metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Poly[[aqua­(μ-4,4′-bi­pyridine-κ2N:N′)(μ3-2-nitro-5-sulfonatobenzoato-κ3O1:O1′:O5)copper(II)] 4,4′-bi­pyridine hemisolvate]

aDepartment of Chemistry, Baicheng Normal College, Baicheng 137000, People's Republic of China
*Correspondence e-mail: chemzyzhang@yahoo.cn

(Received 14 September 2009; accepted 28 September 2009; online 3 October 2009)

In the title compound, [Cu(C7H3NO7S)(C10H8N2)(H2O)]·0.5C10H8N2, the CuII atom is six-coordinated by two N atoms from two different bipyridine (bipy) ligands, one sulfonate O atom and two carboxyl­ate O atoms from three 2-nitro-5-sulfonatobenzoate ligands and one water O atom in a distorted octa­hedral geometry. The bipy solvent mol­ecule lies on an inversion center. The CuII atoms are linked by the bipy ligands, forming one-dimensional chains, which are connected by the 2-nitro-5-sulfonatobenzoate ligands into a two-dimensional layer-like network. The two-dimensional structure is extended by O—H⋯O and O—H⋯N hydrogen bonds into a three-dimensional supra­molecular network.

Related literature

For general background to copper(II) sulfonate complexes, see: Du et al. (2009[Du, Z., Huang, J., Xie, Y. & Wen, H. (2009). J. Mol. Struct. 919, 112-116.]); Li et al. (2009[Li, L., Xu, G. & Zhu, H.-B. (2009). Acta Cryst. E65, m476.]); Liu et al. (2009[Liu, Y., Bi, Y., He, W., Wang, X., Liao, W. & Zhang, H. (2009). J. Mol. Struct. 919, 235-238.]); Sonnauer & Stock (2008[Sonnauer, A. & Stock, N. (2008). Eur. J. Inorg. Chem. pp. 5038-5045.]); Sonnauer et al. (2009[Sonnauer, A., Feyand, M. & Stock, N. (2009). Cryst. Growth Des. 9, 586-592.]). For related structures, see: Dong et al. (2009[Dong, H., Bi, W. & Zhu, H. (2009). Asian J. Chem. 21, 5598-5602.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu(C7H3NO7S)(C10H8N2)(H2O)]·0.5C10H8N2

  • Mr = 561.00

  • Monoclinic, P 21 /c

  • a = 11.4549 (17) Å

  • b = 11.0447 (16) Å

  • c = 17.089 (3) Å

  • β = 92.738 (3)°

  • V = 2159.5 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.17 mm−1

  • T = 293 K

  • 0.23 × 0.17 × 0.14 mm

Data collection
  • Bruker SMART APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.767, Tmax = 0.850

  • 11892 measured reflections

  • 4260 independent reflections

  • 2560 reflections with I > 2σ(I)

  • Rint = 0.088

Refinement
  • R[F2 > 2σ(F2)] = 0.065

  • wR(F2) = 0.135

  • S = 1.00

  • 4260 reflections

  • 331 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.86 e Å−3

  • Δρmin = −0.46 e Å−3

Table 1
Selected bond lengths (Å)

Cu1—N2 1.986 (4)
Cu1—N3i 2.004 (4)
Cu1—O2ii 2.565 (4)
Cu1—O4 1.969 (3)
Cu1—O5iii 2.299 (4)
Cu1—O6 2.032 (4)
Symmetry codes: (i) x, y+1, z; (ii) [-x+1, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iii) -x+1, -y+1, -z+1.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O6—H1A⋯O1ii 0.83 (5) 1.94 (5) 2.758 (5) 171 (6)
O6—H1B⋯N4iv 0.86 (5) 2.00 (5) 2.801 (6) 156 (5)
Symmetry codes: (ii) [-x+1, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iv) [-x+1, y+{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: SMART (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and DIAMOND (Brandenburg, 1999[Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

In recent years, the design and synthesis of copper(II) sulfonates have attracted great attention because of their flexible coordination modes, interesting inorganic-organic lamellar structures, selective and reversible guest inclusion properties, and their ability to intercalate guest molecules (Du et al., 2009; Sonnauer et al., 2009). It is noteworthy that some copper(II) sulfonate complexes with nitrogen-based secondary ligands, exhibiting different bonding modes dependent on the presence of secondary ligands, have been reported (Liu et al., 2009; Sonnauer & Stock, 2008). It has also been demonstrated that the existence and changes of the secondary ligands can have a great effect on the structures of copper(II) sulfonates, often with surprising results (Li et al., 2009). In this paper, we utilized 2-nitro-5-sulfobenzoic acid (H2nsb) as an organic sulfonate ligand and 4,4'-bipyridine (bipy) as an N-donor ligand, providing a coordination compound, [Cu(nsb)(bipy)(H2O)].0.5bipy, which is reported here.

In the title compound, the central CuII ion is six-coordinated by two N atoms from two different bipy ligands, one sulfonate O atom, two carboxylate O atoms from three nsb ligand and one water molecule in a distorted octahedral coordination geometry (Table 1). There are free bipy molecules in the structure, stabilized by hydrogen bonds (Fig. 1). The Cu—O distances are comparable to those found in other crystallographically characterized CuII complexes (Dong et al., 2009). The Cu atoms are linked by the bipy ligands, forming an extended one-dimensional chain. These chains are further connected by the nsb ligands into a two-dimensional layer-like network. In addition, the existence of O—H···O and O—H···N hydrogen bonds (Table 2) extends the two-dimensional layer into a three-dimensional supramolecular architecture (Fig. 2).

Related literature top

For general background to copper(II) sulfonate complexes, see: Du et al. (2009); Li et al. (2009); Liu et al. (2009); Sonnauer & Stock (2008); Sonnauer et al. (2009). For related structures, see: Dong et al. (2009).

Experimental top

A mixture of Cu(CH3CO2)2.2H2O (0.040 g, 0.2 mmol), 2-nitro-5-sulfobenzoic acid (0.049 g, 0.2 mmol), 4,4'-bipyridine (0.039 g, 0.2 mmol), and H2O (15 ml) was sealed in a 25 ml Teflon-lined stainless steel reactor, which was heated at 443 K for 72 h and then it was cooled to room temperature. Blue crystals of the title compound were collected.

Refinement top

H atoms on C atoms were positioned geometrically and refined as riding atoms, with C—H= 0.93 Å and Uiso(H)= 1.2Ueq(C). The H atoms of the water molecule were located in a difference Fourier map and refined with a distance restraint of O—H = 0.85 (1) Å and with Uiso(H) = 1.5Ueq(O).

Structure description top

In recent years, the design and synthesis of copper(II) sulfonates have attracted great attention because of their flexible coordination modes, interesting inorganic-organic lamellar structures, selective and reversible guest inclusion properties, and their ability to intercalate guest molecules (Du et al., 2009; Sonnauer et al., 2009). It is noteworthy that some copper(II) sulfonate complexes with nitrogen-based secondary ligands, exhibiting different bonding modes dependent on the presence of secondary ligands, have been reported (Liu et al., 2009; Sonnauer & Stock, 2008). It has also been demonstrated that the existence and changes of the secondary ligands can have a great effect on the structures of copper(II) sulfonates, often with surprising results (Li et al., 2009). In this paper, we utilized 2-nitro-5-sulfobenzoic acid (H2nsb) as an organic sulfonate ligand and 4,4'-bipyridine (bipy) as an N-donor ligand, providing a coordination compound, [Cu(nsb)(bipy)(H2O)].0.5bipy, which is reported here.

In the title compound, the central CuII ion is six-coordinated by two N atoms from two different bipy ligands, one sulfonate O atom, two carboxylate O atoms from three nsb ligand and one water molecule in a distorted octahedral coordination geometry (Table 1). There are free bipy molecules in the structure, stabilized by hydrogen bonds (Fig. 1). The Cu—O distances are comparable to those found in other crystallographically characterized CuII complexes (Dong et al., 2009). The Cu atoms are linked by the bipy ligands, forming an extended one-dimensional chain. These chains are further connected by the nsb ligands into a two-dimensional layer-like network. In addition, the existence of O—H···O and O—H···N hydrogen bonds (Table 2) extends the two-dimensional layer into a three-dimensional supramolecular architecture (Fig. 2).

For general background to copper(II) sulfonate complexes, see: Du et al. (2009); Li et al. (2009); Liu et al. (2009); Sonnauer & Stock (2008); Sonnauer et al. (2009). For related structures, see: Dong et al. (2009).

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg, 1999); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound. Displacement ellipsoids are drawn at the 30% probability level. [Symmetry codes: (i) x, 1+y, z; (ii) 1-x, -0.5+y, 1.5-z; (iii) 1-x, 1-y, 1-z; (iv) -x, 1-y, 2-z.]
[Figure 2] Fig. 2. View of the three-dimensional supramolecular network in the title compound. Dashed lines denote hydrogen bonds.
Poly[[aqua(µ-4,4'-bipyridine-κ2N:N')(µ3-2-nitro-5- sulfonatobenzoato-κ3O1:O1':O5)copper(II)] 4,4'-bipyridine hemisolvate] top
Crystal data top
[Cu(C7H3NO7S)(C10H8N2)(H2O)]·0.5C10H8N2F(000) = 1144
Mr = 561.00Dx = 1.725 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 4260 reflections
a = 11.4549 (17) Åθ = 1.8–26.0°
b = 11.0447 (16) ŵ = 1.17 mm1
c = 17.089 (3) ÅT = 293 K
β = 92.738 (3)°Block, blue
V = 2159.5 (5) Å30.23 × 0.17 × 0.14 mm
Z = 4
Data collection top
Bruker SMART APEX CCD
diffractometer
4260 independent reflections
Radiation source: fine-focus sealed tube2560 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.088
φ and ω scansθmax = 26.0°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 1414
Tmin = 0.767, Tmax = 0.850k = 1313
11892 measured reflectionsl = 2110
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.065Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.135H atoms treated by a mixture of independent and constrained refinement
S = 1.00 w = 1/[σ2(Fo2) + (0.0455P)2]
where P = (Fo2 + 2Fc2)/3
4260 reflections(Δ/σ)max = 0.001
331 parametersΔρmax = 0.86 e Å3
0 restraintsΔρmin = 0.46 e Å3
Crystal data top
[Cu(C7H3NO7S)(C10H8N2)(H2O)]·0.5C10H8N2V = 2159.5 (5) Å3
Mr = 561.00Z = 4
Monoclinic, P21/cMo Kα radiation
a = 11.4549 (17) ŵ = 1.17 mm1
b = 11.0447 (16) ÅT = 293 K
c = 17.089 (3) Å0.23 × 0.17 × 0.14 mm
β = 92.738 (3)°
Data collection top
Bruker SMART APEX CCD
diffractometer
4260 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
2560 reflections with I > 2σ(I)
Tmin = 0.767, Tmax = 0.850Rint = 0.088
11892 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0650 restraints
wR(F2) = 0.135H atoms treated by a mixture of independent and constrained refinement
S = 1.00Δρmax = 0.86 e Å3
4260 reflectionsΔρmin = 0.46 e Å3
331 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.2223 (4)0.7923 (4)0.6944 (3)0.0215 (13)
C20.2994 (4)0.7254 (4)0.6511 (3)0.0198 (12)
H20.35650.76560.62430.024*
C30.2929 (4)0.5989 (5)0.6472 (3)0.0195 (12)
C40.2051 (5)0.5449 (4)0.6866 (3)0.0224 (13)
C50.1244 (5)0.6090 (5)0.7293 (4)0.0321 (15)
H50.06490.56920.75420.039*
C60.1356 (5)0.7338 (5)0.7335 (4)0.0313 (15)
H60.08460.77860.76270.038*
C70.3842 (5)0.5338 (4)0.6006 (3)0.0177 (12)
C80.5609 (4)0.2511 (4)0.6504 (3)0.0229 (13)
H80.51290.29360.68310.027*
C90.5560 (4)0.1262 (4)0.6501 (3)0.0237 (13)
H90.50670.08600.68310.028*
C100.6248 (5)0.0607 (4)0.6005 (3)0.0183 (13)
C110.6982 (4)0.1266 (4)0.5532 (3)0.0205 (13)
H110.74540.08690.51860.025*
C120.6997 (4)0.2501 (4)0.5582 (3)0.0208 (13)
H120.75040.29240.52730.025*
C130.6233 (4)0.0732 (4)0.5994 (3)0.0191 (13)
C140.6096 (4)0.1390 (4)0.6673 (3)0.0207 (13)
H140.59600.09920.71400.025*
C150.6162 (5)0.2632 (4)0.6656 (3)0.0241 (13)
H150.60980.30570.71220.029*
C160.6431 (5)0.2628 (4)0.5338 (3)0.0248 (13)
H160.65410.30540.48780.030*
C170.6397 (5)0.1375 (4)0.5304 (3)0.0236 (13)
H170.64820.09710.48330.028*
C180.0395 (6)0.2255 (6)1.0226 (4)0.052 (2)
H180.03160.16411.05930.063*
C190.0134 (6)0.3431 (6)1.0445 (4)0.0483 (19)
H190.00570.35971.09570.058*
C200.0160 (5)0.4360 (5)0.9900 (4)0.0353 (16)
C210.0488 (5)0.4042 (6)0.9165 (4)0.0408 (17)
H210.05090.46290.87760.049*
C220.0790 (5)0.2855 (6)0.8995 (4)0.0421 (17)
H220.10280.26770.84950.051*
N10.1916 (4)0.4121 (4)0.6833 (3)0.0327 (13)
N20.6323 (4)0.3136 (3)0.6052 (3)0.0212 (11)
N30.6313 (4)0.3253 (4)0.5997 (3)0.0194 (10)
N40.0754 (4)0.1954 (5)0.9520 (3)0.0406 (14)
O10.1331 (3)0.9957 (3)0.7351 (2)0.0321 (9)
O20.3416 (3)0.9755 (3)0.7461 (2)0.0283 (10)
O30.2451 (4)0.9910 (3)0.6178 (2)0.0373 (10)
O40.4740 (3)0.5046 (3)0.6409 (2)0.0223 (8)
O50.3643 (3)0.5231 (3)0.5297 (2)0.0277 (9)
O60.8116 (3)0.4917 (4)0.6061 (2)0.0259 (9)
O70.2618 (3)0.3519 (3)0.6486 (3)0.0376 (11)
O80.1112 (4)0.3662 (4)0.7165 (3)0.0676 (17)
S10.23675 (13)0.95326 (12)0.69752 (9)0.0243 (4)
Cu10.63413 (5)0.49342 (5)0.60435 (4)0.0195 (2)
H1A0.833 (5)0.486 (5)0.653 (3)0.029*
H1B0.843 (5)0.543 (5)0.576 (3)0.029*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.025 (3)0.019 (3)0.021 (3)0.002 (2)0.001 (3)0.003 (3)
C20.024 (3)0.018 (3)0.019 (3)0.002 (2)0.004 (2)0.001 (2)
C30.020 (3)0.018 (3)0.021 (3)0.003 (2)0.001 (3)0.002 (3)
C40.027 (3)0.013 (3)0.027 (4)0.001 (2)0.005 (3)0.005 (2)
C50.027 (3)0.029 (3)0.042 (4)0.001 (3)0.018 (3)0.007 (3)
C60.032 (3)0.026 (3)0.037 (4)0.009 (3)0.013 (3)0.001 (3)
C70.030 (3)0.007 (3)0.016 (3)0.005 (2)0.006 (3)0.001 (2)
C80.029 (3)0.015 (3)0.027 (3)0.000 (2)0.014 (3)0.001 (3)
C90.030 (3)0.014 (3)0.028 (4)0.004 (2)0.007 (3)0.002 (3)
C100.029 (3)0.005 (2)0.020 (3)0.002 (2)0.007 (3)0.001 (2)
C110.028 (3)0.011 (3)0.024 (3)0.001 (2)0.010 (3)0.004 (2)
C120.026 (3)0.011 (3)0.027 (3)0.001 (2)0.007 (3)0.004 (2)
C130.024 (3)0.009 (3)0.025 (4)0.000 (2)0.005 (3)0.002 (3)
C140.030 (3)0.013 (3)0.021 (3)0.002 (2)0.010 (3)0.000 (2)
C150.032 (3)0.016 (3)0.025 (4)0.001 (2)0.008 (3)0.005 (3)
C160.040 (3)0.014 (3)0.022 (3)0.003 (3)0.011 (3)0.006 (3)
C170.035 (3)0.015 (3)0.021 (3)0.001 (3)0.006 (3)0.006 (3)
C180.068 (5)0.043 (4)0.048 (5)0.014 (4)0.020 (4)0.011 (4)
C190.066 (5)0.034 (4)0.045 (5)0.019 (4)0.013 (4)0.004 (4)
C200.030 (4)0.039 (4)0.038 (4)0.007 (3)0.004 (3)0.004 (3)
C210.049 (4)0.037 (4)0.037 (4)0.010 (3)0.003 (4)0.000 (3)
C220.047 (4)0.043 (4)0.037 (4)0.007 (3)0.004 (3)0.013 (4)
N10.033 (3)0.025 (3)0.041 (4)0.006 (2)0.006 (3)0.001 (3)
N20.029 (3)0.011 (2)0.024 (3)0.002 (2)0.005 (2)0.003 (2)
N30.022 (2)0.011 (2)0.026 (3)0.0013 (19)0.005 (2)0.001 (2)
N40.038 (3)0.036 (3)0.048 (4)0.002 (2)0.000 (3)0.003 (3)
O10.031 (2)0.026 (2)0.039 (2)0.0052 (19)0.0013 (19)0.006 (2)
O20.029 (2)0.020 (2)0.036 (3)0.0042 (16)0.0006 (19)0.0048 (19)
O30.065 (3)0.023 (2)0.025 (2)0.002 (2)0.002 (2)0.001 (2)
O40.0249 (19)0.0142 (18)0.028 (2)0.0021 (17)0.0053 (17)0.0024 (19)
O50.045 (2)0.017 (2)0.021 (2)0.0056 (17)0.0079 (19)0.0030 (18)
O60.030 (2)0.021 (2)0.027 (2)0.0013 (18)0.0064 (19)0.006 (2)
O70.046 (3)0.019 (2)0.049 (3)0.005 (2)0.019 (2)0.007 (2)
O80.066 (3)0.035 (3)0.106 (5)0.012 (2)0.056 (3)0.005 (3)
S10.0298 (8)0.0166 (7)0.0269 (9)0.0041 (6)0.0063 (7)0.0020 (6)
Cu10.0252 (3)0.0066 (3)0.0273 (4)0.0008 (3)0.0082 (3)0.0005 (3)
Geometric parameters (Å, º) top
C1—C61.382 (7)C15—H150.9300
C1—C21.391 (7)C16—N31.334 (6)
C1—S11.787 (5)C16—C171.385 (7)
C2—C31.401 (6)C16—H160.9300
C2—H20.9300C17—H170.9300
C3—C41.373 (7)C18—N41.335 (8)
C3—C71.525 (7)C18—C191.389 (9)
C4—C51.398 (7)C18—H180.9300
C4—N11.475 (7)C19—C201.386 (9)
C5—C61.386 (7)C19—H190.9300
C5—H50.9300C20—C211.375 (8)
C6—H60.9300C20—C20i1.505 (11)
C7—O51.227 (6)C21—C221.390 (8)
C7—O41.254 (6)C21—H210.9300
C8—N21.341 (6)C22—N41.342 (8)
C8—C91.381 (7)C22—H220.9300
C8—H80.9300N1—O81.216 (6)
C9—C101.388 (7)N1—O71.219 (6)
C9—H90.9300O1—S11.454 (4)
C10—C111.398 (7)O2—S11.448 (4)
C10—C131.479 (6)O3—S11.432 (4)
C11—C121.366 (6)O6—H1A0.83 (5)
C11—H110.9300O6—H1B0.86 (5)
C12—N21.339 (6)Cu1—N21.986 (4)
C12—H120.9300Cu1—N3ii2.004 (4)
C13—C141.384 (7)Cu1—O2iii2.565 (4)
C13—C171.397 (7)Cu1—O41.969 (3)
C14—C151.374 (6)Cu1—O5iv2.299 (4)
C14—H140.9300Cu1—O62.032 (4)
C15—N31.337 (6)
C6—C1—C2119.9 (5)N4—C18—C19123.8 (7)
C6—C1—S1121.2 (4)N4—C18—H18118.1
C2—C1—S1118.9 (4)C19—C18—H18118.1
C1—C2—C3121.4 (5)C20—C19—C18119.9 (7)
C1—C2—H2119.3C20—C19—H19120.0
C3—C2—H2119.3C18—C19—H19120.0
C4—C3—C2116.7 (5)C21—C20—C19116.2 (6)
C4—C3—C7126.0 (5)C21—C20—C20i121.8 (8)
C2—C3—C7117.3 (5)C19—C20—C20i122.0 (8)
C3—C4—C5123.6 (5)C20—C21—C22120.9 (6)
C3—C4—N1119.4 (5)C20—C21—H21119.5
C5—C4—N1116.9 (5)C22—C21—H21119.5
C6—C5—C4117.9 (5)N4—C22—C21122.9 (6)
C6—C5—H5121.0N4—C22—H22118.6
C4—C5—H5121.0C21—C22—H22118.6
C1—C6—C5120.5 (5)O8—N1—O7122.2 (5)
C1—C6—H6119.8O8—N1—C4118.4 (5)
C5—C6—H6119.8O7—N1—C4119.4 (5)
O5—C7—O4128.8 (5)C12—N2—C8117.4 (4)
O5—C7—C3117.5 (5)C12—N2—Cu1120.8 (4)
O4—C7—C3113.6 (5)C8—N2—Cu1121.7 (4)
N2—C8—C9122.5 (5)C16—N3—C15117.9 (4)
N2—C8—H8118.7C16—N3—Cu1v123.2 (4)
C9—C8—H8118.7C15—N3—Cu1v118.8 (4)
C8—C9—C10119.9 (5)C18—N4—C22116.2 (6)
C8—C9—H9120.0C7—O4—Cu1126.4 (3)
C10—C9—H9120.0C7—O5—Cu1iv168.9 (4)
C9—C10—C11117.2 (4)Cu1—O6—H1A105 (4)
C9—C10—C13121.5 (5)Cu1—O6—H1B115 (4)
C11—C10—C13121.4 (5)H1A—O6—H1B122 (5)
C12—C11—C10119.3 (5)O3—S1—O2113.9 (2)
C12—C11—H11120.4O3—S1—O1114.8 (2)
C10—C11—H11120.4O2—S1—O1111.4 (2)
N2—C12—C11123.7 (5)O3—S1—C1105.8 (3)
N2—C12—H12118.1O2—S1—C1105.0 (2)
C11—C12—H12118.1O1—S1—C1104.9 (2)
C14—C13—C17117.7 (5)O4—Cu1—N292.84 (16)
C14—C13—C10121.1 (5)O4—Cu1—N3ii86.36 (16)
C17—C13—C10121.1 (5)N2—Cu1—N3ii177.66 (18)
C15—C14—C13119.9 (5)O4—Cu1—O6160.42 (16)
C15—C14—H14120.1N2—Cu1—O690.09 (17)
C13—C14—H14120.1N3ii—Cu1—O691.39 (17)
N3—C15—C14122.6 (5)O4—Cu1—O5iv111.89 (14)
N3—C15—H15118.7N2—Cu1—O5iv85.92 (16)
C14—C15—H15118.7N3ii—Cu1—O5iv92.34 (16)
N3—C16—C17123.2 (5)O6—Cu1—O5iv87.62 (15)
N3—C16—H16118.4O2iii—Cu1—N285.20 (17)
C17—C16—H16118.4O2iii—Cu1—N3ii96.74 (17)
C16—C17—C13118.5 (5)O2iii—Cu1—O475.35 (13)
C16—C17—H17120.7O2iii—Cu1—O5iv168.81 (12)
C13—C17—H17120.7O2iii—Cu1—O685.63 (13)
C6—C1—C2—C31.2 (8)C20i—C20—C21—C22179.5 (7)
S1—C1—C2—C3179.4 (4)C20—C21—C22—N41.7 (10)
C1—C2—C3—C41.4 (8)C3—C4—N1—O8177.7 (6)
C1—C2—C3—C7177.9 (5)C5—C4—N1—O80.9 (8)
C2—C3—C4—C50.1 (9)C3—C4—N1—O73.5 (8)
C7—C3—C4—C5179.2 (5)C5—C4—N1—O7178.0 (5)
C2—C3—C4—N1178.5 (5)C11—C12—N2—C81.0 (8)
C7—C3—C4—N12.3 (9)C11—C12—N2—Cu1176.6 (4)
C3—C4—C5—C61.7 (9)C9—C8—N2—C120.5 (8)
N1—C4—C5—C6179.8 (5)C9—C8—N2—Cu1178.1 (4)
C2—C1—C6—C50.5 (9)C17—C16—N3—C150.4 (8)
S1—C1—C6—C5178.9 (5)C17—C16—N3—Cu1v179.2 (4)
C4—C5—C6—C11.9 (9)C14—C15—N3—C161.6 (8)
C4—C3—C7—O595.3 (7)C14—C15—N3—Cu1v178.0 (4)
C2—C3—C7—O585.6 (6)C19—C18—N4—C223.8 (10)
C4—C3—C7—O488.7 (7)C21—C22—N4—C180.7 (9)
C2—C3—C7—O490.4 (6)O5—C7—O4—Cu126.7 (7)
N2—C8—C9—C101.5 (9)C3—C7—O4—Cu1148.7 (3)
C8—C9—C10—C110.9 (8)O4—C7—O5—Cu1iv29 (2)
C8—C9—C10—C13179.0 (5)C3—C7—O5—Cu1iv146.5 (15)
C9—C10—C11—C120.6 (8)C6—C1—S1—O3130.7 (5)
C13—C10—C11—C12177.6 (5)C2—C1—S1—O348.7 (5)
C10—C11—C12—N21.6 (8)C6—C1—S1—O2108.6 (5)
C9—C10—C13—C1435.0 (8)C2—C1—S1—O272.0 (5)
C11—C10—C13—C14143.0 (5)C6—C1—S1—O19.0 (5)
C9—C10—C13—C17147.2 (5)C2—C1—S1—O1170.5 (4)
C11—C10—C13—C1734.7 (8)C7—O4—Cu1—N2106.1 (4)
C17—C13—C14—C152.0 (8)C7—O4—Cu1—N3ii71.7 (4)
C10—C13—C14—C15175.8 (5)C7—O4—Cu1—O6155.6 (5)
C13—C14—C15—N32.5 (8)C7—O4—Cu1—O5iv19.4 (4)
N3—C16—C17—C130.1 (8)C12—N2—Cu1—O4153.9 (4)
C14—C13—C17—C160.9 (8)C8—N2—Cu1—O423.6 (4)
C10—C13—C17—C16176.9 (5)C12—N2—Cu1—O645.4 (4)
N4—C18—C19—C204.6 (11)C8—N2—Cu1—O6137.1 (4)
C18—C19—C20—C212.0 (10)C12—N2—Cu1—O5iv42.2 (4)
C18—C19—C20—C20i177.6 (7)C8—N2—Cu1—O5iv135.3 (4)
C19—C20—C21—C220.9 (10)
Symmetry codes: (i) x, y+1, z+2; (ii) x, y+1, z; (iii) x+1, y1/2, z+3/2; (iv) x+1, y+1, z+1; (v) x, y1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O6—H1A···O1iii0.83 (5)1.94 (5)2.758 (5)171 (6)
O6—H1B···N4vi0.86 (5)2.00 (5)2.801 (6)156 (5)
Symmetry codes: (iii) x+1, y1/2, z+3/2; (vi) x+1, y+1/2, z+3/2.

Experimental details

Crystal data
Chemical formula[Cu(C7H3NO7S)(C10H8N2)(H2O)]·0.5C10H8N2
Mr561.00
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)11.4549 (17), 11.0447 (16), 17.089 (3)
β (°) 92.738 (3)
V3)2159.5 (5)
Z4
Radiation typeMo Kα
µ (mm1)1.17
Crystal size (mm)0.23 × 0.17 × 0.14
Data collection
DiffractometerBruker SMART APEX CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.767, 0.850
No. of measured, independent and
observed [I > 2σ(I)] reflections
11892, 4260, 2560
Rint0.088
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.065, 0.135, 1.00
No. of reflections4260
No. of parameters331
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.86, 0.46

Computer programs: SMART (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg, 1999), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
Cu1—N21.986 (4)Cu1—O41.969 (3)
Cu1—N3i2.004 (4)Cu1—O5iii2.299 (4)
Cu1—O2ii2.565 (4)Cu1—O62.032 (4)
Symmetry codes: (i) x, y+1, z; (ii) x+1, y1/2, z+3/2; (iii) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O6—H1A···O1ii0.83 (5)1.94 (5)2.758 (5)171 (6)
O6—H1B···N4iv0.86 (5)2.00 (5)2.801 (6)156 (5)
Symmetry codes: (ii) x+1, y1/2, z+3/2; (iv) x+1, y+1/2, z+3/2.
 

Acknowledgements

Baicheng Normal College is thanked for supporting this work.

References

First citationBrandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDong, H., Bi, W. & Zhu, H. (2009). Asian J. Chem. 21, 5598–5602.  CAS Google Scholar
First citationDu, Z., Huang, J., Xie, Y. & Wen, H. (2009). J. Mol. Struct. 919, 112–116.  Web of Science CSD CrossRef CAS Google Scholar
First citationLi, L., Xu, G. & Zhu, H.-B. (2009). Acta Cryst. E65, m476.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLiu, Y., Bi, Y., He, W., Wang, X., Liao, W. & Zhang, H. (2009). J. Mol. Struct. 919, 235–238.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSonnauer, A., Feyand, M. & Stock, N. (2009). Cryst. Growth Des. 9, 586–592.  Web of Science CSD CrossRef CAS Google Scholar
First citationSonnauer, A. & Stock, N. (2008). Eur. J. Inorg. Chem. pp. 5038–5045.  Web of Science CSD CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds