand for constructing coordination polymers (Shen & Lush, 2012) and it can be obtained as the degradation of some organic ligands (Jin & Lin, 2011). In this paper, we obtained the oxalate ligand by the oxidation of ethylene glycol in situ by solvothermal method. In the title compound, the ZnII ion is in a distorted octahedral environment formed by two O atoms from a chelate ethylene glycol molecule and four O atoms from two different oxalate anions (Fig. 1). The oxalate anions link the ZnII ions, leading to a zigzag chain structure along [0 1 0] (Fig. 2). The zigzag chains are extended into a three-dimensional structure by O—H···O hydrogen bonds (Fig. 3 and Table 1).

Related literature top

For related structures of complexes with oxalates, see: Jin & Lin (2011); Shen & Lush (2012).

Experimental top

A mixture of Zn(NO3)2.6H2O (0.148 g, 0.5 mmol) and concentrated sulfuric acid (0.5 ml) in ethylene glycol (10 ml) was placed in a 23 ml Teflon-lined stainless steel reactor and heated at 383 K for 48 h. After cooling to room temperature over a period of 48 h, colorless crystals suitable for X-ray analysis were obtained.

Refinement top

C-bound H atoms were placed at calculated positions and refined as riding atoms, with C—H = 0.97 Å and with Uiso(H) = 1.2Ueq(C). H atoms on O atoms were located in a difference Fourier map and refined isotropically, with a distance restraint of O—H = 0.82 (1) Å.

Structure description top

Oxalate is a very useful ligand for constructing coordination polymers (Shen & Lush, 2012) and it can be obtained as the degradation of some organic ligands (Jin & Lin, 2011). In this paper, we obtained the oxalate ligand by the oxidation of ethylene glycol in situ by solvothermal method. In the title compound, the ZnII ion is in a distorted octahedral environment formed by two O atoms from a chelate ethylene glycol molecule and four O atoms from two different oxalate anions (Fig. 1). The oxalate anions link the ZnII ions, leading to a zigzag chain structure along [0 1 0] (Fig. 2). The zigzag chains are extended into a three-dimensional structure by O—H···O hydrogen bonds (Fig. 3 and Table 1).

For related structures of complexes with oxalates, see: Jin & Lin (2011); Shen & Lush (2012).

Computing details top

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear (Rigaku, 2005); data reduction: CrystalClear (Rigaku, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg & Putz, 1999); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound. Displacement ellipsoids are drawn at the 30% probability level. [Symmetry code: (i) 1/2-x, -1/2+y, z.]
[Figure 2] Fig. 2. The one-dimensional zigzag chain in the title compound.
[Figure 3] Fig. 3. Crystal packing of the title compound. Dashed lines denote hydrogen bonds.
catena-Poly[[(ethanediol-κ2O,O')zinc]-µ-oxalato- κ4O1,O2:O1',O2'] top
Crystal data top
[Zn(C2O4)(C2H6O2)]F(000) = 864
Mr = 215.46Dx = 2.043 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 11377 reflections
a = 7.6411 (15) Åθ = 3.0–27.6°
b = 9.3603 (19) ŵ = 3.49 mm1
c = 19.589 (4) ÅT = 293 K
V = 1401.1 (5) Å3Block, colorless
Z = 80.26 × 0.25 × 0.24 mm
Data collection top
Rigaku SCXmini CCD
diffractometer
1258 independent reflections
Radiation source: fine-focus sealed tube1064 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.068
ω scansθmax = 25.2°, θmin = 3.4°
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
h = 99
Tmin = 0.464, Tmax = 0.488k = 1111
11048 measured reflectionsl = 2323
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.133H atoms treated by a mixture of independent and constrained refinement
S = 0.97 w = 1/[σ2(Fo2) + (0.1P)2 + 0.250P]
where P = (Fo2 + 2Fc2)/3
1258 reflections(Δ/σ)max = 0.001
108 parametersΔρmax = 0.41 e Å3
2 restraintsΔρmin = 0.29 e Å3
Crystal data top
[Zn(C2O4)(C2H6O2)]V = 1401.1 (5) Å3
Mr = 215.46Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 7.6411 (15) ŵ = 3.49 mm1
b = 9.3603 (19) ÅT = 293 K
c = 19.589 (4) Å0.26 × 0.25 × 0.24 mm
Data collection top
Rigaku SCXmini CCD
diffractometer
1258 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
1064 reflections with I > 2σ(I)
Tmin = 0.464, Tmax = 0.488Rint = 0.068
11048 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0432 restraints
wR(F2) = 0.133H atoms treated by a mixture of independent and constrained refinement
S = 0.97Δρmax = 0.41 e Å3
1258 reflectionsΔρmin = 0.29 e Å3
108 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.43052 (8)0.45088 (6)0.86776 (3)0.0252 (3)
O10.2638 (5)0.5709 (3)0.80505 (17)0.0313 (9)
O20.4012 (4)0.6358 (4)0.92671 (16)0.0261 (8)
O30.2619 (5)0.8446 (4)0.92532 (17)0.0307 (9)
O40.1094 (5)0.7728 (4)0.80610 (17)0.0324 (9)
O50.6647 (5)0.5109 (5)0.8235 (2)0.0382 (9)
O60.6152 (5)0.3630 (5)0.93473 (19)0.0360 (9)
C10.3000 (6)0.7272 (5)0.9006 (2)0.0226 (10)
C20.2171 (6)0.6879 (5)0.8305 (2)0.0234 (11)
C30.7851 (8)0.4251 (8)0.9253 (3)0.0510 (18)
H3A0.87420.36500.94570.061*
H3B0.79020.51870.94650.061*
C40.8139 (9)0.4373 (8)0.8507 (3)0.0516 (18)
H4A0.92020.49060.84140.062*
H4B0.82450.34330.83030.062*
H60.597 (7)0.368 (7)0.9757 (8)0.045 (18)*
H50.690 (9)0.520 (8)0.7831 (11)0.06 (2)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.0290 (4)0.0245 (4)0.0222 (4)0.0007 (2)0.0003 (2)0.0003 (2)
O10.042 (2)0.0265 (19)0.0256 (19)0.0090 (16)0.0116 (16)0.0070 (16)
O20.0293 (18)0.0275 (19)0.0213 (17)0.0034 (15)0.0039 (14)0.0025 (15)
O30.037 (2)0.029 (2)0.0263 (18)0.0066 (16)0.0081 (16)0.0075 (16)
O40.042 (2)0.035 (2)0.0207 (18)0.0090 (17)0.0090 (15)0.0024 (17)
O50.031 (2)0.057 (2)0.026 (2)0.0013 (19)0.0066 (18)0.0115 (19)
O60.037 (2)0.047 (2)0.024 (2)0.0084 (18)0.0009 (17)0.0094 (19)
C10.026 (3)0.023 (2)0.019 (2)0.005 (2)0.002 (2)0.001 (2)
C20.030 (3)0.023 (3)0.018 (2)0.001 (2)0.005 (2)0.002 (2)
C30.032 (3)0.086 (5)0.035 (3)0.011 (3)0.001 (3)0.009 (3)
C40.036 (4)0.081 (5)0.037 (3)0.001 (3)0.003 (3)0.011 (3)
Geometric parameters (Å, º) top
Zn1—O52.066 (4)O5—C41.434 (7)
Zn1—O4i2.081 (3)O5—H50.82 (1)
Zn1—O22.092 (3)O6—C31.434 (8)
Zn1—O62.095 (4)O6—H60.82 (1)
Zn1—O12.096 (3)C1—C21.557 (6)
Zn1—O3i2.103 (3)C3—C41.482 (8)
O1—C21.255 (5)C3—H3A0.9700
O2—C11.262 (6)C3—H3B0.9700
O3—C11.236 (6)C4—H4A0.9700
O4—C21.239 (6)C4—H4B0.9700
O5—Zn1—O4i95.80 (15)C3—O6—Zn1111.7 (3)
O5—Zn1—O295.72 (15)C3—O6—H6105 (4)
O4i—Zn1—O2165.25 (15)Zn1—O6—H6118 (4)
O5—Zn1—O677.65 (15)O3—C1—O2126.0 (4)
O4i—Zn1—O698.49 (16)O3—C1—C2117.4 (4)
O2—Zn1—O692.94 (15)O2—C1—C2116.5 (4)
O5—Zn1—O197.75 (15)O4—C2—O1126.5 (4)
O4i—Zn1—O190.01 (13)O4—C2—C1117.3 (4)
O2—Zn1—O179.34 (12)O1—C2—C1116.2 (4)
O6—Zn1—O1170.66 (16)O6—C3—C4107.0 (5)
O5—Zn1—O3i163.54 (15)O6—C3—H3A110.3
O4i—Zn1—O3i80.20 (13)C4—C3—H3A110.3
O2—Zn1—O3i91.17 (13)O6—C3—H3B110.3
O6—Zn1—O3i87.11 (16)C4—C3—H3B110.3
O1—Zn1—O3i98.21 (15)H3A—C3—H3B108.6
C2—O1—Zn1114.1 (3)O5—C4—C3106.5 (5)
C1—O2—Zn1113.8 (3)O5—C4—H4A110.4
C1—O3—Zn1ii112.0 (3)C3—C4—H4A110.4
C2—O4—Zn1ii112.8 (3)O5—C4—H4B110.4
C4—O5—Zn1113.7 (3)C3—C4—H4B110.4
C4—O5—H5103 (5)H4A—C4—H4B108.6
Zn1—O5—H5130 (5)
Symmetry codes: (i) x+1/2, y1/2, z; (ii) x+1/2, y+1/2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5···O1iii0.82 (1)1.88 (2)2.689 (5)170 (7)
O6—H6···O2iv0.82 (1)1.91 (2)2.717 (5)169 (6)
Symmetry codes: (iii) x+1/2, y, z+3/2; (iv) x+1, y+1, z+2.

Experimental details

Crystal data
Chemical formula[Zn(C2O4)(C2H6O2)]
Mr215.46
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)293
a, b, c (Å)7.6411 (15), 9.3603 (19), 19.589 (4)
V3)1401.1 (5)
Z8
Radiation typeMo Kα
µ (mm1)3.49
Crystal size (mm)0.26 × 0.25 × 0.24
Data collection
DiffractometerRigaku SCXmini CCD
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2005)
Tmin, Tmax0.464, 0.488
No. of measured, independent and
observed [I > 2σ(I)] reflections
11048, 1258, 1064
Rint0.068
(sin θ/λ)max1)0.599
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.133, 0.97
No. of reflections1258
No. of parameters108
No. of restraints2
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.41, 0.29

Computer programs: CrystalClear (Rigaku, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), XP in SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg & Putz, 1999), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5···O1i0.82 (1)1.88 (2)2.689 (5)170 (7)
O6—H6···O2ii0.82 (1)1.91 (2)2.717 (5)169 (6)
Symmetry codes: (i) x+1/2, y, z+3/2; (ii) x+1, y+1, z+2.
 

Acknowledgements

The authors acknowledge Hunan Provincial Department of Education for the Xiang Norimichi Foundation (2010 243).

References

First citationBrandenburg, K. & Putz, H. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationJin, Z.-N. & Lin, H. (2011). Acta Cryst. E67, m680.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShen, F. M. & Lush, S. F. (2012). Acta Cryst. E68, m21–m22.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds