metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 2| February 2012| Pages m135-m136

Aqua­[1,8-bis­­(pyridin-2-yl)-3,6-di­thia­octane-κ4N,S,S′,N′]copper(II) dinitrate aceto­nitrile monosolvate

aCentro de Investigacíon y Desarrollo Tecnológico en Electroquímica, Pedro Escobedo, Querétaro 76703, Mexico, bFacultad de Química, Universidad Nacional Autónoma de México, México 04510, DF, Mexico, and cCentro de Investigaciones Químicas, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Col. Chamilpa Cuernavaca, Morelos 62210, Mexico
*Correspondence e-mail: lortiz@cideteq.mx

(Received 24 December 2011; accepted 29 December 2011; online 11 January 2012)

In the title compound, [Cu(C16H20N2S2)(H2O)](NO3)2·CH3CN, the CuII atom displays a distorted square-pyramidal coordination, in which a water mol­ecule occupies the apical position and the basal plane is formed by two N atoms and two S atoms of a 1,8-bis­(pyridin-2-yl)-3,6-dithia­octane ligand. The crystal packing is stabilized by O—H⋯O and C—H⋯O hydrogen bonds.

Related literature

For a related compound, see: Rodríguez-Torres et al. (2009[Rodríguez-Torres, D., García-Ramos, J. C., Manríquez, J., Moreno-Esparza, R., Lozano, M. A., González, I., Gracia-Mora, I., Ruiz-Azuara, L., López, R. A. & Ortiz-Frade, L. (2009). Polyhedron, 28, 1886-1890.]). For related structures of Cu(II) complexes with 1,8-bis­(pyridin-2-yl)-3,6-dithia­octane ligands, see: Brubaker et al. (1979[Brubaker, G. R., Brown, J. N., Yoo, M. K., Kinsey, R. A., Kutchan, T. M. & Mottel, E. A. (1979). Inorg. Chem. 18, 299-302.]); Humphery et al. (1988[Humphery, D. G., Fallon, G. D. & Murray, K. S. (1988). J. Chem. Soc. Chem. Commun. pp. 1356-1358.]). For a description of the geometry of complexes with five-coordinate CuII ions, see: Addison et al. (1984[Addison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. & Verschoor, G. C. J. (1984). J. Chem. Soc. Dalton Trans. pp. 1349-1356.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu(C16H20N2S2)(H2O)](NO3)2·C2H3N

  • Mr = 551.09

  • Triclinic, [P \overline 1]

  • a = 8.8409 (5) Å

  • b = 10.8140 (5) Å

  • c = 13.5141 (6) Å

  • α = 79.895 (4)°

  • β = 71.500 (4)°

  • γ = 69.817 (4)°

  • V = 1146.86 (10) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.18 mm−1

  • T = 138 K

  • 0.59 × 0.30 × 0.08 mm

Data collection
  • Oxford Diffraction Gemini Atlas diffractometer

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2006[Oxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]) Tmin = 0.624, Tmax = 0.914

  • 8086 measured reflections

  • 4509 independent reflections

  • 3744 reflections with I > 2σ(I)

  • Rint = 0.023

Refinement
  • R[F2 > 2σ(F2)] = 0.030

  • wR(F2) = 0.076

  • S = 1.06

  • 4509 reflections

  • 305 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.66 e Å−3

  • Δρmin = −0.42 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1D⋯O5i 0.74 (3) 1.94 (3) 2.669 (2) 169 (3)
O1W—H1E⋯O1 0.77 (2) 2.00 (3) 2.754 (3) 166 (2)
C3—H3⋯O2ii 0.95 2.55 3.487 (3) 168
C8—H8A⋯O1iii 0.99 2.54 3.447 (3) 152
C8—H8B⋯O4iii 0.99 2.55 3.341 (3) 137
C10—H10A⋯O1iii 0.99 2.43 3.228 (3) 137
C10—H10B⋯O5iv 0.99 2.45 3.271 (3) 140
C13—H13⋯O6iv 0.95 2.42 3.277 (3) 149
C14—H14⋯O2v 0.95 2.56 3.220 (3) 127
C16—H16⋯O6v 0.95 2.36 3.126 (3) 137
C17—H17A⋯O6 0.98 2.26 3.145 (3) 150
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) -x+1, -y+1, -z+2; (iii) x+1, y, z; (iv) x+1, y+1, z; (v) x, y+1, z.

Data collection: CrysAlis CCD (Oxford Diffraction, 2006[Oxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]); cell refinement: CrysAlis RED (Oxford Diffraction, 2006[Oxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Cu(II)–[1,8-bis(pyridin-2-yl)-3,6-dithiaoctane] complex has demonstrated biological activity against human tumor cervix line HeLa, which can be related to bio-mimetic Cu-SOD activity. Electrochemical studies indicate that the high flexibility of the 1,8-bis(pyridin-2-yl)-3,6-dithiaoctane ligand towards the preferential geometry of central atom could be an important factor in biological activity. However, the crystal structure of this compound was not obtained (Rodríguez-Torres et al., 2009).

The asymmetric unit of the title compound contains one complex cation [Cu(pdto)(H2O)]2+ [pdto = 1,8-bis(pyridin-2-yl)-3,6-dithiaoctane], two nitrate anions and one acetonitrile solvent molecule (Fig. 1). The complex cation consists of a five-coordinated CuII ion in a distorted squared-pyramidal environment. The basal sites are occupied by N1, N2, S1 and S2 of the 1,8-bis(pyridin-2-yl)-3,6-dithiaoctane ligand (Humphery et al., 1988). The basal Cu—N/S bond lengths are in a range of 2.0169 (17)–2.3488 (6) Å. The aqua ligand in the apical position has a Cu1—O1W bond distance of 2.1342 (16) Å, 0.129 Å shorter than that of 2.263 Å observed in [Cu(pdto)(ClO4)]ClO4 (Brubaker et al., 1979). The basal CuN2S2 plane presents a slight distortion from planarity (τ = 0.1621) (Addison et al., 1984), as shown by the displacements of the atoms from a mean plane through them; the metal ion is situated 0.2260 (5) Å above the N1/N2/S1/S2 plane [least-squares plane: 7.663 (2)x + 1.291 (4)y + 9.420 (4)z = 14.302 (4)].

The nitrate anions and acetonitrile molecule are not involved in the coordination sphere of the Cu ion. In the crystal, O—H···O and weak C—H···O hydrogen bonds stabilize the crystal packing (Table 1). The water molecule (O1W) interacts with O1 and O5 acceptor atoms of the nitrate anions, forming a C22(5) motif.

Related literature top

For a related compound, see: Rodríguez-Torres et al. (2009). For related structures of Cu(II) complexes with 1,8-bis(pyridin-2-yl)-3,6-dithiaoctane ligands, see: Brubaker et al. (1979); Humphery et al. (1988). For a description of the geometry of complexes with five-coordinate CuII ions, see: Addison et al. (1984).

Experimental top

Cu(NO3).2.5H2O (0.129 g, 0.56 mmol) was dissolved in 20 ml of anhydrous acetonitrile, followed by slow addition of 1,8-bis(pyridin-2-yl)-3,6-dithiaoctane (0.1693 g, 0.56 mmol) contained in 5 ml of anhydrous acetonitrile. A deep blue solution was obtained, and by slow ether diffusion, crystals suitable for X-ray analysis were obtained after 3 days.

Refinement top

H atoms bonded to O atom were located in difference Fourier maps and refined with Uiso(H) = Ueq(O). H atoms attached to C atoms were positioned geometrically and refined as riding on their parent atoms, with C—H = 0.95 (aromatic), 0.98 (methyl) and 0.99 (methylene) Å and with Uiso(H) = 1.2(1.5 for methyl)Ueq(C).

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2006); cell refinement: CrysAlis RED (Oxford Diffraction 2006); data reduction: CrysAlis RED (Oxford Diffraction 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure for the title compound. Displacement ellipsoids are drawn at the 50% probability level.
Aqua[1,8-bis(pyridin-2-yl)-3,6-dithiaoctane- κ4N,S,S',N']copper(II) dinitrate acetonitrile monosolvate top
Crystal data top
[Cu(C16H20N2S2)(H2O)](NO3)2·C2H3NZ = 2
Mr = 551.09F(000) = 570
Triclinic, P1Dx = 1.596 Mg m3
a = 8.8409 (5) ÅMo Kα radiation, λ = 0.71073 Å
b = 10.8140 (5) ÅCell parameters from 5580 reflections
c = 13.5141 (6) Åθ = 3.5–26.0°
α = 79.895 (4)°µ = 1.18 mm1
β = 71.500 (4)°T = 138 K
γ = 69.817 (4)°Lamina, dark-blue
V = 1146.86 (10) Å30.59 × 0.30 × 0.08 mm
Data collection top
Oxford Diffraction Gemini Atlas
diffractometer
4509 independent reflections
Graphite monochromator3744 reflections with I > 2σ(I)
Detector resolution: 10.4685 pixels mm-1Rint = 0.023
ω scansθmax = 26.1°, θmin = 3.5°
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2006)
h = 109
Tmin = 0.624, Tmax = 0.914k = 1312
8086 measured reflectionsl = 1516
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.030Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.076H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.0411P)2]
where P = (Fo2 + 2Fc2)/3
4509 reflections(Δ/σ)max = 0.001
305 parametersΔρmax = 0.66 e Å3
0 restraintsΔρmin = 0.42 e Å3
Crystal data top
[Cu(C16H20N2S2)(H2O)](NO3)2·C2H3Nγ = 69.817 (4)°
Mr = 551.09V = 1146.86 (10) Å3
Triclinic, P1Z = 2
a = 8.8409 (5) ÅMo Kα radiation
b = 10.8140 (5) ŵ = 1.18 mm1
c = 13.5141 (6) ÅT = 138 K
α = 79.895 (4)°0.59 × 0.30 × 0.08 mm
β = 71.500 (4)°
Data collection top
Oxford Diffraction Gemini Atlas
diffractometer
4509 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2006)
3744 reflections with I > 2σ(I)
Tmin = 0.624, Tmax = 0.914Rint = 0.023
8086 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0300 restraints
wR(F2) = 0.076H atoms treated by a mixture of independent and constrained refinement
S = 1.06Δρmax = 0.66 e Å3
4509 reflectionsΔρmin = 0.42 e Å3
305 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.5834 (3)0.7615 (2)0.83597 (16)0.0179 (5)
H10.53630.82840.78870.021*
C20.4779 (3)0.7292 (2)0.92882 (17)0.0204 (5)
H20.36030.77230.9450.024*
C30.5462 (3)0.6329 (2)0.99811 (17)0.0218 (5)
H30.4770.61071.06380.026*
C40.7164 (3)0.5699 (2)0.97001 (16)0.0191 (5)
H40.7650.50211.01610.023*
C50.8173 (3)0.6045 (2)0.87531 (16)0.0158 (4)
C61.0013 (3)0.5327 (2)0.84063 (16)0.0174 (5)
H6A1.03650.47760.9010.021*
H6B1.06330.59810.81740.021*
C71.0492 (3)0.4443 (2)0.75161 (16)0.0192 (5)
H7A0.98070.38350.77310.023*
H7B1.16830.38980.74030.023*
C81.2318 (3)0.5431 (2)0.56171 (17)0.0199 (5)
H8A1.28050.56270.61150.024*
H8B1.30470.45730.53310.024*
C91.2209 (3)0.6514 (2)0.47372 (17)0.0219 (5)
H9A1.17710.62820.42290.026*
H9B1.33490.65670.43670.026*
C101.2157 (3)0.8567 (2)0.58109 (16)0.0181 (5)
H10A1.33030.79310.56310.022*
H10B1.22420.94520.55090.022*
C111.1507 (3)0.8592 (2)0.70013 (16)0.0175 (5)
H11A1.14560.77030.73130.021*
H11B1.22980.88150.72660.021*
C120.9796 (3)0.9581 (2)0.73364 (15)0.0156 (4)
C130.9532 (3)1.0732 (2)0.77730 (17)0.0200 (5)
H131.04161.0870.7950.024*
C140.7971 (3)1.1677 (2)0.79486 (17)0.0231 (5)
H140.77731.24640.82560.028*
C150.6700 (3)1.1474 (2)0.76767 (17)0.0212 (5)
H150.56341.2130.77620.025*
C160.7027 (3)1.0283 (2)0.72745 (16)0.0180 (5)
H160.61551.01260.70980.022*
C170.2700 (3)0.0954 (2)0.98358 (19)0.0329 (6)
H17A0.32510.07480.91050.049*
H17B0.27910.01311.02860.049*
H17C0.32440.14851.00360.049*
C180.0950 (4)0.1690 (3)0.99553 (19)0.0324 (6)
N10.7503 (2)0.70242 (16)0.80927 (13)0.0147 (4)
N20.8527 (2)0.93454 (16)0.71257 (13)0.0139 (4)
N30.0409 (4)0.2285 (3)1.0044 (2)0.0611 (8)
N40.3300 (2)0.15790 (18)0.65069 (14)0.0209 (4)
N50.5198 (2)0.52975 (17)0.72843 (14)0.0188 (4)
O10.5078 (2)0.61883 (15)0.65457 (12)0.0275 (4)
O20.65264 (19)0.48347 (14)0.75472 (12)0.0234 (4)
O1W0.6855 (2)0.79702 (17)0.60155 (13)0.0223 (4)
O30.3987 (2)0.48851 (19)0.77325 (13)0.0399 (5)
O40.4269 (2)0.22261 (17)0.60683 (13)0.0333 (4)
O50.2323 (3)0.1471 (2)0.60526 (14)0.0507 (6)
O60.3220 (2)0.10636 (19)0.74130 (12)0.0373 (5)
S11.02040 (7)0.53473 (5)0.62853 (4)0.01695 (13)
S21.08663 (7)0.81202 (5)0.51967 (4)0.01743 (13)
Cu10.88876 (3)0.75583 (2)0.667678 (18)0.01329 (9)
H1D0.696 (3)0.815 (2)0.545 (2)0.02*
H1E0.650 (3)0.739 (2)0.6110 (19)0.02*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0170 (12)0.0159 (11)0.0193 (11)0.0044 (9)0.0038 (9)0.0015 (9)
C20.0150 (11)0.0211 (12)0.0215 (12)0.0058 (10)0.0007 (9)0.0030 (9)
C30.0239 (13)0.0236 (12)0.0160 (11)0.0113 (10)0.0029 (9)0.0046 (9)
C40.0247 (13)0.0191 (11)0.0142 (11)0.0090 (10)0.0052 (9)0.0012 (9)
C50.0205 (11)0.0156 (11)0.0131 (10)0.0068 (9)0.0050 (9)0.0026 (8)
C60.0180 (11)0.0198 (11)0.0151 (11)0.0071 (9)0.0065 (9)0.0032 (9)
C70.0196 (12)0.0167 (11)0.0174 (11)0.0042 (10)0.0031 (9)0.0017 (9)
C80.0157 (11)0.0186 (11)0.0210 (12)0.0040 (9)0.0011 (9)0.0047 (9)
C90.0244 (13)0.0239 (12)0.0148 (11)0.0086 (10)0.0024 (9)0.0078 (9)
C100.0142 (11)0.0188 (11)0.0208 (12)0.0071 (9)0.0018 (9)0.0020 (9)
C110.0140 (11)0.0170 (11)0.0218 (11)0.0046 (9)0.0058 (9)0.0014 (9)
C120.0159 (11)0.0183 (11)0.0120 (10)0.0077 (9)0.0023 (8)0.0024 (8)
C130.0207 (12)0.0226 (12)0.0183 (11)0.0113 (10)0.0017 (9)0.0034 (9)
C140.0250 (13)0.0169 (11)0.0239 (12)0.0092 (10)0.0023 (10)0.0041 (9)
C150.0182 (12)0.0164 (11)0.0210 (12)0.0016 (10)0.0001 (9)0.0008 (9)
C160.0139 (11)0.0186 (11)0.0198 (11)0.0056 (9)0.0041 (9)0.0026 (9)
C170.0342 (15)0.0361 (14)0.0242 (13)0.0051 (12)0.0078 (11)0.0044 (11)
C180.0366 (16)0.0307 (14)0.0284 (14)0.0107 (13)0.0067 (12)0.0025 (11)
N10.0167 (10)0.0147 (9)0.0123 (9)0.0060 (8)0.0023 (7)0.0010 (7)
N20.0134 (9)0.0147 (9)0.0129 (9)0.0051 (7)0.0030 (7)0.0015 (7)
N30.0369 (16)0.0621 (18)0.074 (2)0.0040 (14)0.0147 (14)0.0030 (15)
N40.0180 (10)0.0246 (10)0.0180 (10)0.0055 (9)0.0026 (8)0.0029 (8)
N50.0207 (10)0.0196 (10)0.0158 (9)0.0068 (8)0.0019 (8)0.0052 (8)
O10.0310 (10)0.0262 (8)0.0294 (9)0.0141 (8)0.0157 (8)0.0123 (7)
O20.0190 (9)0.0237 (8)0.0277 (9)0.0018 (7)0.0114 (7)0.0029 (7)
O1W0.0265 (9)0.0306 (10)0.0163 (8)0.0168 (8)0.0102 (7)0.0058 (7)
O30.0311 (10)0.0629 (13)0.0322 (10)0.0318 (10)0.0073 (8)0.0128 (9)
O40.0285 (10)0.0412 (10)0.0362 (10)0.0229 (9)0.0069 (8)0.0032 (8)
O50.0662 (14)0.0919 (16)0.0228 (10)0.0612 (13)0.0203 (9)0.0136 (10)
O60.0240 (9)0.0706 (13)0.0171 (9)0.0205 (9)0.0069 (7)0.0111 (8)
S10.0190 (3)0.0175 (3)0.0142 (3)0.0070 (2)0.0022 (2)0.0026 (2)
S20.0174 (3)0.0196 (3)0.0139 (3)0.0070 (2)0.0022 (2)0.0012 (2)
Cu10.01294 (14)0.01486 (14)0.01176 (14)0.00559 (11)0.00217 (10)0.00008 (10)
Geometric parameters (Å, º) top
C1—N11.345 (3)C11—H11B0.99
C1—C21.376 (3)C12—N21.353 (3)
C1—H10.95C12—C131.387 (3)
C2—C31.382 (3)C13—C141.381 (3)
C2—H20.95C13—H130.95
C3—C41.376 (3)C14—C151.381 (3)
C3—H30.95C14—H140.95
C4—C51.382 (3)C15—C161.388 (3)
C4—H40.95C15—H150.95
C5—N11.356 (2)C16—N21.342 (3)
C5—C61.498 (3)C16—H160.95
C6—C71.530 (3)C17—C181.445 (4)
C6—H6A0.99C17—H17A0.98
C6—H6B0.99C17—H17B0.98
C7—S11.820 (2)C17—H17C0.98
C7—H7A0.99C18—N31.129 (3)
C7—H7B0.99N1—Cu12.0265 (17)
C8—C91.517 (3)N2—Cu12.0169 (17)
C8—S11.826 (2)N4—O41.233 (2)
C8—H8A0.99N4—O61.244 (2)
C8—H8B0.99N4—O51.252 (2)
C9—S21.817 (2)N5—O31.239 (2)
C9—H9A0.99N5—O21.246 (2)
C9—H9B0.99N5—O11.263 (2)
C10—C111.529 (3)O1W—Cu12.1342 (16)
C10—S21.830 (2)O1W—H1D0.74 (2)
C10—H10A0.99O1W—H1E0.77 (3)
C10—H10B0.99S1—Cu12.3419 (6)
C11—C121.501 (3)S2—Cu12.3488 (6)
C11—H11A0.99
N1—C1—C2122.79 (19)N2—C12—C11116.83 (18)
N1—C1—H1118.6C13—C12—C11122.20 (19)
C2—C1—H1118.6C14—C13—C12119.4 (2)
C1—C2—C3118.7 (2)C14—C13—H13120.3
C1—C2—H2120.6C12—C13—H13120.3
C3—C2—H2120.6C15—C14—C13119.8 (2)
C4—C3—C2118.7 (2)C15—C14—H14120.1
C4—C3—H3120.7C13—C14—H14120.1
C2—C3—H3120.7C14—C15—C16117.9 (2)
C3—C4—C5120.56 (19)C14—C15—H15121
C3—C4—H4119.7C16—C15—H15121
C5—C4—H4119.7N2—C16—C15122.6 (2)
N1—C5—C4120.49 (19)N2—C16—H16118.7
N1—C5—C6117.97 (18)C15—C16—H16118.7
C4—C5—C6121.51 (18)C18—C17—H17A109.5
C5—C6—C7113.22 (17)C18—C17—H17B109.5
C5—C6—H6A108.9H17A—C17—H17B109.5
C7—C6—H6A108.9C18—C17—H17C109.5
C5—C6—H6B108.9H17A—C17—H17C109.5
C7—C6—H6B108.9H17B—C17—H17C109.5
H6A—C6—H6B107.7N3—C18—C17178.7 (3)
C6—C7—S1113.97 (14)C1—N1—C5118.68 (18)
C6—C7—H7A108.8C1—N1—Cu1118.34 (13)
S1—C7—H7A108.8C5—N1—Cu1122.85 (14)
C6—C7—H7B108.8C16—N2—C12119.15 (18)
S1—C7—H7B108.8C16—N2—Cu1121.40 (14)
H7A—C7—H7B107.7C12—N2—Cu1119.34 (14)
C9—C8—S1108.29 (15)O4—N4—O6121.63 (19)
C9—C8—H8A110O4—N4—O5119.84 (18)
S1—C8—H8A110O6—N4—O5118.48 (19)
C9—C8—H8B110O3—N5—O2120.81 (18)
S1—C8—H8B110O3—N5—O1119.09 (19)
H8A—C8—H8B108.4O2—N5—O1120.10 (18)
C8—C9—S2112.79 (15)Cu1—O1W—H1D121 (2)
C8—C9—H9A109Cu1—O1W—H1E112.8 (18)
S2—C9—H9A109H1D—O1W—H1E102 (3)
C8—C9—H9B109C7—S1—C8101.14 (10)
S2—C9—H9B109C7—S1—Cu1105.19 (7)
H9A—C9—H9B107.8C8—S1—Cu198.81 (7)
C11—C10—S2114.91 (15)C9—S2—C10102.25 (10)
C11—C10—H10A108.5C9—S2—Cu1102.29 (7)
S2—C10—H10A108.5C10—S2—Cu1100.95 (7)
C11—C10—H10B108.5N2—Cu1—N192.23 (7)
S2—C10—H10B108.5N2—Cu1—O1W101.61 (7)
H10A—C10—H10B107.5N1—Cu1—O1W91.34 (7)
C12—C11—C10111.75 (17)N2—Cu1—S1159.72 (5)
C12—C11—H11A109.3N1—Cu1—S191.39 (5)
C10—C11—H11A109.3O1W—Cu1—S198.25 (5)
C12—C11—H11B109.3N2—Cu1—S284.82 (5)
C10—C11—H11B109.3N1—Cu1—S2169.43 (5)
H11A—C11—H11B107.9O1W—Cu1—S299.19 (5)
N2—C12—C13120.82 (19)S1—Cu1—S288.00 (2)
N1—C1—C2—C30.6 (3)C11—C10—S2—C9111.41 (16)
C1—C2—C3—C42.2 (3)C11—C10—S2—Cu16.11 (16)
C2—C3—C4—C51.4 (3)C16—N2—Cu1—N171.14 (15)
C3—C4—C5—N11.0 (3)C12—N2—Cu1—N1105.23 (15)
C3—C4—C5—C6176.8 (2)C16—N2—Cu1—O1W20.69 (16)
N1—C5—C6—C770.0 (2)C12—N2—Cu1—O1W162.94 (15)
C4—C5—C6—C7107.9 (2)C16—N2—Cu1—S1171.24 (11)
C5—C6—C7—S167.2 (2)C12—N2—Cu1—S15.1 (3)
S1—C8—C9—S258.91 (18)C16—N2—Cu1—S2119.04 (15)
S2—C10—C11—C1260.7 (2)C12—N2—Cu1—S264.60 (14)
C10—C11—C12—N265.2 (2)C1—N1—Cu1—N270.66 (16)
C10—C11—C12—C13110.3 (2)C5—N1—Cu1—N2113.39 (16)
N2—C12—C13—C143.1 (3)C1—N1—Cu1—O1W31.02 (16)
C11—C12—C13—C14172.21 (18)C5—N1—Cu1—O1W144.93 (16)
C12—C13—C14—C150.8 (3)C1—N1—Cu1—S1129.30 (15)
C13—C14—C15—C162.9 (3)C5—N1—Cu1—S146.64 (15)
C14—C15—C16—N21.2 (3)C1—N1—Cu1—S2144.2 (2)
C2—C1—N1—C51.8 (3)C5—N1—Cu1—S239.9 (4)
C2—C1—N1—Cu1177.89 (16)C7—S1—Cu1—N262.99 (16)
C4—C5—N1—C12.5 (3)C8—S1—Cu1—N241.17 (16)
C6—C5—N1—C1175.32 (18)C7—S1—Cu1—N137.25 (9)
C4—C5—N1—Cu1178.48 (15)C8—S1—Cu1—N1141.42 (9)
C6—C5—N1—Cu10.6 (3)C7—S1—Cu1—O1W128.81 (9)
C15—C16—N2—C122.6 (3)C8—S1—Cu1—O1W127.03 (9)
C15—C16—N2—Cu1173.80 (16)C7—S1—Cu1—S2132.19 (8)
C13—C12—N2—C164.7 (3)C8—S1—Cu1—S228.02 (7)
C11—C12—N2—C16170.80 (17)C9—S2—Cu1—N2157.96 (9)
C13—C12—N2—Cu1171.73 (15)C10—S2—Cu1—N252.70 (8)
C11—C12—N2—Cu112.8 (2)C9—S2—Cu1—N183.8 (3)
C6—C7—S1—C896.11 (17)C10—S2—Cu1—N121.5 (3)
C6—C7—S1—Cu16.32 (17)C9—S2—Cu1—O1W101.09 (9)
C9—C8—S1—C7161.96 (15)C10—S2—Cu1—O1W153.65 (9)
C9—C8—S1—Cu154.46 (15)C9—S2—Cu1—S13.05 (8)
C8—C9—S2—C1073.74 (18)C10—S2—Cu1—S1108.31 (7)
C8—C9—S2—Cu130.51 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1D···O5i0.74 (3)1.94 (3)2.669 (2)169 (3)
O1W—H1E···O10.77 (2)2.00 (3)2.754 (3)166 (2)
C3—H3···O2ii0.952.553.487 (3)168
C8—H8A···O1iii0.992.543.447 (3)152
C8—H8B···O4iii0.992.553.341 (3)137
C10—H10A···O1iii0.992.433.228 (3)137
C10—H10B···O5iv0.992.453.271 (3)140
C13—H13···O6iv0.952.423.277 (3)149
C14—H14···O2v0.952.563.220 (3)127
C16—H16···O6v0.952.363.126 (3)137
C17—H17A···O60.982.263.145 (3)150
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y+1, z+2; (iii) x+1, y, z; (iv) x+1, y+1, z; (v) x, y+1, z.

Experimental details

Crystal data
Chemical formula[Cu(C16H20N2S2)(H2O)](NO3)2·C2H3N
Mr551.09
Crystal system, space groupTriclinic, P1
Temperature (K)138
a, b, c (Å)8.8409 (5), 10.8140 (5), 13.5141 (6)
α, β, γ (°)79.895 (4), 71.500 (4), 69.817 (4)
V3)1146.86 (10)
Z2
Radiation typeMo Kα
µ (mm1)1.18
Crystal size (mm)0.59 × 0.30 × 0.08
Data collection
DiffractometerOxford Diffraction Gemini Atlas
diffractometer
Absorption correctionMulti-scan
(CrysAlis RED; Oxford Diffraction, 2006)
Tmin, Tmax0.624, 0.914
No. of measured, independent and
observed [I > 2σ(I)] reflections
8086, 4509, 3744
Rint0.023
(sin θ/λ)max1)0.618
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.030, 0.076, 1.06
No. of reflections4509
No. of parameters305
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.66, 0.42

Computer programs: CrysAlis CCD (Oxford Diffraction, 2006), CrysAlis RED (Oxford Diffraction 2006), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1D···O5i0.74 (3)1.94 (3)2.669 (2)169 (3)
O1W—H1E···O10.77 (2)2.00 (3)2.754 (3)166 (2)
C3—H3···O2ii0.952.553.487 (3)168
C8—H8A···O1iii0.992.543.447 (3)152
C8—H8B···O4iii0.992.553.341 (3)137
C10—H10A···O1iii0.992.433.228 (3)137
C10—H10B···O5iv0.992.453.271 (3)140
C13—H13···O6iv0.952.423.277 (3)149
C14—H14···O2v0.952.563.220 (3)127
C16—H16···O6v0.952.363.126 (3)137
C17—H17A···O60.982.263.145 (3)150
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y+1, z+2; (iii) x+1, y, z; (iv) x+1, y+1, z; (v) x, y+1, z.
 

Acknowledgements

The authors thank CONACyT (130500) for financial support.

References

First citationAddison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. & Verschoor, G. C. J. (1984). J. Chem. Soc. Dalton Trans. pp. 1349–1356.  CSD CrossRef Web of Science Google Scholar
First citationBrubaker, G. R., Brown, J. N., Yoo, M. K., Kinsey, R. A., Kutchan, T. M. & Mottel, E. A. (1979). Inorg. Chem. 18, 299–302.  CSD CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationHumphery, D. G., Fallon, G. D. & Murray, K. S. (1988). J. Chem. Soc. Chem. Commun. pp. 1356–1358.  Google Scholar
First citationOxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.  Google Scholar
First citationRodríguez-Torres, D., García-Ramos, J. C., Manríquez, J., Moreno-Esparza, R., Lozano, M. A., González, I., Gracia-Mora, I., Ruiz-Azuara, L., López, R. A. & Ortiz-Frade, L. (2009). Polyhedron, 28, 1886–1890.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 2| February 2012| Pages m135-m136
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds