metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 9| September 2009| Pages m1065-m1066

Poly[di­aqua­(μ2-oxalato-κ4O1,O2:O1′,O2′)(μ2-pyrazine-2-carboxyl­ato-κ4N1,O:O,O′)neodymium(III)]

aSchool of Chemistry and Environment, South China Normal University, Guangzhou 510006, People's Republic of China, and bKey Laboratory of the Technology of Electrochemical Energy Storage and Power Generation in Guangdong Universities, South China Normal University, Guangzhou 510006, People's Republic of China
*Correspondence e-mail: luoyf2004@yahoo.com.cn

(Received 29 July 2009; accepted 7 August 2009; online 12 August 2009)

In the title complex, [Nd(C5H3N2O2)(C2O4)(H2O)2]n, the NdIII atom is ten-coordinated by one N atom and three O atoms from two pyrazine-2-carboxyl­ate ligands, four O atoms from two oxalate ligands and two water mol­ecules in a distorted bicapped square-anti­prismatic geometry. The two crystallographically independent oxalate ligands, each lying on an inversion center, act as bridging ligands, linking Nd atoms into an extended zigzag chain. Neighboring chains are linked by the pyrazine-2-carboxyl­ate ligands into a two-dimensional layerlike network in the (10[\overline{1}]) plane. The layers are further connected by O—H⋯O and O—H⋯N hydrogen bonds, forming a three-dimensional supra­molecular network.

Related literature

For general background to lanthanide coordination frameworks, see: Han et al. (2009[Han, L., Meng, Q.-H., Hao, J.-D., Luo, Y.-F. & Zeng, R.-H. (2009). Acta Cryst. E65, m76.]); Li et al. (2006[Li, P., Gu, W., Zhang, L.-Z., Qu, J., Ma, Z.-P., Liu, X. & Liao, D.-Z. (2006). Inorg. Chem. 45, 10425-10427.]); Wang et al. (2006[Wang, Z., Shen, X., Wang, J., Zhang, P., Li, Y., Nfor, E. N., Song, Y., Ohkoshi, S., Hashimoto, K. & You, X. (2006). Angew. Chem. Int. Ed. 45, 3287-3291.]); Zhou et al. (2006[Zhou, Y., Hong, M. & Wu, X. (2006). Chem. Commun. pp. 135-143.]).

[Scheme 1]

Experimental

Crystal data
  • [Nd(C5H3N2O2)(C2O4)(H2O)2]

  • Mr = 391.39

  • Triclinic, [P \overline 1]

  • a = 7.948 (3) Å

  • b = 8.6512 (18) Å

  • c = 8.7425 (18) Å

  • α = 115.525 (2)°

  • β = 101.970 (3)°

  • γ = 96.306 (3)°

  • V = 517.0 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 5.06 mm−1

  • T = 296 K

  • 0.23 × 0.19 × 0.17 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.320, Tmax = 0.420

  • 2533 measured reflections

  • 1824 independent reflections

  • 1756 reflections with I > 2σ(I)

  • Rint = 0.065

Refinement
  • R[F2 > 2σ(F2)] = 0.051

  • wR(F2) = 0.132

  • S = 1.08

  • 1824 reflections

  • 175 parameters

  • 6 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 1.95 e Å−3

  • Δρmin = −2.98 e Å−3

Table 1
Selected bond lengths (Å)

Nd1—O2W 2.467 (5)
Nd1—O3 2.474 (5)
Nd1—O6i 2.490 (5)
Nd1—O4ii 2.508 (5)
Nd1—O5 2.512 (5)
Nd1—O1W 2.549 (6)
Nd1—O2iii 2.557 (5)
Nd1—O2 2.573 (5)
Nd1—N1iii 2.765 (6)
Nd1—O1 2.885 (6)
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) -x+2, -y+2, -z+2; (iii) -x+2, -y+1, -z+2.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1W⋯O1iv 0.84 (9) 2.02 (6) 2.707 (8) 139 (7)
O1W—H2W⋯O6v 0.85 (8) 2.07 (4) 2.838 (8) 152 (6)
O2W—H3W⋯N2vi 0.84 (5) 2.50 (5) 3.229 (9) 145 (6)
O2W—H4W⋯O4vii 0.84 (8) 2.13 (4) 2.872 (8) 147 (7)
Symmetry codes: (iv) -x+2, -y+1, -z+1; (v) x+1, y, z; (vi) x-1, y, z; (vii) x, y-1, z.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 1999[Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Comment top

In recent years, many research groups have devoted their work to the design and synthesis of lanthanide coordination frameworks with bridging multifunctional organic ligands, not only because of their fascinating topological networks, but also due to their potential applications in ion exchange, gas storage, catalysis and luminescence (Wang et al., 2006; Zhou et al., 2006). As a building block, pyrazine-2-carboxylic acid and oxalic acid are good ligands with multifunctional coordination sites providing a high likelihood for the generation of structures with high dimensions (Han et al., 2009; Li et al., 2006). Recently, we obtained the title coordination polymer under hydrothermal conditions.

In the title compound, the NdIII atom is coordinated by seven O atoms and one N atom from two pyrazine-2-carboxylate ligands and two oxalate ligands, and by two water molecules in a distorted bicapped square-antiprismatic geometry (Fig. 1). The NdIII atoms are linked by the oxalate ligands, forming an extended zigzag chain. These chains are linked by the pyrazine-2-carboxylate ligands into a two-dimensional layerlike network (Fig. 2). The Nd—O and Nd—N bond lengths range from 2.467 (4) to 2.885 (6) Å (Table 1). O—H···O and O—H···N hydrogen bonds (Table 2) involving the pyrazine-2-carboxylate ligands, coordinated water molecules and oxalate ligands assemble neighboring layers into a three-dimensional supramolecular network.

Related literature top

For general background to lanthanide coordination frameworks, see: Han et al. (2009); Li et al. (2006); Wang et al. (2006); Zhou et al. (2006).

Experimental top

A mixture of Nd2O3 (0.245 g, 0.75 mmol), pyrazine-2-carboxylic acid (0.186 g, 1.5 mmol), oxalic acid (0.135 g, 1.5 mmol), water (10 ml) in the presence of HNO3 (0.024 g, 0.385 mmol) was stirred vigorously for 20 min and then sealed in a Teflon-lined stainless-steel autoclave (20 ml capacity). The autoclave was heated and maintained at 433 K for 3 d, and then cooled to room temperature at 5 K h-1. Colorless block crystals of the title compound were obtained.

Refinement top

Water H atoms were tentatively located in difference Fourier maps and were refined with distance restraints of O—H = 0.84 (1) and H···H = 1.34 (1) Å , and with a fixed Uiso(H). C-bound H atoms were placed at calculated positions and were treated as riding on the parent C atoms, with C—H = 0.93 Å, and with Uiso(H) = 1.2Ueq(C). The highest residual electron density was found 0.96 Å from Nd1 and the deepest hole 0.87 Å from Nd1.

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 1999); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound. Displacement ellipsoids are drawn at the 30% probability level. H atoms have been omitted for clarity. [Symmetry codes: (i) 1-x, 1-y, 1-z; (ii) 2-x, 2-y, 2-z; (iii) 2-x, 1-y, 2-z.]
[Figure 2] Fig. 2. View of the layered network in the title compound.
Poly[diaqua(µ2-oxalato- κ4O1,O2:O1',O2')(µ2-pyrazine- 2-carboxylato-κ4N1,O:O,O')neodymium(III)] top
Crystal data top
[Nd(C5H3N2O2)(C2O4)(H2O)2]Z = 2
Mr = 391.39F(000) = 374
Triclinic, P1Dx = 2.514 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.948 (3) ÅCell parameters from 2522 reflections
b = 8.6512 (18) Åθ = 2.7–28.3°
c = 8.7425 (18) ŵ = 5.06 mm1
α = 115.525 (2)°T = 296 K
β = 101.970 (3)°Block, colorless
γ = 96.306 (3)°0.23 × 0.19 × 0.17 mm
V = 517.0 (2) Å3
Data collection top
Bruker APEXII CCD
diffractometer
1824 independent reflections
Radiation source: fine-focus sealed tube1756 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.065
ϕ and ω scansθmax = 25.2°, θmin = 2.7°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 89
Tmin = 0.320, Tmax = 0.420k = 810
2533 measured reflectionsl = 1010
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.051Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.132H atoms treated by a mixture of independent and constrained refinement
S = 1.08 w = 1/[σ2(Fo2) + (0.0478P)2 + 0.0313P]
where P = (Fo2 + 2Fc2)/3
1824 reflections(Δ/σ)max = 0.002
175 parametersΔρmax = 1.95 e Å3
6 restraintsΔρmin = 2.98 e Å3
Crystal data top
[Nd(C5H3N2O2)(C2O4)(H2O)2]γ = 96.306 (3)°
Mr = 391.39V = 517.0 (2) Å3
Triclinic, P1Z = 2
a = 7.948 (3) ÅMo Kα radiation
b = 8.6512 (18) ŵ = 5.06 mm1
c = 8.7425 (18) ÅT = 296 K
α = 115.525 (2)°0.23 × 0.19 × 0.17 mm
β = 101.970 (3)°
Data collection top
Bruker APEXII CCD
diffractometer
1824 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1756 reflections with I > 2σ(I)
Tmin = 0.320, Tmax = 0.420Rint = 0.065
2533 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0516 restraints
wR(F2) = 0.132H atoms treated by a mixture of independent and constrained refinement
S = 1.08Δρmax = 1.95 e Å3
1824 reflectionsΔρmin = 2.98 e Å3
175 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C11.1008 (9)0.3421 (10)0.7510 (9)0.0146 (15)
C21.2220 (10)0.2213 (10)0.7476 (10)0.0175 (15)
C31.2449 (13)0.0959 (12)0.5928 (12)0.0246 (19)
H31.18820.09200.48650.030*
C41.4345 (11)0.0053 (11)0.7489 (11)0.0227 (17)
H41.51260.06600.75430.027*
C51.4166 (11)0.1312 (11)0.9049 (11)0.0235 (17)
H51.48180.14151.01160.028*
C60.9283 (8)1.0062 (9)0.9289 (9)0.0114 (14)
C70.4413 (9)0.5252 (9)0.5645 (9)0.0156 (15)
H1W1.058 (11)0.745 (10)0.649 (9)0.023*
H2W1.143 (10)0.630 (10)0.676 (10)0.023*
H3W0.599 (5)0.229 (10)0.680 (9)0.023*
H4W0.731 (9)0.226 (9)0.802 (10)0.023*
N11.3077 (9)0.2389 (9)0.9065 (8)0.0175 (13)
N21.3439 (9)0.0191 (9)0.5892 (9)0.0240 (15)
Nd10.83941 (4)0.58653 (4)0.82456 (4)0.0124 (2)
O11.0011 (8)0.3228 (8)0.6106 (7)0.0244 (13)
O21.1050 (7)0.4616 (7)0.9021 (7)0.0182 (11)
O30.8094 (7)0.8693 (7)0.8272 (7)0.0185 (11)
O40.9419 (7)1.1485 (7)0.9251 (7)0.0192 (11)
O50.5149 (7)0.5678 (8)0.7214 (7)0.0230 (12)
O60.2843 (7)0.5193 (8)0.4984 (6)0.0210 (11)
O1W1.0754 (9)0.6971 (9)0.7148 (8)0.0240 (13)
O2W0.7008 (7)0.2834 (7)0.7480 (7)0.0204 (11)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.019 (4)0.013 (4)0.016 (4)0.002 (3)0.009 (3)0.009 (3)
C20.024 (4)0.013 (4)0.016 (4)0.001 (3)0.005 (3)0.007 (3)
C30.034 (5)0.016 (5)0.020 (4)0.005 (4)0.007 (4)0.006 (4)
C40.028 (4)0.016 (4)0.028 (4)0.010 (3)0.016 (4)0.010 (4)
C50.025 (4)0.024 (4)0.030 (4)0.011 (3)0.009 (3)0.018 (4)
C60.008 (3)0.006 (3)0.014 (3)0.001 (2)0.001 (3)0.001 (3)
C70.018 (4)0.006 (4)0.016 (4)0.000 (3)0.007 (3)0.001 (3)
N10.023 (3)0.015 (3)0.018 (3)0.008 (3)0.007 (3)0.009 (3)
N20.029 (4)0.013 (3)0.027 (4)0.003 (3)0.014 (3)0.004 (3)
Nd10.0159 (3)0.0065 (3)0.0146 (3)0.00016 (19)0.0035 (2)0.0058 (2)
O10.032 (3)0.027 (3)0.021 (3)0.010 (3)0.009 (2)0.016 (3)
O20.022 (3)0.014 (3)0.024 (3)0.006 (2)0.011 (2)0.012 (2)
O30.016 (3)0.013 (3)0.024 (3)0.000 (2)0.000 (2)0.010 (2)
O40.025 (3)0.010 (3)0.024 (3)0.002 (2)0.003 (2)0.011 (2)
O50.022 (3)0.033 (3)0.019 (3)0.009 (2)0.008 (2)0.014 (3)
O60.019 (3)0.024 (3)0.015 (3)0.004 (2)0.003 (2)0.006 (2)
O1W0.033 (3)0.022 (3)0.022 (3)0.008 (3)0.013 (3)0.012 (3)
O2W0.029 (3)0.007 (3)0.022 (3)0.003 (2)0.006 (2)0.006 (2)
Geometric parameters (Å, º) top
C1—O11.246 (9)Nd1—O2W2.467 (5)
C1—O21.270 (9)Nd1—O32.474 (5)
C1—C21.492 (10)Nd1—O6ii2.490 (5)
C2—N11.350 (10)Nd1—O4i2.508 (5)
C2—C31.386 (11)Nd1—O52.512 (5)
C3—N21.328 (11)Nd1—O1W2.549 (6)
C3—H30.9300Nd1—O2iii2.557 (5)
C4—N21.345 (11)Nd1—O22.573 (5)
C4—C51.379 (11)Nd1—N1iii2.765 (6)
C4—H40.9300Nd1—O12.885 (6)
C5—N11.337 (10)O2—Nd1iii2.557 (5)
C5—H50.9300O4—Nd1i2.508 (5)
C6—O41.239 (9)O6—Nd1ii2.490 (5)
C6—O31.259 (9)O1W—H1W0.84 (9)
C6—C6i1.553 (13)O1W—H2W0.85 (8)
C7—O51.243 (9)O2W—H3W0.84 (5)
C7—O61.247 (9)O2W—H4W0.84 (8)
C7—C7ii1.560 (13)
O1—C1—O2123.1 (7)O6ii—Nd1—O2iii151.94 (19)
O1—C1—C2120.3 (6)O4i—Nd1—O2iii72.00 (17)
O2—C1—C2116.6 (6)O5—Nd1—O2iii107.89 (16)
N1—C2—C3121.0 (7)O1W—Nd1—O2iii125.89 (18)
N1—C2—C1115.7 (6)O2W—Nd1—O276.93 (18)
C3—C2—C1123.3 (7)O3—Nd1—O2133.80 (17)
N2—C3—C2123.2 (8)O6ii—Nd1—O2113.72 (16)
N2—C3—H3118.4O4i—Nd1—O276.60 (17)
C2—C3—H3118.4O5—Nd1—O2153.11 (18)
N2—C4—C5122.9 (7)O1W—Nd1—O274.92 (18)
N2—C4—H4118.6O2iii—Nd1—O260.11 (19)
C5—C4—H4118.6O2W—Nd1—N1iii97.86 (19)
N1—C5—C4121.6 (7)O3—Nd1—N1iii72.90 (18)
N1—C5—H5119.2O6ii—Nd1—N1iii128.29 (18)
C4—C5—H5119.2O4i—Nd1—N1iii68.70 (19)
O4—C6—O3126.2 (6)O5—Nd1—N1iii65.79 (18)
O4—C6—C6i117.3 (8)O1W—Nd1—N1iii131.7 (2)
O3—C6—C6i116.4 (8)O2iii—Nd1—N1iii59.62 (17)
O5—C7—O6127.3 (6)O2—Nd1—N1iii116.80 (17)
O5—C7—C7ii116.5 (8)O2W—Nd1—O166.01 (18)
O6—C7—C7ii116.2 (8)O3—Nd1—O1128.48 (16)
C5—N1—C2116.2 (7)O6ii—Nd1—O166.65 (16)
C5—N1—Nd1iii126.3 (5)O4i—Nd1—O1113.54 (17)
C2—N1—Nd1iii114.6 (5)O5—Nd1—O1120.34 (17)
C3—N2—C4114.9 (7)O1W—Nd1—O164.46 (19)
O2W—Nd1—O3149.08 (18)O2iii—Nd1—O199.62 (15)
O2W—Nd1—O6ii83.06 (18)O2—Nd1—O147.38 (16)
O3—Nd1—O6ii80.47 (18)N1iii—Nd1—O1158.20 (17)
O2W—Nd1—O4i139.97 (17)C1—O1—Nd187.4 (4)
O3—Nd1—O4i65.15 (16)C1—O2—Nd1iii122.1 (4)
O6ii—Nd1—O4i135.42 (18)C1—O2—Nd1101.6 (4)
O2W—Nd1—O576.22 (19)Nd1iii—O2—Nd1119.89 (19)
O3—Nd1—O573.09 (18)C6—O3—Nd1120.1 (4)
O6ii—Nd1—O564.36 (16)C6—O4—Nd1i119.1 (4)
O4i—Nd1—O5124.93 (17)C7—O5—Nd1121.0 (4)
O2W—Nd1—O1W130.01 (19)C7—O6—Nd1ii121.8 (4)
O3—Nd1—O1W68.27 (19)Nd1—O1W—H1W125 (5)
O6ii—Nd1—O1W71.92 (19)Nd1—O1W—H2W117 (6)
O4i—Nd1—O1W69.52 (19)H1W—O1W—H2W105 (8)
O5—Nd1—O1W125.09 (18)Nd1—O2W—H3W124 (5)
O2W—Nd1—O2iii68.90 (17)Nd1—O2W—H4W128 (5)
O3—Nd1—O2iii124.64 (16)H3W—O2W—H4W106 (8)
Symmetry codes: (i) x+2, y+2, z+2; (ii) x+1, y+1, z+1; (iii) x+2, y+1, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1W···O1iv0.84 (9)2.02 (6)2.707 (8)139 (7)
O1W—H2W···O6v0.85 (8)2.07 (4)2.838 (8)152 (6)
O2W—H3W···N2vi0.84 (5)2.50 (5)3.229 (9)145 (6)
O2W—H4W···O4vii0.84 (8)2.13 (4)2.872 (8)147 (7)
Symmetry codes: (iv) x+2, y+1, z+1; (v) x+1, y, z; (vi) x1, y, z; (vii) x, y1, z.

Experimental details

Crystal data
Chemical formula[Nd(C5H3N2O2)(C2O4)(H2O)2]
Mr391.39
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)7.948 (3), 8.6512 (18), 8.7425 (18)
α, β, γ (°)115.525 (2), 101.970 (3), 96.306 (3)
V3)517.0 (2)
Z2
Radiation typeMo Kα
µ (mm1)5.06
Crystal size (mm)0.23 × 0.19 × 0.17
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.320, 0.420
No. of measured, independent and
observed [I > 2σ(I)] reflections
2533, 1824, 1756
Rint0.065
(sin θ/λ)max1)0.599
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.051, 0.132, 1.08
No. of reflections1824
No. of parameters175
No. of restraints6
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)1.95, 2.98

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 1999), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
Nd1—O2W2.467 (5)Nd1—O1W2.549 (6)
Nd1—O32.474 (5)Nd1—O2iii2.557 (5)
Nd1—O6i2.490 (5)Nd1—O22.573 (5)
Nd1—O4ii2.508 (5)Nd1—N1iii2.765 (6)
Nd1—O52.512 (5)Nd1—O12.885 (6)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+2, y+2, z+2; (iii) x+2, y+1, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1W···O1iv0.84 (9)2.02 (6)2.707 (8)139 (7)
O1W—H2W···O6v0.85 (8)2.07 (4)2.838 (8)152 (6)
O2W—H3W···N2vi0.84 (5)2.50 (5)3.229 (9)145 (6)
O2W—H4W···O4vii0.84 (8)2.13 (4)2.872 (8)147 (7)
Symmetry codes: (iv) x+2, y+1, z+1; (v) x+1, y, z; (vi) x1, y, z; (vii) x, y1, z.
 

Acknowledgements

The authors acknowledge the Chan Xue Yan Cooperative Special Project of Guangdong Province and the Ministry of Science and Technology of PRC (project No. 2007A090302046) and the Project of Science and Technology of Guangdong Province (project No. 2007A020200002-4) for supporting this work.

References

First citationBrandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationHan, L., Meng, Q.-H., Hao, J.-D., Luo, Y.-F. & Zeng, R.-H. (2009). Acta Cryst. E65, m76.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLi, P., Gu, W., Zhang, L.-Z., Qu, J., Ma, Z.-P., Liu, X. & Liao, D.-Z. (2006). Inorg. Chem. 45, 10425–10427.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, Z., Shen, X., Wang, J., Zhang, P., Li, Y., Nfor, E. N., Song, Y., Ohkoshi, S., Hashimoto, K. & You, X. (2006). Angew. Chem. Int. Ed. 45, 3287–3291.  Web of Science CSD CrossRef CAS Google Scholar
First citationZhou, Y., Hong, M. & Wu, X. (2006). Chem. Commun. pp. 135–143.  Web of Science CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 9| September 2009| Pages m1065-m1066
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds