metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 3| March 2011| Pages m311-m312

Tris(4,4′-bi-1,3-thia­zole-κ2N,N′)iron(II) tetra­bromidoferrate(III) bromide

aDepartment of Chemistry, Islamic Azad University, North Tehran Branch, Tehran, Iran, and bDepartment of Chemistry, Shahid Beheshti University, G. C., Evin, Tehran 1983963113, Iran
*Correspondence e-mail: n-safari@cc.sbu.ac.ir

(Received 31 January 2011; accepted 3 February 2011; online 9 February 2011)

In the [Fe(4,4′-bit)3]2+ (4,4′-bit is 4,4′-bi-1,3-thia­zole) cation of the title compound, [Fe(C6H4N2S2)3][FeBr4]Br, the FeII atom (3 symmetry) is six-coordinated in a distorted octa­hedral geometry by six N atoms from three 4,4′-bit ligands. In the [FeBr4] anion, the FeIII atom (3 symmetry) is four-coordinated in a distorted tetra­hedral geometry. In the crystal, inter­molecular C—H⋯Br hydrogen bonds and Br⋯π inter­actions [Br⋯centroid distances = 3.562 (3) and 3.765 (2) Å] link the cations and anions, stabilizing the structure.

Related literature

For general background to metal complexes with 4,4′-bi-1,3-thia­zole ligands, see: Baker & Goodwin (1985[Baker, A. T. & Goodwin, H. A. (1985). Aust. J. Chem. 38, 851-863.]); Mahjoub & Morsali (2001[Mahjoub, A. R. & Morsali, A. (2001). Chem. Lett. 30, 1234-1235.], 2002a[Mahjoub, A. R. & Morsali, A. (2002a). Polyhedron, 21, 197-203.],b[Mahjoub, A. R. & Morsali, A. (2002b). Z. Kristallogr. New Cryst. Struct. 217, 443-444.]). For related structures, see: Al-Hashemi et al. (2009[Al-Hashemi, R., Safari, N., Abedi, A., Notash, B., Amani, V. & Khavasi, H. R. (2009). J. Coord. Chem. 62, 2909-2918.]); Ali & Al-Far (2007[Ali, B. F. & Al-Far, R. (2007). Acta Cryst. C63, m451-m453.]); Amani et al. (2007a[Amani, V., Safari, N. & Khavasi, H. R. (2007a). Polyhedron, 26, 4257-4262.],b[Amani, V., Safari, N., Khavasi, H. R. & Mirzaei, P. (2007b). Polyhedron, 26, 4908-4914.], 2009[Amani, V., Safari, N., Notash, B. & Khavasi, H. R. (2009). J. Coord. Chem. 62, 1939-1950.]); Craig et al. (1988[Craig, D. C., Goodwin, H. A., Onggo, D. & Rae, A. D. (1988). Aust. J. Chem. 41, 1625-1644.]); Figgis et al. (1983[Figgis, B. N., Patrick, J. M., Reynolds, P. A., Skelton, B. W., White, A. H. & Healy, P. C. (1983). Aust. J. Chem. 36, 2043-2055.]); Jia et al. (2006[Jia, C., Liu, S. X., Ambrus, C., Labat, G., Neels, A. & Decurtins, S. (2006). Polyhedron, 25, 1613-1617.]); Khavasi et al. (2008[Khavasi, H. R., Abedi, A., Amani, V., Notash, B. & Safari, N. (2008). Polyhedron, 27, 1848-1854.]); Kulkarni et al. (1998[Kulkarni, P., Padhye, S. & Sinn, E. (1998). Polyhedron, 17, 2623-2626.]); Notash et al. (2008[Notash, B., Safari, N., Khavasi, H. R., Amani, V. & Abedi, A. (2008). J. Organomet. Chem. 693, 3553-3557.], 2009[Notash, B., Safari, N., Abedi, A., Amani, V. & Khavasi, H. R. (2009). J. Coord. Chem. 62, 1638-1649.]); Rahimi et al. (2009[Rahimi, N., Safari, N., Amani, V. & Khavasi, H. R. (2009). Acta Cryst. E65, m1370.]); Safari et al. (2009[Safari, N., Amani, V., Abedi, A., Notash, B. & Ng, S. W. (2009). Acta Cryst. E65, m372.]). For the synthesis of the ligand, see: Erlenmeyer & Ueberwasser (1939[Erlenmeyer, H. & Ueberwasser, H. (1939). Helv. Chim. Acta, 22, 938-939.]).

[Scheme 1]

Experimental

Crystal data
  • [Fe(C6H4N2S2)3][FeBr4]Br

  • Mr = 1015.95

  • Trigonal, R 3

  • a = 12.0638 (7) Å

  • c = 17.6907 (13) Å

  • V = 2229.7 (2) Å3

  • Z = 3

  • Mo Kα radiation

  • μ = 8.14 mm−1

  • T = 100 K

  • 0.45 × 0.35 × 0.30 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.031, Tmax = 0.086

  • 8430 measured reflections

  • 2508 independent reflections

  • 2427 reflections with I > 2σ(I)

  • Rint = 0.099

Refinement
  • R[F2 > 2σ(F2)] = 0.036

  • wR(F2) = 0.085

  • S = 1.01

  • 2508 reflections

  • 112 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.93 e Å−3

  • Δρmin = −0.78 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1195 Friedel pairs

  • Flack parameter: 0.021 (9)

Table 1
Selected bond lengths (Å)

Fe1—N1 1.962 (3)
Fe1—N2 1.974 (3)
Fe2—Br1 2.3348 (5)
Fe2—Br2 2.3370 (12)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2A⋯Br3 0.93 2.81 3.665 (5) 153
C5—H5A⋯Br3 0.93 2.97 3.798 (5) 149

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Erlenmeyer & Ueberwasser (1939) first reported the synthesis of 4,4'-bi-1,3-thiazole (4,4'-bit) and Craig et al. (1988) determined the structure of this compound. Although 4,4'-bit is a good bidentate ligand, a few of its metal complexes have been prepared, such as those of nickel and iron (Baker & Goodwin, 1985), lead (Mahjoub & Morsali, 2001, 2002a) and bismuth (Mahjoub & Morsali, 2002b). We recently introduced the coordination chemistry of 2,2'-dimethyl-4,4'-bi-1,3-thiazole with copper (Al-Hashemi et al., 2009), zinc and mercury (Khavasi et al., 2008; Safari et al., 2009), cadmium (Notash et al., 2009) and thallium (Notash et al., 2008). We report here the synthesis and crystal structure of the title compound.

The asymmetric unit of the title compound (Fig. 1), contains one third of an [Fe(4,4'-bit)3]2+ cation, one third of an [FeBr4]- anion and one third of a Br- anion. In the [Fe(4,4'-bit)3]2+ cation, the FeII atom (3 symmetry) is six-coordinated in a distorted octahedral geometry by six N atoms from three 4,4'-bit ligands. The Fe—N bond lengths are 1.962 (3) and 1.974 (3) Å (Table 1). The average Fe—N bond distances in high-spin iron(II) and (III) complexes with phenanthroline and bipyridine are around 2.2 Å. However, for low-spin iron(II) and (III) complexes, the Fe—N distances less than 2.0 Å have been reported (Amani et al., 2007a,b, 2009; Figgis et al., 1983; Kulkarni et al., 1998; Rahimi et al., 2009). Therefore, in the [Fe(4,4'-bit)3]2+ cation, the Fe—N bond distances are unambiguous in accord with low-spin iron(II). The N—Fe—N bond angles are in the range of 82.00 (14) to 171.87 (14)°. The bond angles and distances are in good agreement to those of [Fe(4,4'-bit)3]2+ cations, which have been found in other structures (Baker & Goodwin, 1985). In the [FeBr4]- anion, the FeIII atom (3 symmetry) is four-coordinated in a distorted tetrahedral geometry by four Br atoms. The Fe—Br bond lengths are 2.3348 (5) and 2.3370 (12) Å. The Br—Fe—Br angles, in turn, span the ranges of 108.64 (3) to 110.29 (3)°, and the bond angles and distances are in good agreement to those of [FeBr4]- anions, which have been found in other structures (Ali & Al-Far 2007; Jia et al., 2006).

Fig. 2 shows significant intermolecular C—H···Br hydrogen bonds in the title compound (Table 2). The hydrogen bonds cause the formation of a supramolecular architecture, best described as built up by Br(thiazol)9 supramolecular synthons (Fig. 2) assembled via C—H···Br hydrogen bonds, where nine thiazole groups surround one (central) uncoordinated bromide ion. These synthons are further connected into an adamantoid-like network that extends into a three-dimensional structure. The discrete [FeBr4]- anions occupy the cavities that result from the three-dimensional assembly of the Br(thiazol)9 entities. There also exist intermolecular Br···π interactions between the [FeBr4]- anions and thiazole rings in the crystal structure (Fig. 3), with Br1···Cg1 = 3.562 (3) and Br1i···Cg2 = 3.765 (2) Å [Cg1 and Cg2 are the centroids of C1, C2, C3, N2, S2 ring and C4, C5, C6, N1, S1 ring. Symmetry code: (i) 1-x+y, 2-x, z]. The hydrogen bonds and Br···π interactions link the cations and anions, which may be effective in the stabilization of the structure.

Related literature top

For general background to metal complexes with 4,4'-bi-1,3-thiazole ligands, see: Baker & Goodwin (1985); Mahjoub & Morsali (2001, 2002a,b). For related structures, see: Al-Hashemi et al. (2009); Ali & Al-Far (2007); Amani et al. (2007a,b, 2009); Craig et al. (1988); Figgis et al. (1983); Jia et al. (2006); Khavasi et al. (2008); Kulkarni et al. (1998); Notash et al. (2008, 2009); Rahimi et al. (2009); Safari et al. (2009). For the synthesis of the ligand, see: Erlenmeyer & Ueberwasser (1939).

Experimental top

4,4'-bi-1,3-thiazole (0.11 g, 0.63 mmol) in CH3OH (20 ml) was added to a solution of FeBr3 (0.06 g, 0.21 mmol) in CH3OH (10 ml) and the resulting red solution was stirred at 313 K for 1 h. The red colored precipitated product was recrystallized from CH3CN/CH3OH (v/v 2:1). After two weeks, dark-red prismatic crystals of the title compound were isolated (yield: 0.08 g, 75.0%; m.p. 464 K).

Refinement top

All H atoms were positioned geometrically and refined as riding atoms, with C—H = 0.93 Å and with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound. Displacement ellipsoids are drawn at the 30% probability level. [Symmetry codes: (i) 1-x+y, 2-x, z; (ii) 2-y, 1+x-y, z; (iii) 1-y, 1+x-y, z; (iv) -x+y, 1-x, z.]
[Figure 2] Fig. 2. Crystal packing diagram for the title compound. Hydrogen bonds are shown as dashed lines.
[Figure 3] Fig. 3. Intermolecular Br···π interactions (dashed lines) in the title compound. [Symmetry code: (i) 1-x+y, 2-x, z.]
Tris(4,4'-bi-1,3-thiazole-κ2N,N')iron(II) tetrabromidoferrate(III) bromide top
Crystal data top
[Fe(C6H4N2S2)3][FeBr4]BrDx = 2.270 Mg m3
Mr = 1015.95Mo Kα radiation, λ = 0.71073 Å
Trigonal, R3Cell parameters from 1635 reflections
Hall symbol: R 3θ = 3.0–28.0°
a = 12.0638 (7) ŵ = 8.14 mm1
c = 17.6907 (13) ÅT = 100 K
V = 2229.7 (2) Å3Prism, dark-red
Z = 30.45 × 0.35 × 0.30 mm
F(000) = 1455
Data collection top
Bruker APEXII CCD
diffractometer
2508 independent reflections
Radiation source: fine-focus sealed tube2427 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.099
ϕ and ω scansθmax = 28.9°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 1616
Tmin = 0.031, Tmax = 0.086k = 1616
8430 measured reflectionsl = 2423
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.036H-atom parameters constrained
wR(F2) = 0.085 w = 1/[σ2(Fo2) + (0.0485P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.01(Δ/σ)max < 0.001
2508 reflectionsΔρmax = 0.93 e Å3
112 parametersΔρmin = 0.78 e Å3
1 restraintAbsolute structure: Flack (1983), 1195 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.021 (9)
Crystal data top
[Fe(C6H4N2S2)3][FeBr4]BrZ = 3
Mr = 1015.95Mo Kα radiation
Trigonal, R3µ = 8.14 mm1
a = 12.0638 (7) ÅT = 100 K
c = 17.6907 (13) Å0.45 × 0.35 × 0.30 mm
V = 2229.7 (2) Å3
Data collection top
Bruker APEXII CCD
diffractometer
2508 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
2427 reflections with I > 2σ(I)
Tmin = 0.031, Tmax = 0.086Rint = 0.099
8430 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.036H-atom parameters constrained
wR(F2) = 0.085Δρmax = 0.93 e Å3
S = 1.01Δρmin = 0.78 e Å3
2508 reflectionsAbsolute structure: Flack (1983), 1195 Friedel pairs
112 parametersAbsolute structure parameter: 0.021 (9)
1 restraint
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.53314 (4)0.70585 (5)0.46767 (3)0.02946 (13)
Br20.33330.66670.64196 (3)0.01401 (14)
Br31.66671.33330.53208 (4)0.01483 (14)
Fe11.00001.00000.48640 (5)0.00941 (17)
Fe20.33330.66670.50986 (6)0.01351 (18)
S11.25908 (10)1.31480 (10)0.64504 (6)0.0182 (2)
S21.33303 (9)1.07879 (10)0.33584 (6)0.01552 (19)
N11.1247 (3)1.1426 (3)0.54875 (19)0.0120 (6)
N21.1543 (3)1.0443 (3)0.42603 (19)0.0121 (6)
C11.1756 (4)1.0038 (4)0.3613 (2)0.0141 (7)
H1A1.11070.94010.33230.017*
C21.3758 (4)1.1697 (4)0.4169 (2)0.0161 (7)
H2A1.45891.22960.43100.019*
C31.2677 (4)1.1394 (4)0.4572 (2)0.0132 (7)
C41.2524 (4)1.1950 (4)0.5268 (2)0.0127 (7)
C51.3381 (4)1.2906 (4)0.5716 (3)0.0185 (8)
H5A1.42621.33610.56390.022*
C61.1159 (4)1.1969 (4)0.6109 (2)0.0154 (7)
H6A1.03831.17320.63450.019*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0213 (2)0.0518 (3)0.0176 (2)0.0201 (2)0.00229 (16)0.0064 (2)
Br20.01593 (18)0.01593 (18)0.0102 (3)0.00796 (9)0.0000.000
Br30.01604 (19)0.01604 (19)0.0124 (3)0.00802 (9)0.0000.000
Fe10.0096 (2)0.0096 (2)0.0090 (4)0.00479 (11)0.0000.000
Fe20.0153 (3)0.0153 (3)0.0099 (4)0.00764 (13)0.0000.000
S10.0184 (4)0.0170 (4)0.0170 (5)0.0072 (4)0.0042 (4)0.0073 (4)
S20.0162 (4)0.0198 (4)0.0128 (4)0.0107 (3)0.0037 (3)0.0013 (3)
N10.0113 (13)0.0118 (14)0.0122 (14)0.0052 (12)0.0016 (11)0.0003 (11)
N20.0143 (14)0.0143 (14)0.0102 (13)0.0090 (12)0.0021 (12)0.0016 (12)
C10.0135 (16)0.0138 (16)0.0157 (17)0.0074 (14)0.0000 (13)0.0008 (13)
C20.0161 (16)0.0175 (17)0.0139 (18)0.0078 (14)0.0027 (14)0.0035 (14)
C30.0173 (17)0.0131 (15)0.0134 (16)0.0106 (14)0.0009 (13)0.0036 (13)
C40.0156 (16)0.0101 (15)0.0126 (16)0.0065 (13)0.0010 (13)0.0001 (12)
C50.0168 (17)0.0198 (19)0.0192 (19)0.0092 (15)0.0020 (14)0.0002 (15)
C60.0135 (16)0.0148 (17)0.0151 (17)0.0048 (13)0.0024 (14)0.0020 (13)
Geometric parameters (Å, º) top
Fe1—N11.962 (3)N2—C11.320 (5)
Fe1—N21.974 (3)N2—C31.385 (5)
Fe2—Br12.3348 (5)C1—H1A0.9300
Fe2—Br22.3370 (12)C2—C31.366 (6)
S1—C61.706 (4)C2—H2A0.9300
S1—C51.721 (4)C3—C41.458 (5)
S2—C11.706 (4)C4—C51.355 (6)
S2—C21.720 (4)C5—H5A0.9300
N1—C61.312 (5)C6—H6A0.9300
N1—C41.396 (5)
N1—Fe1—N1i91.50 (14)C6—N1—Fe1133.8 (3)
N1—Fe1—N1ii91.50 (14)C4—N1—Fe1115.4 (3)
N1i—Fe1—N1ii91.50 (14)C1—N2—C3111.0 (3)
N1—Fe1—N2i171.87 (13)C1—N2—Fe1134.5 (3)
N1i—Fe1—N2i82.00 (14)C3—N2—Fe1114.6 (3)
N1ii—Fe1—N2i93.53 (13)N2—C1—S2113.8 (3)
N1—Fe1—N282.00 (14)N2—C1—H1A123.1
N1i—Fe1—N293.53 (13)S2—C1—H1A123.1
N1ii—Fe1—N2171.87 (13)C3—C2—S2108.8 (3)
N2i—Fe1—N293.49 (14)C3—C2—H2A125.6
N1—Fe1—N2ii93.53 (13)S2—C2—H2A125.6
N1i—Fe1—N2ii171.87 (14)C2—C3—N2115.4 (3)
N1ii—Fe1—N2ii82.00 (14)C2—C3—C4129.9 (4)
N2i—Fe1—N2ii93.49 (14)N2—C3—C4114.7 (3)
N2—Fe1—N2ii93.49 (14)C5—C4—N1115.0 (4)
Br1iii—Fe2—Br1iv110.29 (3)C5—C4—C3131.9 (4)
Br1iii—Fe2—Br1110.29 (3)N1—C4—C3113.0 (3)
Br1iv—Fe2—Br1110.29 (3)C4—C5—S1109.5 (3)
Br1iii—Fe2—Br2108.64 (3)C4—C5—H5A125.2
Br1iv—Fe2—Br2108.64 (3)S1—C5—H5A125.2
Br1—Fe2—Br2108.64 (3)N1—C6—S1114.3 (3)
C6—S1—C590.4 (2)N1—C6—H6A122.8
C1—S2—C291.01 (19)S1—C6—H6A122.8
C6—N1—C4110.7 (3)
N1i—Fe1—N1—C686.9 (3)S2—C2—C3—N21.7 (4)
N1ii—Fe1—N1—C64.6 (4)S2—C2—C3—C4175.8 (3)
N2—Fe1—N1—C6179.8 (4)C1—N2—C3—C21.2 (5)
N2ii—Fe1—N1—C686.7 (4)Fe1—N2—C3—C2178.8 (3)
N1i—Fe1—N1—C488.3 (3)C1—N2—C3—C4176.7 (3)
N1ii—Fe1—N1—C4179.8 (3)Fe1—N2—C3—C43.3 (4)
N2—Fe1—N1—C45.1 (3)C6—N1—C4—C51.7 (5)
N2ii—Fe1—N1—C498.1 (3)Fe1—N1—C4—C5178.0 (3)
N1—Fe1—N2—C1175.5 (4)C6—N1—C4—C3179.1 (3)
N1i—Fe1—N2—C193.5 (4)Fe1—N1—C4—C34.7 (4)
N2i—Fe1—N2—C111.3 (4)C2—C3—C4—C50.2 (7)
N2ii—Fe1—N2—C182.4 (3)N2—C3—C4—C5177.7 (4)
N1—Fe1—N2—C34.6 (3)C2—C3—C4—N1176.7 (4)
N1i—Fe1—N2—C386.5 (3)N2—C3—C4—N10.8 (5)
N2i—Fe1—N2—C3168.6 (3)N1—C4—C5—S11.4 (5)
N2ii—Fe1—N2—C397.6 (3)C3—C4—C5—S1178.2 (3)
C3—N2—C1—S20.0 (4)C6—S1—C5—C40.6 (3)
Fe1—N2—C1—S2180.0 (2)C4—N1—C6—S11.2 (4)
C2—S2—C1—N20.8 (3)Fe1—N1—C6—S1176.5 (2)
C1—S2—C2—C31.4 (3)C5—S1—C6—N10.3 (3)
Symmetry codes: (i) x+y+1, x+2, z; (ii) y+2, xy+1, z; (iii) y+1, xy+1, z; (iv) x+y, x+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2A···Br30.932.813.665 (5)153
C5—H5A···Br30.932.973.798 (5)149

Experimental details

Crystal data
Chemical formula[Fe(C6H4N2S2)3][FeBr4]Br
Mr1015.95
Crystal system, space groupTrigonal, R3
Temperature (K)100
a, c (Å)12.0638 (7), 17.6907 (13)
V3)2229.7 (2)
Z3
Radiation typeMo Kα
µ (mm1)8.14
Crystal size (mm)0.45 × 0.35 × 0.30
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.031, 0.086
No. of measured, independent and
observed [I > 2σ(I)] reflections
8430, 2508, 2427
Rint0.099
(sin θ/λ)max1)0.680
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.085, 1.01
No. of reflections2508
No. of parameters112
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.93, 0.78
Absolute structureFlack (1983), 1195 Friedel pairs
Absolute structure parameter0.021 (9)

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008) and Mercury (Macrae et al., 2006), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
Fe1—N11.962 (3)Fe2—Br12.3348 (5)
Fe1—N21.974 (3)Fe2—Br22.3370 (12)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2A···Br30.932.813.665 (5)153
C5—H5A···Br30.932.973.798 (5)149
 

Acknowledgements

We thank the Graduate Study Councils of the Islamic Azad University, North Tehran Branch, and Shahid Beheshti University for financial support.

References

First citationAl-Hashemi, R., Safari, N., Abedi, A., Notash, B., Amani, V. & Khavasi, H. R. (2009). J. Coord. Chem. 62, 2909–2918.  Web of Science CSD CrossRef CAS Google Scholar
First citationAli, B. F. & Al-Far, R. (2007). Acta Cryst. C63, m451–m453.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAmani, V., Safari, N. & Khavasi, H. R. (2007a). Polyhedron, 26, 4257–4262.  Web of Science CSD CrossRef CAS Google Scholar
First citationAmani, V., Safari, N., Khavasi, H. R. & Mirzaei, P. (2007b). Polyhedron, 26, 4908–4914.  Web of Science CSD CrossRef CAS Google Scholar
First citationAmani, V., Safari, N., Notash, B. & Khavasi, H. R. (2009). J. Coord. Chem. 62, 1939–1950.  Web of Science CSD CrossRef CAS Google Scholar
First citationBaker, A. T. & Goodwin, H. A. (1985). Aust. J. Chem. 38, 851–863.  CSD CrossRef CAS Google Scholar
First citationBruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCraig, D. C., Goodwin, H. A., Onggo, D. & Rae, A. D. (1988). Aust. J. Chem. 41, 1625–1644.  CSD CrossRef CAS Google Scholar
First citationErlenmeyer, H. & Ueberwasser, H. (1939). Helv. Chim. Acta, 22, 938–939.  CrossRef CAS Google Scholar
First citationFiggis, B. N., Patrick, J. M., Reynolds, P. A., Skelton, B. W., White, A. H. & Healy, P. C. (1983). Aust. J. Chem. 36, 2043–2055.  CSD CrossRef CAS Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationJia, C., Liu, S. X., Ambrus, C., Labat, G., Neels, A. & Decurtins, S. (2006). Polyhedron, 25, 1613–1617.  Web of Science CSD CrossRef CAS Google Scholar
First citationKhavasi, H. R., Abedi, A., Amani, V., Notash, B. & Safari, N. (2008). Polyhedron, 27, 1848–1854.  Web of Science CSD CrossRef CAS Google Scholar
First citationKulkarni, P., Padhye, S. & Sinn, E. (1998). Polyhedron, 17, 2623–2626.  Web of Science CSD CrossRef CAS Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMahjoub, A. R. & Morsali, A. (2001). Chem. Lett. 30, 1234–1235.  CSD CrossRef Google Scholar
First citationMahjoub, A. R. & Morsali, A. (2002a). Polyhedron, 21, 197–203.  Web of Science CSD CrossRef CAS Google Scholar
First citationMahjoub, A. R. & Morsali, A. (2002b). Z. Kristallogr. New Cryst. Struct. 217, 443–444.  CAS Google Scholar
First citationNotash, B., Safari, N., Abedi, A., Amani, V. & Khavasi, H. R. (2009). J. Coord. Chem. 62, 1638–1649.  Web of Science CSD CrossRef CAS Google Scholar
First citationNotash, B., Safari, N., Khavasi, H. R., Amani, V. & Abedi, A. (2008). J. Organomet. Chem. 693, 3553–3557.  Web of Science CrossRef CAS Google Scholar
First citationRahimi, N., Safari, N., Amani, V. & Khavasi, H. R. (2009). Acta Cryst. E65, m1370.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSafari, N., Amani, V., Abedi, A., Notash, B. & Ng, S. W. (2009). Acta Cryst. E65, m372.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 3| March 2011| Pages m311-m312
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds