Download citation
Download citation
link to html
The title compound, [Cu(C10H9N2O4)2]·3H2O, was obtained by evaporation of an aqueous ethanol solution of 2-[2-(2-hydroxy­benzo­yl)hydrazono]propanoic acid and cupric chloride. Each CuII atom is six-coordinated in a distorted octa­hedral geometry by carboxylate and acyl O atoms and imide N atoms from two tridentate ligands in the keto form, forming two five-membered rings sharing one edge for each ligand. N—H...O and O—H...O hydrogen bonds between water mol­ecules and the ligands result in the formation of a three-dimensional network.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S160053680704072X/hy2076sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S160053680704072X/hy2076Isup2.hkl
Contains datablock I

CCDC reference: 663160

Key indicators

  • Single-crystal X-ray study
  • T = 298 K
  • Mean [sigma](C-C) = 0.005 Å
  • R factor = 0.045
  • wR factor = 0.091
  • Data-to-parameter ratio = 11.8

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT154_ALERT_1_C The su's on the Cell Angles are Equal (x 10000) 200 Deg. PLAT417_ALERT_2_C Short Inter D-H..H-D H9A .. H10A .. 2.10 Ang. PLAT417_ALERT_2_C Short Inter D-H..H-D H9B .. H10A .. 2.14 Ang. PLAT432_ALERT_2_C Short Inter X...Y Contact O6 .. C12 .. 3.00 Ang.
Alert level G PLAT794_ALERT_5_G Check Predicted Bond Valency for Cu1 (2) 2.26 PLAT860_ALERT_3_G Note: Number of Least-Squares Restraints ....... 11
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 4 ALERT level C = Check and explain 2 ALERT level G = General alerts; check 1 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 3 ALERT type 2 Indicator that the structure model may be wrong or deficient 1 ALERT type 3 Indicator that the structure quality may be low 0 ALERT type 4 Improvement, methodology, query or suggestion 1 ALERT type 5 Informative message, check

Comment top

Hydrazones have attracted considerable interest due to their complicated coordination behavior and pharmacological activity. Many of physiologically active hydrazone–metal complexes find applications in the treatment of several diseases such as tuberculosis, tumour and cancer (Buss et al., 2003; Rodrguez-Argelles et al., 2004). The crystal structures of five-coordinated CuII complexes with the 2-[2-(2-hydroxybenzoyl)hydrazono]propanoate ligand have been studied (He et al., 2002; 2003). However, there are no reports on the crystal structure of six-coordinated CuII complexes with such a ligand. This paper reports the crystal structure of a new CuII complexe with 2-[2-(2-hydroxybenzoyl)hydrazono]propanoic acid.

In the title complex, the CuII atom is six-coordinated by two tridentate ligands through the acyl and carboxyl O atoms and imido N atoms (Fig. 1). Thus two five-membered chelate rings sharing one edge are formed for each ligand. The atoms O1, N1, O4 and N3 are approximately coplanar, forming the equatorial plane, while the other two O atoms occupy the axial sites. The angle of the axial O5—Cu1—O7 is 150.12 (9)°, which deviates from a linear arrangement. These data indicate that the Cu1 atom is in a distorted octahedral geometry. Uncoordinated three water molecules are found in the crystal lattice. Comparing with the distances of C—O (1.42 Å) and C ?O (1.23 Å), the bond lengths of O7—C14 and O4—C4 are 1.228 (4) and 1.246 (4)Å (Table 1), respectively, indicating that they are double bonds and the ligand functions in a keto form.

There are abundant hydrogen bonds in the structure (Table 2). The intramolecular hydrogen bonds are observed between imido and hydroxyl groups. At the same time, the intermolecular hydrogen bonds exist between free water molecules and the ligands. These inter- and intramolecular hydrogen bonds result in a three-dimensional network and provide extra stability for the structure.

Related literature top

For related literature, see: Buss et al. (2003); He et al. (2002); He et al. (2003); Rodrguez-Argelles et al. (2004)

Experimental top

The ligand was prepared according to the literature (He et al., 2002). Pyruvic acid is biochemical reagent and all other chemicals used were of analytical grade.

A solution of 2-[2-(2-hydroxybenzoyl)hydrazono]propanoic acid (0.226 g, 1 mmol) in aqua–ethanol (15 ml, v/v = 1:2) was added under stirring to a solution of CuCl2.2H2O (0.088 g, 0.5 mmol) in aqua–ethanol (5 ml, v/v = 1:2). The resulting solution was refluxed at 353 K for 2 h, then filtered. The filtrate was left to evaporate naturally for about two weeks at room temperature and green prism crystals were obtained. The results of elemental analysis are in good agreement with the title complex.

Refinement top

H atoms of the water molecules were located in a difference Fourier map and refined with a restraint of O—H = 0.85 (1)Å and a fixed Uiso. The other H atoms were positioned geometrically and refined as riding, with C—H = 0.93Å (CH) and N—H = 0.86 Å (NH) and Uiso(H) = 1.2Ueq(C, N), and with C—H = 0.96Å (CH3) and O—H = 0.82Å (OH) and Uiso(H) = 1.5Ueq(C, O).

Structure description top

Hydrazones have attracted considerable interest due to their complicated coordination behavior and pharmacological activity. Many of physiologically active hydrazone–metal complexes find applications in the treatment of several diseases such as tuberculosis, tumour and cancer (Buss et al., 2003; Rodrguez-Argelles et al., 2004). The crystal structures of five-coordinated CuII complexes with the 2-[2-(2-hydroxybenzoyl)hydrazono]propanoate ligand have been studied (He et al., 2002; 2003). However, there are no reports on the crystal structure of six-coordinated CuII complexes with such a ligand. This paper reports the crystal structure of a new CuII complexe with 2-[2-(2-hydroxybenzoyl)hydrazono]propanoic acid.

In the title complex, the CuII atom is six-coordinated by two tridentate ligands through the acyl and carboxyl O atoms and imido N atoms (Fig. 1). Thus two five-membered chelate rings sharing one edge are formed for each ligand. The atoms O1, N1, O4 and N3 are approximately coplanar, forming the equatorial plane, while the other two O atoms occupy the axial sites. The angle of the axial O5—Cu1—O7 is 150.12 (9)°, which deviates from a linear arrangement. These data indicate that the Cu1 atom is in a distorted octahedral geometry. Uncoordinated three water molecules are found in the crystal lattice. Comparing with the distances of C—O (1.42 Å) and C ?O (1.23 Å), the bond lengths of O7—C14 and O4—C4 are 1.228 (4) and 1.246 (4)Å (Table 1), respectively, indicating that they are double bonds and the ligand functions in a keto form.

There are abundant hydrogen bonds in the structure (Table 2). The intramolecular hydrogen bonds are observed between imido and hydroxyl groups. At the same time, the intermolecular hydrogen bonds exist between free water molecules and the ligands. These inter- and intramolecular hydrogen bonds result in a three-dimensional network and provide extra stability for the structure.

For related literature, see: Buss et al. (2003); He et al. (2002); He et al. (2003); Rodrguez-Argelles et al. (2004)

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT-Plus (Bruker, 2001); data reduction: SAINT-Plus (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 2001); software used to prepare material for publication: SHELXTL (Bruker, 2001).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compoud. Displacement ellipsoids are drawn at the 30% probability level. H atoms have been omitted for clarity.
Bis{(E)-2-[2-(2-hydroxybenzoyl)hydrazono]propanoato-κ3O,N,O'}copper(II) trihydrate top
Crystal data top
[Cu(C10H9N2O4)2]·3H2OZ = 2
Mr = 559.97F(000) = 578
Triclinic, P1Dx = 1.588 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.3787 (12) ÅCell parameters from 4104 reflections
b = 10.7935 (14) Åθ = 1.9–25.1°
c = 11.8795 (15) ŵ = 1.00 mm1
α = 86.447 (2)°T = 298 K
β = 81.805 (2)°Block, green
γ = 79.847 (2)°0.32 × 0.27 × 0.14 mm
V = 1170.8 (3) Å3
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
4104 independent reflections
Radiation source: fine-focus sealed tube3173 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.017
φ and ω scansθmax = 25.1°, θmin = 1.9°
Absorption correction: multi-scan
(SAINT-Plus; Bruker, 2001)
h = 1011
Tmin = 0.740, Tmax = 0.871k = 1212
5974 measured reflectionsl = 148
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.091H atoms treated by a mixture of independent and constrained refinement
S = 0.87 w = 1/[σ2(Fo2) + (0.004P)2 + 3.5P]
where P = (Fo2 + 2Fc2)/3
4104 reflections(Δ/σ)max = 0.001
347 parametersΔρmax = 0.46 e Å3
11 restraintsΔρmin = 0.38 e Å3
Crystal data top
[Cu(C10H9N2O4)2]·3H2Oγ = 79.847 (2)°
Mr = 559.97V = 1170.8 (3) Å3
Triclinic, P1Z = 2
a = 9.3787 (12) ÅMo Kα radiation
b = 10.7935 (14) ŵ = 1.00 mm1
c = 11.8795 (15) ÅT = 298 K
α = 86.447 (2)°0.32 × 0.27 × 0.14 mm
β = 81.805 (2)°
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
4104 independent reflections
Absorption correction: multi-scan
(SAINT-Plus; Bruker, 2001)
3173 reflections with I > 2σ(I)
Tmin = 0.740, Tmax = 0.871Rint = 0.017
5974 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.04511 restraints
wR(F2) = 0.091H atoms treated by a mixture of independent and constrained refinement
S = 0.87Δρmax = 0.46 e Å3
4104 reflectionsΔρmin = 0.38 e Å3
347 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.96365 (5)0.75181 (4)0.26010 (4)0.04285 (14)
N10.9839 (3)0.7462 (3)0.4209 (2)0.0375 (7)
N30.9562 (3)0.7491 (2)0.0943 (2)0.0355 (7)
O51.1161 (3)0.8770 (2)0.1822 (2)0.0486 (7)
O30.8437 (3)1.0082 (2)0.6413 (2)0.0497 (7)
H30.84001.03840.70360.075*
O80.8088 (3)0.5336 (2)0.0892 (2)0.0450 (6)
H80.81970.49480.14780.068*
O40.8153 (3)0.9105 (2)0.3181 (2)0.0510 (7)
O11.1185 (3)0.5939 (2)0.2717 (2)0.0479 (7)
O70.7917 (3)0.6310 (2)0.2436 (2)0.0498 (7)
N40.8732 (3)0.6699 (3)0.0602 (2)0.0397 (7)
H40.87140.65920.01060.048*
N20.8996 (3)0.8420 (3)0.4821 (2)0.0411 (7)
H20.90110.84810.55370.049*
C140.7938 (4)0.6088 (3)0.1432 (3)0.0386 (8)
O61.1890 (3)0.9618 (2)0.0119 (2)0.0526 (7)
C121.0356 (4)0.8087 (3)0.0209 (3)0.0373 (8)
C11.1542 (4)0.5673 (3)0.3714 (3)0.0410 (9)
C40.8137 (4)0.9265 (3)0.4213 (3)0.0392 (8)
C60.7345 (4)1.0711 (3)0.5872 (3)0.0406 (8)
C21.0792 (4)0.6613 (3)0.4607 (3)0.0381 (8)
O21.2374 (3)0.4751 (3)0.3998 (2)0.0646 (8)
C160.7262 (4)0.4758 (3)0.0055 (3)0.0358 (8)
C170.6531 (4)0.3818 (3)0.0294 (3)0.0437 (9)
H170.66070.35700.10390.052*
C131.0480 (4)0.8025 (3)0.1052 (3)0.0441 (9)
H13A1.10110.72170.12840.066*
H13B1.09900.86740.14070.066*
H13C0.95210.81430.12770.066*
C150.7146 (4)0.5144 (3)0.1066 (3)0.0376 (8)
C111.1221 (4)0.8899 (3)0.0752 (3)0.0399 (8)
C31.1214 (5)0.6499 (4)0.5772 (3)0.0527 (10)
H3A1.21450.67590.57530.079*
H3B1.12790.56380.60480.079*
H3C1.04910.70250.62680.079*
C50.7198 (4)1.0345 (3)0.4785 (3)0.0384 (8)
C200.6267 (4)0.4558 (4)0.1915 (3)0.0486 (10)
H200.61650.48050.26620.058*
C100.6092 (4)1.1031 (4)0.4218 (3)0.0527 (10)
H100.60001.08080.34910.063*
C190.5554 (4)0.3626 (4)0.1663 (4)0.0561 (11)
H190.49750.32470.22370.067*
C90.5136 (5)1.2027 (4)0.4704 (4)0.0628 (12)
H90.44021.24690.43130.075*
C70.6369 (4)1.1726 (4)0.6355 (3)0.0534 (10)
H70.64561.19730.70750.064*
C180.5696 (4)0.3249 (4)0.0556 (4)0.0543 (11)
H180.52240.26080.03870.065*
C80.5277 (5)1.2365 (4)0.5776 (4)0.0626 (12)
H8A0.46251.30330.61120.075*
O110.8000 (4)0.7508 (3)0.7027 (3)0.0812 (10)
O90.3526 (4)0.0972 (4)0.1281 (4)0.0952 (12)
O100.3972 (5)0.0687 (7)0.8498 (4)0.152 (2)
H11A0.744 (7)0.788 (6)0.758 (4)0.183*
H9B0.309 (6)0.059 (6)0.086 (6)0.183*
H10B0.344 (6)0.088 (8)0.796 (4)0.183*
H11B0.774 (7)0.680 (3)0.696 (6)0.183*
H9A0.435 (4)0.049 (5)0.136 (6)0.183*
H10A0.347 (4)0.037 (5)0.906 (4)0.183*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0542 (3)0.0390 (3)0.0353 (3)0.0025 (2)0.0089 (2)0.00926 (19)
N10.0452 (18)0.0367 (16)0.0308 (15)0.0068 (14)0.0024 (13)0.0107 (13)
N30.0411 (17)0.0307 (15)0.0368 (16)0.0049 (13)0.0105 (13)0.0081 (13)
O50.0694 (18)0.0443 (15)0.0376 (15)0.0159 (13)0.0152 (13)0.0087 (12)
O30.0675 (18)0.0472 (15)0.0355 (14)0.0017 (13)0.0149 (13)0.0144 (12)
O80.0606 (17)0.0456 (15)0.0311 (13)0.0153 (13)0.0011 (12)0.0125 (11)
O40.0654 (18)0.0534 (16)0.0326 (14)0.0010 (14)0.0104 (13)0.0122 (12)
O10.0664 (18)0.0430 (15)0.0320 (14)0.0030 (13)0.0106 (13)0.0087 (11)
O70.0625 (18)0.0601 (17)0.0292 (14)0.0143 (14)0.0053 (12)0.0101 (12)
N40.0514 (19)0.0398 (17)0.0308 (16)0.0105 (14)0.0093 (14)0.0061 (13)
N20.0511 (19)0.0415 (17)0.0284 (15)0.0019 (14)0.0057 (14)0.0098 (13)
C140.040 (2)0.040 (2)0.034 (2)0.0002 (16)0.0056 (16)0.0037 (16)
O60.0636 (18)0.0486 (16)0.0491 (16)0.0199 (14)0.0062 (14)0.0009 (13)
C120.043 (2)0.0320 (18)0.037 (2)0.0011 (16)0.0108 (16)0.0052 (15)
C10.048 (2)0.036 (2)0.040 (2)0.0056 (17)0.0097 (18)0.0058 (16)
C40.044 (2)0.042 (2)0.0331 (19)0.0087 (17)0.0049 (16)0.0085 (16)
C60.046 (2)0.040 (2)0.037 (2)0.0087 (17)0.0055 (17)0.0036 (16)
C20.047 (2)0.0353 (19)0.0326 (19)0.0075 (16)0.0070 (16)0.0034 (15)
O20.080 (2)0.0516 (17)0.0554 (18)0.0195 (16)0.0218 (16)0.0109 (14)
C160.0342 (19)0.0338 (18)0.0368 (19)0.0013 (15)0.0054 (15)0.0001 (15)
C170.041 (2)0.040 (2)0.050 (2)0.0022 (17)0.0102 (18)0.0076 (18)
C130.054 (2)0.044 (2)0.035 (2)0.0016 (18)0.0127 (17)0.0056 (16)
C150.039 (2)0.0374 (19)0.0353 (19)0.0028 (15)0.0047 (16)0.0036 (16)
C110.047 (2)0.0333 (19)0.039 (2)0.0014 (17)0.0079 (17)0.0050 (16)
C30.065 (3)0.055 (2)0.038 (2)0.004 (2)0.0120 (19)0.0066 (18)
C50.040 (2)0.042 (2)0.0330 (19)0.0070 (16)0.0025 (16)0.0039 (16)
C200.049 (2)0.055 (2)0.040 (2)0.0030 (19)0.0065 (18)0.0032 (18)
C100.056 (3)0.060 (3)0.041 (2)0.000 (2)0.0130 (19)0.0068 (19)
C190.049 (2)0.054 (3)0.064 (3)0.016 (2)0.000 (2)0.011 (2)
C90.054 (3)0.066 (3)0.063 (3)0.008 (2)0.010 (2)0.006 (2)
C70.060 (3)0.052 (2)0.045 (2)0.004 (2)0.003 (2)0.0166 (19)
C180.047 (2)0.043 (2)0.075 (3)0.0110 (19)0.014 (2)0.002 (2)
C80.055 (3)0.058 (3)0.066 (3)0.011 (2)0.003 (2)0.015 (2)
O110.104 (3)0.070 (2)0.069 (2)0.025 (2)0.006 (2)0.0090 (18)
O90.092 (3)0.098 (3)0.101 (3)0.034 (2)0.004 (2)0.037 (2)
O100.107 (4)0.260 (7)0.079 (3)0.017 (4)0.007 (3)0.027 (4)
Geometric parameters (Å, º) top
Cu1—N11.942 (3)C2—C31.485 (5)
Cu1—N31.982 (3)C16—C171.385 (5)
Cu1—O12.047 (2)C16—C151.404 (5)
Cu1—O42.092 (3)C17—C181.370 (5)
Cu1—O52.208 (3)C17—H170.9300
Cu1—O72.281 (3)C13—H13A0.9600
N1—C21.281 (4)C13—H13B0.9600
N1—N21.365 (4)C13—H13C0.9600
N3—C121.282 (4)C15—C201.402 (5)
N3—N41.367 (4)C3—H3A0.9600
O5—C111.264 (4)C3—H3B0.9600
O3—C61.346 (4)C3—H3C0.9600
O3—H30.8200C5—C101.394 (5)
O8—C161.361 (4)C20—C191.371 (5)
O8—H80.8200C20—H200.9300
O4—C41.246 (4)C10—C91.372 (5)
O1—C11.279 (4)C10—H100.9300
O7—C141.228 (4)C19—C181.382 (6)
N4—C141.358 (4)C19—H190.9300
N4—H40.8600C9—C81.376 (6)
N2—C41.352 (4)C9—H90.9300
N2—H20.8600C7—C81.375 (6)
C14—C151.481 (5)C7—H70.9300
O6—C111.235 (4)C18—H180.9300
C12—C131.491 (5)C8—H8A0.9300
C12—C111.521 (5)O11—H11A0.85 (6)
C1—O21.213 (4)O11—H11B0.85 (4)
C1—C21.523 (5)O9—H9B0.86 (6)
C4—C51.470 (5)O9—H9A0.87 (5)
C6—C71.394 (5)O10—H10B0.86 (5)
C6—C51.406 (5)O10—H10A0.85 (5)
N1—Cu1—N3175.97 (12)O8—C16—C17121.3 (3)
N1—Cu1—O178.90 (11)O8—C16—C15118.6 (3)
N3—Cu1—O197.23 (10)C17—C16—C15120.1 (3)
N1—Cu1—O477.76 (11)C18—C17—C16120.7 (4)
N3—Cu1—O4106.09 (10)C18—C17—H17119.7
O1—Cu1—O4156.66 (10)C16—C17—H17119.7
N1—Cu1—O5103.78 (11)C12—C13—H13A109.5
N3—Cu1—O575.37 (10)C12—C13—H13B109.5
O1—Cu1—O596.24 (11)H13A—C13—H13B109.5
O4—Cu1—O589.13 (10)C12—C13—H13C109.5
N1—Cu1—O7106.07 (11)H13A—C13—H13C109.5
N3—Cu1—O774.94 (10)H13B—C13—H13C109.5
O1—Cu1—O790.73 (10)C20—C15—C16117.9 (3)
O4—Cu1—O795.86 (10)C20—C15—C14117.2 (3)
O5—Cu1—O7150.12 (9)C16—C15—C14124.8 (3)
C2—N1—N2124.5 (3)O6—C11—O5126.8 (3)
C2—N1—Cu1119.8 (2)O6—C11—C12117.7 (3)
N2—N1—Cu1115.6 (2)O5—C11—C12115.5 (3)
C12—N3—N4120.6 (3)C2—C3—H3A109.5
C12—N3—Cu1122.3 (2)C2—C3—H3B109.5
N4—N3—Cu1116.7 (2)H3A—C3—H3B109.5
C11—O5—Cu1113.5 (2)C2—C3—H3C109.5
C6—O3—H3109.5H3A—C3—H3C109.5
C16—O8—H8109.5H3B—C3—H3C109.5
C4—O4—Cu1112.8 (2)C10—C5—C6118.5 (3)
C1—O1—Cu1114.6 (2)C10—C5—C4117.8 (3)
C14—O7—Cu1109.9 (2)C6—C5—C4123.6 (3)
C14—N4—N3117.1 (3)C19—C20—C15121.2 (4)
C14—N4—H4121.5C19—C20—H20119.4
N3—N4—H4121.5C15—C20—H20119.4
C4—N2—N1114.8 (3)C9—C10—C5121.7 (4)
C4—N2—H2122.6C9—C10—H10119.1
N1—N2—H2122.6C5—C10—H10119.1
O7—C14—N4120.2 (3)C20—C19—C18120.0 (4)
O7—C14—C15122.8 (3)C20—C19—H19120.0
N4—C14—C15117.0 (3)C18—C19—H19120.0
N3—C12—C13126.1 (3)C10—C9—C8119.2 (4)
N3—C12—C11112.9 (3)C10—C9—H9120.4
C13—C12—C11121.0 (3)C8—C9—H9120.4
O2—C1—O1126.2 (3)C8—C7—C6120.5 (4)
O2—C1—C2119.1 (3)C8—C7—H7119.8
O1—C1—C2114.7 (3)C6—C7—H7119.8
O4—C4—N2119.1 (3)C17—C18—C19120.1 (4)
O4—C4—C5121.6 (3)C17—C18—H18119.9
N2—C4—C5119.3 (3)C19—C18—H18119.9
O3—C6—C7121.7 (3)C7—C8—C9120.8 (4)
O3—C6—C5119.1 (3)C7—C8—H8A119.6
C7—C6—C5119.2 (4)C9—C8—H8A119.6
N1—C2—C3127.6 (3)H11A—O11—H11B108 (6)
N1—C2—C1111.8 (3)H9B—O9—H9A107 (6)
C3—C2—C1120.6 (3)H10B—O10—H10A109 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O11—H11B···O2i0.82 (3)2.11 (5)2.888 (5)154 (7)
O9—H9B···O6ii0.87 (4)1.99 (6)2.836 (5)171 (7)
O11—H11A···O9iii0.85 (6)1.91 (6)2.752 (6)167 (6)
O9—H9A···O10iv0.87 (5)1.86 (5)2.724 (7)177 (6)
N2—H2···O110.862.192.830 (5)131
N2—H2···O30.862.022.623 (4)126
N4—H4···O80.861.912.573 (4)133
O8—H8···O1v0.821.772.584 (3)168
O3—H3···O5vi0.821.812.605 (3)162
Symmetry codes: (i) x+2, y+1, z+1; (ii) x1, y1, z; (iii) x+1, y+1, z+1; (iv) x+1, y, z+1; (v) x+2, y+1, z; (vi) x+2, y+2, z+1.

Experimental details

Crystal data
Chemical formula[Cu(C10H9N2O4)2]·3H2O
Mr559.97
Crystal system, space groupTriclinic, P1
Temperature (K)298
a, b, c (Å)9.3787 (12), 10.7935 (14), 11.8795 (15)
α, β, γ (°)86.447 (2), 81.805 (2), 79.847 (2)
V3)1170.8 (3)
Z2
Radiation typeMo Kα
µ (mm1)1.00
Crystal size (mm)0.32 × 0.27 × 0.14
Data collection
DiffractometerBruker SMART APEX CCD area-detector
Absorption correctionMulti-scan
(SAINT-Plus; Bruker, 2001)
Tmin, Tmax0.740, 0.871
No. of measured, independent and
observed [I > 2σ(I)] reflections
5974, 4104, 3173
Rint0.017
(sin θ/λ)max1)0.597
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.091, 0.87
No. of reflections4104
No. of parameters347
No. of restraints11
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.46, 0.38

Computer programs: SMART (Bruker, 2001), SAINT-Plus (Bruker, 2001), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXTL (Bruker, 2001).

Selected bond lengths (Å) top
Cu1—N11.942 (3)Cu1—O52.208 (3)
Cu1—N31.982 (3)Cu1—O72.281 (3)
Cu1—O12.047 (2)O4—C41.246 (4)
Cu1—O42.092 (3)O7—C141.228 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O11—H11B···O2i0.82 (3)2.11 (5)2.888 (5)154 (7)
O9—H9B···O6ii0.87 (4)1.99 (6)2.836 (5)171 (7)
O11—H11A···O9iii0.85 (6)1.91 (6)2.752 (6)167 (6)
O9—H9A···O10iv0.87 (5)1.86 (5)2.724 (7)177 (6)
N2—H2···O110.862.192.830 (5)131.4
N2—H2···O30.862.022.623 (4)125.9
N4—H4···O80.861.912.573 (4)132.9
O8—H8···O1v0.821.772.584 (3)168.00
O3—H3···O5vi0.821.812.605 (3)161.7
Symmetry codes: (i) x+2, y+1, z+1; (ii) x1, y1, z; (iii) x+1, y+1, z+1; (iv) x+1, y, z+1; (v) x+2, y+1, z; (vi) x+2, y+2, z+1.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds