metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

catena-Poly[[bis­­(3-methyl­benzoato-κ2O,O′)lead(II)]-μ-4,4′-bi­pyridine-κ2N:N′]

aCollege of Science, Guangdong Ocean University, Zhanjiang 524088, People's Republic of China
*Correspondence e-mail: huangfu407@126.com

(Received 8 August 2011; accepted 26 August 2011; online 3 September 2011)

In the title complex, [Pb(C8H7O2)2(C10H8N2)]n, the PbII atom is located on a twofold rotation axis and is six-coordinated by four carboxyl­ate O atoms from two 3-methyl­benzoate ligands and two N atoms from two 4,4′-bipyridine (4,4′-bpy) ligands, displaying a hemi-directed coordination. The 4,4′-bpy ligand has an inversion center at the mid-point of the central C—C bond. The PbII atoms are linked by bidentate bridging 4,4′-bpy into a chain along [101]. These chains are further connected into layers via C—H⋯O hydrogen bonds.

Related literature

For general background to 3-methyl­benzoate complexes, see: Wang et al. (2002[Wang, R.-F., Wang, S.-P., Shi, S.-K. & Zhang, J.-J. (2002). J. Coord. Chem. 55, 215-223.]); Zhao et al. (2009[Zhao, L., Chen, Y., Zhang, H., Li, C., Sun, R. & Yang, Q. (2009). J. Mol. Struct. 920, 441-449.]) and to 4,4′-bipyridine complexes, see: Biradha et al. (2006[Biradha, K., Sarkar, M. & Rajput, L. (2006). Chem. Commun. pp. 4169-4179.]). For hemi- and holo-directed geometries of lead(II) complexes, see: Shimoni-Livny et al. (1998[Shimoni-Livny, L., Glusker, J. P. & Bock, C. W. (1998). Inorg. Chem. 37, 1853-1867.]).

[Scheme 1]

Experimental

Crystal data
  • [Pb(C8H7O2)2(C10H8N2)]

  • Mr = 633.65

  • Monoclinic, C 2/c

  • a = 20.506 (8) Å

  • b = 5.534 (2) Å

  • c = 20.219 (8) Å

  • β = 103.507 (7)°

  • V = 2231.0 (15) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 7.60 mm−1

  • T = 296 K

  • 0.30 × 0.27 × 0.21 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.129, Tmax = 0.215

  • 8381 measured reflections

  • 2402 independent reflections

  • 2153 reflections with I > 2σ(I)

  • Rint = 0.025

Refinement
  • R[F2 > 2σ(F2)] = 0.017

  • wR(F2) = 0.042

  • S = 1.01

  • 2402 reflections

  • 151 parameters

  • H-atom parameters constrained

  • Δρmax = 0.38 e Å−3

  • Δρmin = −0.50 e Å−3

Table 1
Selected bond lengths (Å)

Pb1—O1 2.4803 (19)
Pb1—O2 2.4148 (19)
Pb1—N1 2.893 (2)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C13—H13⋯O1i 0.93 2.54 3.461 (4) 172
Symmetry code: (i) [-x+2, y+1, -z+{\script{3\over 2}}].

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and DIAMOND (Brandenburg, 1999[Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

In the structural investigation of 3-methylbenzoate complexes, it has been found that 3-methylbenzoic acid functions as a multidentate ligand (Wang et al., 2002; Zhao et al., 2009), with versatile binding and coordination modes. As is well known, 4,4'-bipyridine (4,4'-bpy) ligand may act in bidentate bridging or monodentate terminal mode (Biradha et al., 2006). In this paper, we report the crystal structure of the title compound, a new Pb(II) complex obtained by the reaction of 3-methylbenzoic acid, 4,4'-bpy and lead acetate in an alkaline aqueous solution.

As depicted in Fig. 1, the PbII atom is located on a twofold rotation axis and is coordinated by four O atoms from two 3-methylbenzoate ligands and two N atoms from two µ-4,4'-bpy ligand (Table 1). The coordination environment of the PbII atom is hemidirected (Shimoni-Livny et al., 1998). The 3-methylbenzoate ligand adopting bidentate coordination mode chelate the PbII atom, which can be regarded as a knot. The 4,4'-bpy ligand bridges two neighboring knots, forming a one-dimensional chain along [1 0 1] (Fig. 2). The distance between two knots is 12.882 (3) Å. These chains are further assembled via C—H···O hydrogen bonds (Table 2) into a layered network (Fig. 3).

Related literature top

For general background to 3-methylbenzoate complexes, see: Wang et al. (2002); Zhao et al. (2009) and to 4,4'-bipyridine complexes, see: Biradha et al. (2006). For hemi- and holo-directed geometries of lead(II) complexes, see: Shimoni-Livny et al. (1998).

Experimental top

A mixture of lead acetate (1 mmol, 0.325 g), 3-methylbenzoic acid (1 mmol, 0.136 g), 4,4'-bpy (1 mmol, 0.156 g), NaOH (1.5 mmol, 0.06 g) and H2O (12 ml) was placed in a 23 ml Teflon-lined reactor, which was heated to 433 K for 3 days and then cooled to room temperature at a rate of 10 K h-1. Colorless crystals obtained were washed with water and dried in air.

Refinement top

H atoms were placed at calculated positions and were treated as riding on the parent C atoms, with C—H = 0.93 (CH) and 0.96 (CH3) Å and with Uiso(H) = 1.2(1.5 for methyl)Ueq(C).

Structure description top

In the structural investigation of 3-methylbenzoate complexes, it has been found that 3-methylbenzoic acid functions as a multidentate ligand (Wang et al., 2002; Zhao et al., 2009), with versatile binding and coordination modes. As is well known, 4,4'-bipyridine (4,4'-bpy) ligand may act in bidentate bridging or monodentate terminal mode (Biradha et al., 2006). In this paper, we report the crystal structure of the title compound, a new Pb(II) complex obtained by the reaction of 3-methylbenzoic acid, 4,4'-bpy and lead acetate in an alkaline aqueous solution.

As depicted in Fig. 1, the PbII atom is located on a twofold rotation axis and is coordinated by four O atoms from two 3-methylbenzoate ligands and two N atoms from two µ-4,4'-bpy ligand (Table 1). The coordination environment of the PbII atom is hemidirected (Shimoni-Livny et al., 1998). The 3-methylbenzoate ligand adopting bidentate coordination mode chelate the PbII atom, which can be regarded as a knot. The 4,4'-bpy ligand bridges two neighboring knots, forming a one-dimensional chain along [1 0 1] (Fig. 2). The distance between two knots is 12.882 (3) Å. These chains are further assembled via C—H···O hydrogen bonds (Table 2) into a layered network (Fig. 3).

For general background to 3-methylbenzoate complexes, see: Wang et al. (2002); Zhao et al. (2009) and to 4,4'-bipyridine complexes, see: Biradha et al. (2006). For hemi- and holo-directed geometries of lead(II) complexes, see: Shimoni-Livny et al. (1998).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg, 1999); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound. Displacement ellipsoids are drawn at the 30% probability level. H atoms have been omitted for clarity. [Symmetry codes: (i) 2-x, y, 3/2-z; (ii) 3/2-x, 3/2-y, 1-z.]
[Figure 2] Fig. 2. View of the chain in the title compound.
[Figure 3] Fig. 3. View of the layered network in the title compound. C—H···O hydrogen bonds are shown as dashed lines. H atoms not involved in hydrogen bonds have been excluded for clarity.
catena-Poly[[bis(3-methylbenzoato-κ2O,O')lead(II)]- µ-4,4'-bipyridine-κ2N:N'] top
Crystal data top
[Pb(C8H7O2)2(C10H8N2)]F(000) = 1224
Mr = 633.65Dx = 1.887 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 5300 reflections
a = 20.506 (8) Åθ = 1.3–28.0°
b = 5.534 (2) ŵ = 7.60 mm1
c = 20.219 (8) ÅT = 296 K
β = 103.507 (7)°Block, colorless
V = 2231.0 (15) Å30.30 × 0.27 × 0.21 mm
Z = 4
Data collection top
Bruker APEXII CCD
diffractometer
2402 independent reflections
Radiation source: fine-focus sealed tube2153 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.025
φ and ω scansθmax = 27.0°, θmin = 3.9°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 2625
Tmin = 0.129, Tmax = 0.215k = 72
8381 measured reflectionsl = 2525
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.017Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.042H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.020P)2 + 1.2P]
where P = (Fo2 + 2Fc2)/3
2402 reflections(Δ/σ)max < 0.001
151 parametersΔρmax = 0.38 e Å3
0 restraintsΔρmin = 0.50 e Å3
Crystal data top
[Pb(C8H7O2)2(C10H8N2)]V = 2231.0 (15) Å3
Mr = 633.65Z = 4
Monoclinic, C2/cMo Kα radiation
a = 20.506 (8) ŵ = 7.60 mm1
b = 5.534 (2) ÅT = 296 K
c = 20.219 (8) Å0.30 × 0.27 × 0.21 mm
β = 103.507 (7)°
Data collection top
Bruker APEXII CCD
diffractometer
2402 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2153 reflections with I > 2σ(I)
Tmin = 0.129, Tmax = 0.215Rint = 0.025
8381 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0170 restraints
wR(F2) = 0.042H-atom parameters constrained
S = 1.01Δρmax = 0.38 e Å3
2402 reflectionsΔρmin = 0.50 e Å3
151 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Pb11.00000.51034 (2)0.75000.03248 (6)
O10.99708 (9)0.2668 (3)0.85225 (9)0.0427 (4)
O20.92275 (9)0.1874 (3)0.75719 (9)0.0442 (4)
N10.88014 (11)0.6287 (4)0.64774 (11)0.0418 (5)
C10.92142 (13)0.0604 (5)0.85353 (14)0.0353 (5)
C20.86958 (12)0.2024 (5)0.81811 (13)0.0363 (5)
H20.85100.17010.77250.044*
C30.84468 (13)0.3932 (5)0.84970 (14)0.0402 (6)
C40.87334 (17)0.4373 (6)0.91770 (17)0.0499 (7)
H4A0.85740.56450.93950.060*
C50.92466 (16)0.2977 (6)0.95346 (14)0.0562 (8)
H50.94320.33090.99910.067*
C60.94919 (15)0.1064 (6)0.92180 (14)0.0499 (7)
H60.98380.01030.94610.060*
C70.94876 (12)0.1458 (5)0.81944 (13)0.0350 (5)
C80.78855 (17)0.5504 (6)0.8108 (2)0.0580 (9)
H8A0.74640.48890.81620.087*
H8B0.79460.71270.82790.087*
H8C0.78900.54970.76340.087*
C90.82897 (17)0.4775 (5)0.62681 (17)0.0474 (7)
H90.82790.33630.65140.057*
C100.77682 (16)0.5196 (4)0.56991 (16)0.0443 (7)
H100.74180.40950.55820.053*
C110.77707 (11)0.7242 (4)0.53090 (11)0.0303 (5)
C120.83066 (13)0.8809 (5)0.55292 (14)0.0415 (6)
H12A0.83351.02220.52890.050*
C130.87981 (13)0.8270 (5)0.61065 (14)0.0479 (7)
H130.91480.93650.62430.058*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pb10.03302 (8)0.03156 (8)0.03056 (8)0.0000.00275 (5)0.000
O10.0416 (10)0.0463 (10)0.0363 (10)0.0058 (8)0.0017 (8)0.0017 (8)
O20.0468 (10)0.0512 (11)0.0305 (9)0.0093 (9)0.0010 (8)0.0076 (8)
N10.0401 (12)0.0448 (13)0.0352 (12)0.0023 (10)0.0016 (10)0.0019 (10)
C10.0374 (14)0.0366 (12)0.0334 (14)0.0039 (10)0.0112 (11)0.0012 (11)
C20.0351 (13)0.0412 (13)0.0337 (13)0.0056 (10)0.0098 (10)0.0021 (11)
C30.0400 (14)0.0357 (13)0.0472 (17)0.0027 (11)0.0150 (12)0.0000 (12)
C40.0582 (19)0.0490 (15)0.0490 (18)0.0026 (14)0.0259 (15)0.0110 (14)
C50.070 (2)0.066 (2)0.0322 (15)0.0006 (16)0.0110 (14)0.0126 (14)
C60.0557 (18)0.0589 (18)0.0319 (15)0.0079 (15)0.0036 (13)0.0035 (14)
C70.0341 (13)0.0398 (13)0.0322 (13)0.0032 (10)0.0102 (11)0.0027 (11)
C80.0487 (18)0.0537 (17)0.071 (2)0.0113 (14)0.0126 (17)0.0047 (17)
C90.0530 (18)0.0427 (16)0.0399 (16)0.0018 (12)0.0024 (13)0.0074 (12)
C100.0450 (16)0.0407 (15)0.0400 (16)0.0107 (11)0.0044 (12)0.0043 (11)
C110.0302 (12)0.0331 (12)0.0270 (12)0.0007 (9)0.0058 (9)0.0027 (10)
C120.0372 (14)0.0412 (14)0.0408 (15)0.0071 (11)0.0014 (11)0.0059 (12)
C130.0374 (15)0.0525 (16)0.0470 (16)0.0086 (12)0.0040 (12)0.0014 (14)
Geometric parameters (Å, º) top
Pb1—O12.4803 (19)C5—C61.391 (4)
Pb1—O22.4148 (19)C5—H50.9300
Pb1—N12.893 (2)C6—H60.9300
O1—C71.250 (3)C8—H8A0.9600
O2—C71.268 (3)C8—H8B0.9600
N1—C131.328 (4)C8—H8C0.9600
N1—C91.331 (4)C9—C101.395 (4)
C1—C21.380 (4)C9—H90.9300
C1—C61.388 (4)C10—C111.381 (3)
C1—C71.507 (4)C10—H100.9300
C2—C31.391 (4)C11—C121.389 (3)
C2—H20.9300C11—C11i1.492 (4)
C3—C41.385 (4)C12—C131.385 (3)
C3—C81.509 (4)C12—H12A0.9300
C4—C51.368 (4)C13—H130.9300
C4—H4A0.9300
O2—Pb1—O2ii84.54 (10)C3—C4—H4A119.3
O2—Pb1—O1ii77.99 (7)C4—C5—C6120.2 (3)
O2ii—Pb1—O1ii53.41 (5)C4—C5—H5119.9
O2—Pb1—O153.41 (6)C6—C5—H5119.9
O2ii—Pb1—O177.99 (6)C1—C6—C5119.3 (3)
O1ii—Pb1—O1114.17 (9)C1—C6—H6120.4
O2—Pb1—C7ii79.93 (7)C5—C6—H6120.4
O2ii—Pb1—C7ii26.88 (6)O1—C7—O2121.8 (2)
O1ii—Pb1—C7ii26.53 (6)O1—C7—C1119.8 (2)
O1—Pb1—C7ii96.40 (7)O2—C7—C1118.4 (2)
O2—Pb1—N175.57 (7)C3—C8—H8A109.5
O2ii—Pb1—N1125.75 (6)C3—C8—H8B109.5
O1ii—Pb1—N173.10 (6)H8A—C8—H8B109.5
O1—Pb1—N1122.47 (6)C3—C8—H8C109.5
C7ii—Pb1—N199.23 (7)H8A—C8—H8C109.5
C7—O1—Pb191.10 (15)H8B—C8—H8C109.5
C7—O2—Pb193.70 (15)N1—C9—C10123.5 (3)
C13—N1—C9116.1 (2)N1—C9—H9118.2
C13—N1—Pb1118.81 (17)C10—C9—H9118.2
C9—N1—Pb1124.04 (18)C11—C10—C9120.2 (2)
C2—C1—C6119.9 (3)C11—C10—H10119.9
C2—C1—C7121.2 (2)C9—C10—H10119.9
C6—C1—C7118.9 (3)C10—C11—C12115.9 (2)
C1—C2—C3121.0 (2)C10—C11—C11i122.3 (3)
C1—C2—H2119.5C12—C11—C11i121.8 (3)
C3—C2—H2119.5C13—C12—C11120.1 (3)
C4—C3—C2118.2 (3)C13—C12—H12A120.0
C4—C3—C8120.7 (3)C11—C12—H12A120.0
C2—C3—C8121.0 (3)N1—C13—C12124.1 (3)
C5—C4—C3121.4 (3)N1—C13—H13118.0
C5—C4—H4A119.3C12—C13—H13118.0
O2—Pb1—O1—C70.62 (14)C2—C3—C4—C50.2 (4)
O2ii—Pb1—O1—C791.49 (15)C8—C3—C4—C5179.4 (3)
O1ii—Pb1—O1—C751.27 (13)C3—C4—C5—C60.1 (5)
C7ii—Pb1—O1—C771.79 (18)C2—C1—C6—C50.7 (4)
N1—Pb1—O1—C733.44 (17)C7—C1—C6—C5179.4 (3)
O2ii—Pb1—O2—C778.48 (14)C4—C5—C6—C10.6 (5)
O1ii—Pb1—O2—C7132.18 (16)Pb1—O1—C7—O21.1 (2)
O1—Pb1—O2—C70.61 (14)Pb1—O1—C7—C1177.1 (2)
C7ii—Pb1—O2—C7105.22 (16)Pb1—O2—C7—O11.1 (3)
N1—Pb1—O2—C7152.43 (16)Pb1—O2—C7—C1177.1 (2)
O2—Pb1—N1—C13179.6 (2)C2—C1—C7—O1177.9 (2)
O2ii—Pb1—N1—C13107.4 (2)C6—C1—C7—O12.2 (4)
O1ii—Pb1—N1—C1398.0 (2)C2—C1—C7—O20.4 (4)
O1—Pb1—N1—C13153.72 (19)C6—C1—C7—O2179.5 (3)
C7ii—Pb1—N1—C13102.6 (2)C13—N1—C9—C100.6 (5)
O2—Pb1—N1—C911.7 (2)Pb1—N1—C9—C10168.7 (2)
O2ii—Pb1—N1—C960.4 (3)N1—C9—C10—C111.5 (5)
O1ii—Pb1—N1—C969.9 (2)C9—C10—C11—C121.3 (4)
O1—Pb1—N1—C938.4 (3)C9—C10—C11—C11i179.2 (3)
C7ii—Pb1—N1—C965.3 (2)C10—C11—C12—C130.3 (4)
C6—C1—C2—C30.4 (4)C11i—C11—C12—C13179.8 (3)
C7—C1—C2—C3179.7 (2)C9—N1—C13—C120.5 (4)
C1—C2—C3—C40.1 (4)Pb1—N1—C13—C12168.3 (2)
C1—C2—C3—C8179.3 (3)C11—C12—C13—N10.7 (5)
Symmetry codes: (i) x+3/2, y+3/2, z+1; (ii) x+2, y, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C13—H13···O1iii0.932.543.461 (4)172
Symmetry code: (iii) x+2, y+1, z+3/2.

Experimental details

Crystal data
Chemical formula[Pb(C8H7O2)2(C10H8N2)]
Mr633.65
Crystal system, space groupMonoclinic, C2/c
Temperature (K)296
a, b, c (Å)20.506 (8), 5.534 (2), 20.219 (8)
β (°) 103.507 (7)
V3)2231.0 (15)
Z4
Radiation typeMo Kα
µ (mm1)7.60
Crystal size (mm)0.30 × 0.27 × 0.21
Data collection
DiffractometerBruker APEXII CCD
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.129, 0.215
No. of measured, independent and
observed [I > 2σ(I)] reflections
8381, 2402, 2153
Rint0.025
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.017, 0.042, 1.01
No. of reflections2402
No. of parameters151
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.38, 0.50

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg, 1999), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
Pb1—O12.4803 (19)Pb1—N12.893 (2)
Pb1—O22.4148 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C13—H13···O1i0.932.543.461 (4)172
Symmetry code: (i) x+2, y+1, z+3/2.
 

Acknowledgements

The authors acknowledge Guangdong Ocean University for supporting this work.

References

First citationBiradha, K., Sarkar, M. & Rajput, L. (2006). Chem. Commun. pp. 4169–4179.  Web of Science CrossRef Google Scholar
First citationBrandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShimoni-Livny, L., Glusker, J. P. & Bock, C. W. (1998). Inorg. Chem. 37, 1853–1867.  Web of Science CrossRef CAS Google Scholar
First citationWang, R.-F., Wang, S.-P., Shi, S.-K. & Zhang, J.-J. (2002). J. Coord. Chem. 55, 215–223.  Web of Science CSD CrossRef CAS Google Scholar
First citationZhao, L., Chen, Y., Zhang, H., Li, C., Sun, R. & Yang, Q. (2009). J. Mol. Struct. 920, 441–449.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds