metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Poly[[μ-2,2′-di­ethyl-1,1′-(propane-1,3-di­yl)di-1H-imidazole-κ2N3:N3′](μ-5-hy­dr­oxy­isophthalato-κ2O1:O3)zinc]

aDepartment of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, People's Republic of China
*Correspondence e-mail: yys@ujs.edu.cn

(Received 16 September 2011; accepted 8 October 2011; online 22 October 2011)

In the title coordination polymer, [Zn(C8H4O5)(C13H20N4)]n, the ZnII ion is coordinated by an O2N2 donor set in a distorted tetra­hedral geometry. The ZnII ions are connected by 5-hy­droxy­isophthalate (hbdc) and 2,2′-diethyl-1,1′-(propane-1,3-di­yl)di-1H-imidazole (pbie) ligands, forming a threefold inter­penetrating diamondoid framework. In the pbie ligand, one of the ethyl­imidazole groups is disordered over two positions, with a site-occupancy ratio of 0.670 (9):0.330 (9). An inter­molecular O—H⋯O hydrogen bond is formed between the hy­droxy and carboxyl­ate groups of the hbdc ligands.

Related literature

For background to bis­(imidazole) ligands, see: Liu et al. (2007[Liu, Y.-Y., Ma, J.-F. & Zhang, L.-P. (2007). Acta Cryst. E63, m2317.], 2011[Liu, Y.-Y., Wang, Z.-H., Yang, J., Liu, B., Liu, Y.-Y. & Ma, J.-F. (2011). CrystEngComm, 13, 3811-3821.]).

[Scheme 1]

Experimental

Crystal data
  • [Zn(C8H4O5)(C13H20N4)]

  • Mr = 477.83

  • Orthorhombic, P 21 21 21

  • a = 9.476 (2) Å

  • b = 14.846 (4) Å

  • c = 15.724 (4) Å

  • V = 2212.1 (9) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.15 mm−1

  • T = 293 K

  • 0.35 × 0.28 × 0.22 mm

Data collection
  • Bruker APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.68, Tmax = 0.78

  • 21558 measured reflections

  • 5031 independent reflections

  • 4372 reflections with I > 2σ(I)

  • Rint = 0.047

Refinement
  • R[F2 > 2σ(F2)] = 0.050

  • wR(F2) = 0.136

  • S = 1.05

  • 5031 reflections

  • 309 parameters

  • 15 restraints

  • H-atom parameters constrained

  • Δρmax = 0.76 e Å−3

  • Δρmin = −0.46 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 2190 Friedel pairs

  • Flack parameter: −0.006 (19)

Table 1
Selected bond lengths (Å)

Zn1—O1 1.992 (3)
Zn1—O4i 1.950 (3)
Zn1—N1 2.021 (5)
Zn1—N1′ 2.047 (13)
Zn1—N4ii 2.055 (4)
Symmetry codes: (i) [-x, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) [-x+{\script{3\over 2}}, -y+1, z+{\script{1\over 2}}].

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O5—H5⋯O1iii 0.82 1.97 2.741 (5) 156
Symmetry code: (iii) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+2].

Data collection: SMART (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: XP in SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and DIAMOND (Brandenburg, 1999[Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

As part of an investigation of the applications of transition metal complexes, there is a need to prepare further examples of these compounds. In this paper, the structure of the title compound is described.

As shown in Fig. 1, the ZnII ion is four-coordinated by two O atoms from two bridging 5-hydroxyisophthalate (hbdc) ligands and two N atoms from two bridging 1,1'-(1,3-propanediyl)bis(imidazole-2-ethyl) (pbie) ligands (Liu et al., 2007, 2011). The carboxylate groups of the hbdc ligand act in a monodentate mode and the hydroxyl group is not involved in coordination. The pbie ligand coordinates to two ZnII ions through its two aromatic N atoms. As illustrated in Fig. 2, the ZnII ions are connected by the hbdc and pbie ligands into a diamondiod framework. To minimize the big void cavity in the diamondiod cage, a threefold interpenetrating net is generated (Fig. 3).

Related literature top

For background to bis(imidazole) ligands, see: Liu et al. (2007, 2011).

Experimental top

The pbie ligand was synthesized according to literature (Liu et al., 2007) but 2-phenylimidazole and 1,4-dichlorobutane were replaced by 2-ethylimidazole and 1,3-dichloropropane. A mixture of ZnCO3 (0.050 g, 0.40 mmol), 5-hydroxyisophthalic acid (0.043 g, 0.40 mmol), pbie (0.093 g, 0.40 mmol) and water (8 ml) was sealed in a Teflon-lined reactor (15 ml) and heated at 150 °C for 3 d. After the mixture was cooled to room temperature at 10°C h-1, colorless crystals of the title compound were obtained (yield: 38%).

Refinement top

Disordered ethylimidazole group of the pbie ligand was refined over two sites, with a site occupancy ratio of 0.670 (9):0.330 (9). H atoms bound to C atoms were positioned geometrically and refined using a riding model, with C—H = 0.93 (aromatic), 0.97 (CH2) and 0.96 (CH3) Å and with Uiso(H) = 1.2(1.5 for methyl)Ueq(C). Hydroxyl H atom was refined using a riding model, with O—H = 0.82 Å and Uiso(H) = 1.5Ueq(O).

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg, 1999); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound. Displacement ellipsoids are drawn at the 30% probability level. [Symmetry codes: (i) -x, 1/2 + y, 3/2 - z; (ii) 3/2 - x, 1 - y, 1/2 + z.]
[Figure 2] Fig. 2. View of a single diamondiod motif.
[Figure 3] Fig. 3. View of the threefold interpenetrating net.
Poly[[µ-2,2'-diethyl-1,1'-(propane-1,3-diyl)di-1H-imidazole- κ2N3:N3'](µ-5-hydroxyisophthalato- κ2O1:O3)zinc] top
Crystal data top
[Zn(C8H4O5)(C13H20N4)]F(000) = 992
Mr = 477.83Dx = 1.435 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 4372 reflections
a = 9.476 (2) Åθ = 3.0–27.5°
b = 14.846 (4) ŵ = 1.15 mm1
c = 15.724 (4) ÅT = 293 K
V = 2212.1 (9) Å3Block, colorless
Z = 40.35 × 0.28 × 0.22 mm
Data collection top
Bruker APEX CCD
diffractometer
5031 independent reflections
Radiation source: fine-focus sealed tube4372 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.047
ϕ and ω scansθmax = 27.5°, θmin = 3.0°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1212
Tmin = 0.68, Tmax = 0.78k = 1919
21558 measured reflectionsl = 2020
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.050H-atom parameters constrained
wR(F2) = 0.136 w = 1/[σ2(Fo2) + (0.0827P)2 + 0.6158P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.001
5031 reflectionsΔρmax = 0.76 e Å3
309 parametersΔρmin = 0.46 e Å3
15 restraintsAbsolute structure: Flack (1983), 2190 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.006 (19)
Crystal data top
[Zn(C8H4O5)(C13H20N4)]V = 2212.1 (9) Å3
Mr = 477.83Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 9.476 (2) ŵ = 1.15 mm1
b = 14.846 (4) ÅT = 293 K
c = 15.724 (4) Å0.35 × 0.28 × 0.22 mm
Data collection top
Bruker APEX CCD
diffractometer
5031 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
4372 reflections with I > 2σ(I)
Tmin = 0.68, Tmax = 0.78Rint = 0.047
21558 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.050H-atom parameters constrained
wR(F2) = 0.136Δρmax = 0.76 e Å3
S = 1.05Δρmin = 0.46 e Å3
5031 reflectionsAbsolute structure: Flack (1983), 2190 Friedel pairs
309 parametersAbsolute structure parameter: 0.006 (19)
15 restraints
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Zn10.35630 (4)0.49008 (3)0.79285 (2)0.03541 (14)
C10.1051 (4)0.2692 (3)0.8438 (2)0.0387 (9)
C20.0416 (4)0.2035 (3)0.7938 (3)0.0440 (8)
H20.06850.19600.73730.053*
C30.0616 (5)0.1496 (3)0.8286 (3)0.0433 (9)
C40.0976 (5)0.1572 (3)0.9142 (3)0.0461 (10)
H40.16690.12030.93740.055*
C50.0298 (5)0.2199 (3)0.9643 (3)0.0483 (10)
C60.0707 (4)0.2769 (3)0.9292 (3)0.0433 (9)
H60.11470.32020.96270.052*
C70.2047 (4)0.3346 (3)0.8022 (3)0.0431 (9)
C80.1388 (5)0.0841 (3)0.7711 (3)0.0500 (10)
C90.6553 (7)0.4354 (5)0.7377 (5)0.0501 (18)0.670 (9)
C100.6928 (9)0.5229 (7)0.6298 (6)0.074 (3)0.670 (9)
H100.73550.55260.58450.089*0.670 (9)
C110.5662 (9)0.5394 (7)0.6600 (6)0.073 (3)0.670 (9)
H110.50360.58210.63880.088*0.670 (9)
C120.6801 (12)0.3705 (7)0.8109 (6)0.076 (3)0.670 (9)
H12A0.59130.34180.82540.091*0.670 (9)
H12B0.74470.32380.79230.091*0.670 (9)
C130.7361 (17)0.4124 (11)0.8850 (9)0.125 (5)0.670 (9)
H13A0.74850.36800.92880.188*0.670 (9)
H13B0.67200.45800.90440.188*0.670 (9)
H13C0.82550.43930.87170.188*0.670 (9)
N10.5406 (5)0.4827 (5)0.7285 (4)0.0485 (15)0.670 (9)
N20.7509 (6)0.4549 (6)0.6763 (5)0.0596 (19)0.670 (9)
C9'0.6253 (19)0.4478 (11)0.6920 (11)0.055 (4)*0.330 (9)
C10'0.759 (2)0.3791 (11)0.7897 (13)0.065 (4)*0.330 (9)
H10'0.83190.34730.81580.078*0.330 (9)
C11'0.632 (2)0.4049 (13)0.8242 (13)0.065 (5)*0.330 (9)
H11'0.60550.39700.88060.078*0.330 (9)
C12'0.582 (2)0.4836 (13)0.6092 (12)0.072 (5)*0.330 (9)
H12C0.48050.49240.60890.086*0.330 (9)
H12D0.60500.44030.56520.086*0.330 (9)
C13'0.654 (5)0.572 (3)0.590 (3)0.190 (18)*0.330 (9)
H13D0.62540.59240.53500.285*0.330 (9)
H13E0.75420.56310.59120.285*0.330 (9)
H13F0.62760.61530.63230.285*0.330 (9)
N1'0.5536 (13)0.4425 (9)0.7646 (9)0.048 (3)*0.330 (9)
N2'0.7539 (16)0.4120 (11)0.7057 (11)0.064 (4)*0.330 (9)
C141.0407 (5)0.3771 (3)0.4292 (3)0.0562 (11)
C151.1817 (6)0.3995 (4)0.5348 (3)0.0669 (13)
H151.22430.39840.58800.080*
C161.2190 (6)0.4502 (4)0.4687 (3)0.0604 (12)
H161.29540.48950.46740.073*
C170.9295 (7)0.3325 (5)0.3727 (5)0.0909 (17)
H17A0.86790.29590.40790.109*
H17B0.87240.37880.34610.109*
C180.9932 (11)0.2750 (7)0.3056 (6)0.131 (3)
H18A0.91960.24850.27190.196*
H18B1.04820.22820.33160.196*
H18C1.05280.31110.26990.196*
C190.8787 (5)0.4029 (5)0.6543 (4)0.0755 (17)
H19A0.92490.38570.70680.091*
H19B0.94260.44260.62400.091*
C200.8589 (6)0.3184 (5)0.6009 (4)0.0743 (15)
H20A0.81990.27130.63670.089*
H20B0.79080.33090.55640.089*
C210.9938 (6)0.2838 (4)0.5604 (3)0.0610 (13)
H21A1.05700.26390.60510.073*
H21B0.97110.23180.52560.073*
N31.0663 (5)0.3485 (3)0.5086 (3)0.0614 (10)
N41.1266 (5)0.4352 (3)0.4023 (2)0.0554 (9)
O10.2832 (3)0.3822 (2)0.85403 (19)0.0452 (7)
O20.2081 (4)0.3430 (3)0.7259 (2)0.0658 (10)
O30.0846 (5)0.0604 (3)0.7040 (3)0.0904 (13)
O40.2584 (3)0.0565 (2)0.7965 (2)0.0586 (8)
O50.0558 (4)0.2318 (3)1.0491 (2)0.0723 (11)
H50.11640.19611.06470.109*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.0326 (2)0.0447 (2)0.0290 (2)0.00247 (17)0.00191 (16)0.00315 (17)
C10.040 (2)0.043 (2)0.0338 (18)0.0005 (16)0.0058 (15)0.0043 (15)
C20.049 (2)0.048 (2)0.0351 (18)0.0036 (17)0.0031 (19)0.0034 (19)
C30.044 (2)0.047 (2)0.039 (2)0.0027 (18)0.0130 (18)0.0045 (17)
C40.042 (2)0.054 (2)0.042 (2)0.0125 (19)0.0049 (17)0.0052 (18)
C50.046 (2)0.064 (3)0.035 (2)0.012 (2)0.0022 (18)0.0027 (19)
C60.042 (2)0.054 (2)0.0337 (19)0.0073 (19)0.0050 (17)0.0015 (17)
C70.0355 (18)0.050 (2)0.044 (2)0.0016 (16)0.0002 (18)0.0066 (19)
C80.057 (2)0.053 (2)0.040 (2)0.009 (2)0.009 (2)0.0020 (17)
C90.029 (3)0.071 (4)0.051 (4)0.017 (3)0.019 (3)0.002 (3)
C100.067 (5)0.094 (6)0.060 (5)0.009 (5)0.023 (4)0.029 (5)
C110.061 (5)0.099 (7)0.060 (5)0.016 (5)0.003 (4)0.040 (5)
C120.085 (7)0.084 (6)0.059 (5)0.027 (5)0.026 (5)0.028 (5)
C130.125 (5)0.125 (5)0.125 (5)0.0007 (10)0.0007 (10)0.0000 (10)
N10.036 (2)0.069 (4)0.040 (3)0.011 (3)0.010 (2)0.004 (3)
N20.035 (3)0.083 (5)0.060 (4)0.013 (3)0.022 (3)0.016 (4)
C140.057 (3)0.055 (3)0.057 (3)0.008 (2)0.017 (2)0.003 (2)
C150.066 (3)0.092 (4)0.043 (2)0.004 (2)0.007 (2)0.001 (2)
C160.061 (3)0.061 (3)0.059 (3)0.006 (2)0.016 (2)0.003 (2)
C170.070 (4)0.103 (5)0.100 (4)0.031 (3)0.032 (3)0.002 (3)
C180.131 (3)0.131 (3)0.131 (3)0.0004 (10)0.0001 (10)0.0026 (10)
C190.041 (3)0.101 (4)0.084 (4)0.015 (3)0.029 (3)0.004 (3)
C200.050 (3)0.108 (4)0.066 (3)0.007 (3)0.015 (3)0.017 (3)
C210.061 (3)0.067 (3)0.055 (3)0.001 (3)0.011 (2)0.021 (2)
N30.054 (2)0.067 (3)0.062 (3)0.0094 (18)0.0164 (19)0.015 (2)
N40.061 (2)0.060 (2)0.0451 (19)0.005 (2)0.0057 (18)0.0053 (16)
O10.0416 (15)0.0460 (16)0.0479 (16)0.0031 (13)0.0066 (13)0.0051 (13)
O20.070 (2)0.089 (3)0.0385 (18)0.025 (2)0.0001 (15)0.0103 (16)
O30.097 (3)0.109 (3)0.066 (2)0.037 (3)0.003 (2)0.034 (3)
O40.0601 (19)0.0649 (19)0.0510 (18)0.0178 (15)0.0119 (16)0.0059 (18)
O50.080 (2)0.104 (3)0.0330 (16)0.041 (2)0.0058 (16)0.0058 (17)
Geometric parameters (Å, º) top
Zn1—O11.992 (3)C10'—C11'1.38 (3)
Zn1—O4i1.950 (3)C10'—N2'1.41 (3)
Zn1—N12.021 (5)C10'—H10'0.9300
Zn1—N1'2.047 (13)C11'—N1'1.32 (2)
Zn1—N4ii2.055 (4)C11'—H11'0.9300
C1—C61.386 (6)C12'—C13'1.50 (5)
C1—C21.390 (6)C12'—H12C0.9700
C1—C71.504 (6)C12'—H12D0.9700
C2—C31.378 (6)C13'—H13D0.9600
C2—H20.9300C13'—H13E0.9600
C3—C41.393 (6)C13'—H13F0.9600
C3—C81.517 (6)N2'—C191.439 (16)
C4—C51.377 (6)C14—N41.258 (6)
C4—H40.9300C14—N31.341 (6)
C5—O51.367 (5)C14—C171.529 (8)
C5—C61.390 (6)C15—C161.331 (8)
C6—H60.9300C15—N31.393 (7)
C7—O21.206 (5)C15—H150.9300
C7—O11.311 (5)C16—N41.380 (6)
C8—O31.225 (6)C16—H160.9300
C8—O41.269 (6)C17—C181.486 (11)
C9—N11.302 (9)C17—H17A0.9700
C9—N21.355 (9)C17—H17B0.9700
C9—C121.520 (11)C18—H18A0.9600
C10—C111.314 (12)C18—H18B0.9600
C10—N21.362 (12)C18—H18C0.9600
C10—H100.9300C19—C201.520 (9)
C11—N11.388 (10)C19—H19A0.9700
C11—H110.9300C19—H19B0.9700
C12—C131.423 (17)C20—C211.518 (8)
C12—H12A0.9700C20—H20A0.9700
C12—H12B0.9700C20—H20B0.9700
C13—H13A0.9600C21—N31.434 (6)
C13—H13B0.9600C21—H21A0.9700
C13—H13C0.9600C21—H21B0.9700
N2—C191.477 (8)N4—Zn1iii2.055 (4)
C9'—N1'1.33 (2)O4—Zn1iv1.950 (3)
C9'—N2'1.35 (2)O5—H50.8200
C9'—C12'1.46 (2)
O4i—Zn1—O1126.04 (14)C9'—C12'—C13'111 (2)
O4i—Zn1—N194.5 (2)C9'—C12'—H12C109.3
O1—Zn1—N1119.9 (2)C13'—C12'—H12C109.3
O4i—Zn1—N1'116.9 (4)C9'—C12'—H12D109.3
O1—Zn1—N1'98.3 (4)C13'—C12'—H12D109.3
O4i—Zn1—N4ii111.58 (15)H12C—C12'—H12D108.0
O1—Zn1—N4ii93.26 (15)C12'—C13'—H13D109.5
N1—Zn1—N4ii112.4 (2)C12'—C13'—H13E109.5
N1'—Zn1—N4ii107.2 (4)H13D—C13'—H13E109.5
C6—C1—C2120.3 (4)C12'—C13'—H13F109.5
C6—C1—C7121.0 (4)H13D—C13'—H13F109.5
C2—C1—C7118.6 (4)H13E—C13'—H13F109.5
C3—C2—C1119.3 (4)C11'—N1'—C9'110.2 (15)
C3—C2—H2120.3C11'—N1'—Zn1120.5 (13)
C1—C2—H2120.3C9'—N1'—Zn1129.2 (13)
C2—C3—C4120.7 (4)C9'—N2'—C10'108.6 (16)
C2—C3—C8118.5 (4)C9'—N2'—C19133.6 (17)
C4—C3—C8120.7 (4)C10'—N2'—C19117.7 (14)
C5—C4—C3119.6 (4)N4—C14—N3114.4 (5)
C5—C4—H4120.2N4—C14—C17123.3 (5)
C3—C4—H4120.2N3—C14—C17121.8 (5)
O5—C5—C4124.2 (4)C16—C15—N3106.6 (5)
O5—C5—C6115.6 (4)C16—C15—H15126.7
C4—C5—C6120.2 (4)N3—C15—H15126.7
C1—C6—C5119.7 (4)C15—C16—N4109.3 (5)
C1—C6—H6120.1C15—C16—H16125.4
C5—C6—H6120.1N4—C16—H16125.4
O2—C7—O1123.2 (4)C18—C17—C14112.4 (6)
O2—C7—C1121.1 (4)C18—C17—H17A109.1
O1—C7—C1115.7 (4)C14—C17—H17A109.1
O3—C8—O4123.6 (4)C18—C17—H17B109.1
O3—C8—C3119.7 (4)C14—C17—H17B109.1
O4—C8—C3116.8 (4)H17A—C17—H17B107.8
N1—C9—N2111.3 (8)C17—C18—H18A109.5
N1—C9—C12123.7 (7)C17—C18—H18B109.5
N2—C9—C12124.9 (7)H18A—C18—H18B109.5
C11—C10—N2108.2 (7)C17—C18—H18C109.5
C11—C10—H10125.9H18A—C18—H18C109.5
N2—C10—H10125.9H18B—C18—H18C109.5
C10—C11—N1109.1 (8)N2'—C19—C20106.6 (7)
C10—C11—H11125.4N2—C19—C20117.4 (5)
N1—C11—H11125.4N2'—C19—H19A85.2
C13—C12—C9113.6 (10)N2—C19—H19A108.0
C13—C12—H12A108.9C20—C19—H19A108.0
C9—C12—H12A108.9N2'—C19—H19B137.0
C13—C12—H12B108.9N2—C19—H19B108.0
C9—C12—H12B108.9C20—C19—H19B108.0
H12A—C12—H12B107.7H19A—C19—H19B107.2
C12—C13—H13A109.5C21—C20—C19114.0 (5)
C12—C13—H13B109.5C21—C20—H20A108.7
H13A—C13—H13B109.5C19—C20—H20A108.7
C12—C13—H13C109.5C21—C20—H20B108.7
H13A—C13—H13C109.5C19—C20—H20B108.7
H13B—C13—H13C109.5H20A—C20—H20B107.6
C9—N1—C11105.5 (6)N3—C21—C20114.6 (4)
C9—N1—Zn1134.0 (6)N3—C21—H21A108.6
C11—N1—Zn1120.5 (5)C20—C21—H21A108.6
C9—N2—C10105.7 (6)N3—C21—H21B108.6
C9—N2—C19127.1 (8)C20—C21—H21B108.6
C10—N2—C19126.3 (6)H21A—C21—H21B107.6
N1'—C9'—N2'107.5 (18)C14—N3—C15104.2 (4)
N1'—C9'—C12'129.8 (18)C14—N3—C21130.9 (5)
N2'—C9'—C12'122.7 (17)C15—N3—C21124.9 (5)
C11'—C10'—N2'103.9 (16)C14—N4—C16105.5 (4)
C11'—C10'—H10'128.0C14—N4—Zn1iii134.6 (4)
N2'—C10'—H10'128.0C16—N4—Zn1iii119.7 (3)
N1'—C11'—C10'109.4 (18)C7—O1—Zn1109.3 (3)
N1'—C11'—H11'125.3C8—O4—Zn1iv111.2 (3)
C10'—C11'—H11'125.3C5—O5—H5109.5
C6—C1—C2—C33.6 (6)C12'—C9'—N1'—Zn15 (3)
C7—C1—C2—C3172.8 (4)O4i—Zn1—N1'—C11'173.2 (12)
C1—C2—C3—C43.2 (6)O1—Zn1—N1'—C11'49.0 (13)
C1—C2—C3—C8174.6 (4)N1—Zn1—N1'—C11'153.7 (19)
C2—C3—C4—C50.5 (7)N4ii—Zn1—N1'—C11'47.1 (14)
C8—C3—C4—C5177.3 (4)O4i—Zn1—N1'—C9'2.2 (15)
C3—C4—C5—O5179.0 (5)O1—Zn1—N1'—C9'135.6 (13)
C3—C4—C5—C62.0 (7)N1—Zn1—N1'—C9'21.7 (11)
C2—C1—C6—C51.3 (6)N4ii—Zn1—N1'—C9'128.3 (13)
C7—C1—C6—C5175.1 (4)N1'—C9'—N2'—C10'2.9 (19)
O5—C5—C6—C1179.3 (4)C12'—C9'—N2'—C10'176.5 (16)
C4—C5—C6—C11.6 (7)N1'—C9'—N2'—C19176.2 (15)
C6—C1—C7—O2161.1 (4)C12'—C9'—N2'—C194 (3)
C2—C1—C7—O215.2 (6)C11'—C10'—N2'—C9'4.8 (19)
C6—C1—C7—O117.3 (6)C11'—C10'—N2'—C19174.5 (13)
C2—C1—C7—O1166.3 (4)N3—C15—C16—N42.4 (6)
C2—C3—C8—O321.4 (7)N4—C14—C17—C1865.8 (8)
C4—C3—C8—O3160.7 (5)N3—C14—C17—C18105.1 (7)
C2—C3—C8—O4158.8 (4)C9'—N2'—C19—N231.4 (15)
C4—C3—C8—O419.0 (6)C10'—N2'—C19—N2148 (2)
N2—C10—C11—N11.1 (12)C9'—N2'—C19—C2084.1 (19)
N1—C9—C12—C1385.8 (13)C10'—N2'—C19—C2096.9 (14)
N2—C9—C12—C1390.9 (13)C9—N2—C19—N2'1.7 (13)
N2—C9—N1—C113.2 (10)C10—N2—C19—N2'166.2 (18)
C12—C9—N1—C11173.9 (9)C9—N2—C19—C2078.4 (10)
N2—C9—N1—Zn1179.5 (6)C10—N2—C19—C2089.5 (10)
C12—C9—N1—Zn13.4 (12)N2'—C19—C20—C21164.5 (8)
C10—C11—N1—C91.3 (11)N2—C19—C20—C21163.6 (5)
C10—C11—N1—Zn1179.0 (7)C19—C20—C21—N355.8 (7)
O4i—Zn1—N1—C9165.9 (7)N4—C14—N3—C152.7 (6)
O1—Zn1—N1—C929.4 (8)C17—C14—N3—C15174.3 (5)
N1'—Zn1—N1—C93.3 (10)N4—C14—N3—C21179.8 (5)
N4ii—Zn1—N1—C978.6 (7)C17—C14—N3—C218.2 (8)
O4i—Zn1—N1—C1117.1 (7)C16—C15—N3—C143.0 (6)
O1—Zn1—N1—C11153.7 (6)C16—C15—N3—C21179.3 (5)
N1'—Zn1—N1—C11179.7 (13)C20—C21—N3—C1478.2 (7)
N4ii—Zn1—N1—C1198.4 (7)C20—C21—N3—C1598.8 (6)
N1—C9—N2—C103.9 (10)N3—C14—N4—C161.2 (6)
C12—C9—N2—C10173.2 (9)C17—C14—N4—C16172.7 (5)
N1—C9—N2—C19166.0 (7)N3—C14—N4—Zn1iii176.4 (3)
C12—C9—N2—C1917.0 (14)C17—C14—N4—Zn1iii12.0 (8)
C11—C10—N2—C93.0 (11)C15—C16—N4—C140.8 (6)
C11—C10—N2—C19167.0 (9)C15—C16—N4—Zn1iii175.3 (4)
N2'—C10'—C11'—N1'4.9 (19)O2—C7—O1—Zn117.5 (5)
N1'—C9'—C12'—C13'108 (3)C1—C7—O1—Zn1161.0 (3)
N2'—C9'—C12'—C13'73 (3)O4i—Zn1—O1—C733.0 (3)
C10'—C11'—N1'—C9'3 (2)N1—Zn1—O1—C789.0 (3)
C10'—C11'—N1'—Zn1179.6 (11)N1'—Zn1—O1—C799.2 (4)
N2'—C9'—N1'—C11'0.3 (19)N4ii—Zn1—O1—C7152.8 (3)
C12'—C9'—N1'—C11'179.6 (18)O3—C8—O4—Zn1iv10.0 (6)
N2'—C9'—N1'—Zn1176.1 (11)C3—C8—O4—Zn1iv170.2 (3)
Symmetry codes: (i) x, y+1/2, z+3/2; (ii) x+3/2, y+1, z+1/2; (iii) x+3/2, y+1, z1/2; (iv) x, y1/2, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5···O1v0.821.972.741 (5)156
Symmetry code: (v) x1/2, y+1/2, z+2.

Experimental details

Crystal data
Chemical formula[Zn(C8H4O5)(C13H20N4)]
Mr477.83
Crystal system, space groupOrthorhombic, P212121
Temperature (K)293
a, b, c (Å)9.476 (2), 14.846 (4), 15.724 (4)
V3)2212.1 (9)
Z4
Radiation typeMo Kα
µ (mm1)1.15
Crystal size (mm)0.35 × 0.28 × 0.22
Data collection
DiffractometerBruker APEX CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.68, 0.78
No. of measured, independent and
observed [I > 2σ(I)] reflections
21558, 5031, 4372
Rint0.047
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.050, 0.136, 1.05
No. of reflections5031
No. of parameters309
No. of restraints15
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.76, 0.46
Absolute structureFlack (1983), 2190 Friedel pairs
Absolute structure parameter0.006 (19)

Computer programs: SMART (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), XP in SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg, 1999), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
Zn1—O11.992 (3)Zn1—N1'2.047 (13)
Zn1—O4i1.950 (3)Zn1—N4ii2.055 (4)
Zn1—N12.021 (5)
Symmetry codes: (i) x, y+1/2, z+3/2; (ii) x+3/2, y+1, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5···O1iii0.821.972.741 (5)156
Symmetry code: (iii) x1/2, y+1/2, z+2.
 

Acknowledgements

We thank the China Postdoctoral Science Foundation (20100471379) for support.

References

First citationBrandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationLiu, Y.-Y., Ma, J.-F. & Zhang, L.-P. (2007). Acta Cryst. E63, m2317.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLiu, Y.-Y., Wang, Z.-H., Yang, J., Liu, B., Liu, Y.-Y. & Ma, J.-F. (2011). CrystEngComm, 13, 3811–3821.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds