Download citation
Download citation
link to html
Single-crystal neutron diffraction experiments at 100 and 2.5 K have been performed to determine the structure of 3-(pyridin-4-yl)pentane-2,4-dione (HacacPy) with respect to its protonation pattern and to monitor a low-temperature phase transition. Solid HacacPy exists as the enol tautomer with a short intramolecular hydrogen bond. At 100 K, its donor···acceptor distance is 2.450 (8) Å and the compound adopts space group C2/c, with the N and para-C atoms of the pyridyl ring and the central C of the acetyl­acetone substituent on the twofold crystallographic axis. As a consequence of the axial symmetry, the bridging hydrogen is disordered over two symmetrically equivalent positions, and the carbon–oxygen bond distances adopt intermediate values between single and double bonds. Upon cooling, a structural phase transition to the t2 subgroup P\bar 1 occurs; the resulting twins show an ordered acetyl­acetone moiety. The phase transition is fully reversible but associated with an appreciable hysteresis in the large single crystal under study: transition to the low-temperature phase requires several hours at 2.5 K and heating to 80 K is required to revert the transformation. No significant hysteresis is observed in a powder sample, in agreement with the second-order nature of the phase transition.

Supporting information

pdf

Portable Document Format (PDF) file https://doi.org/10.1107/S2052520617015591/hw5050sup4.pdf
PDF file with supporting information - photograph of crystals, difference nuclear density plot, temperature-dependent powder patterns, packing diagrams

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S2052520617015591/hw5050sup1.cif
Contains datablocks global, 100k, 2k5

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2052520617015591/hw5050100ksup2.hkl
Contains datablock 100k

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2052520617015591/hw50502k5sup3.hkl
Contains datablock 2k5

CCDC references: 1582128; 1582129

Computing details top

Data collection: PRON2010 for 100k. For both structures, program(s) used to refine structure: SHELXL2014/7 (Sheldrick, 2014).

(100k) top
Crystal data top
C10H11NO2Z = 4
Mr = 177.20F(000) = 18
Monoclinic, C2/cDx = 1.276 Mg m3
a = 11.0366 (4) ÅNeutrons radiation, λ = 0.793 Å
b = 13.2899 (5) ŵ = 0.001 mm1
c = 6.3763 (2) ÅT = 100 K
β = 99.548 (2)°Prism, colourless
V = 922.29 (6) Å34.4 × 4.3 × 3.3 mm
Data collection top
Closed Eulerian cradle HEiDi
diffractometer
Rint = 0.097
Radiation source: FRM IIθmax = 35.6°, θmin = 2.7°
rocking scanh = 1414
1688 measured reflectionsk = 1916
1055 independent reflectionsl = 89
718 reflections with I > 2σ(I)
Refinement top
Refinement on F2Hydrogen site location: difference Fourier map
Least-squares matrix: fullAll H-atom parameters refined
R[F2 > 2σ(F2)] = 0.082 w = 1/[σ2(Fo2) + (0.1P)2 + 0.4P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.221(Δ/σ)max = 0.002
S = 1.09Δρmax = 0.14 e Å3
1055 reflectionsΔρmin = 0.15 e Å3
114 parametersExtinction correction: SHELXL-2014/7 (Sheldrick 2014, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
6 restraintsExtinction coefficient: 2.0 (4)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O11.1125 (4)1.0523 (3)0.7871 (6)0.0261 (8)
H1O1.018 (3)1.0743 (10)0.759 (9)0.037 (6)0.5
N11.0000000.5766 (2)0.7500000.0258 (7)
C21.0367 (3)0.6292 (2)0.5918 (5)0.0252 (7)
H21.0648 (9)0.5853 (6)0.4665 (12)0.049 (2)
C31.0385 (3)0.7340 (2)0.5855 (5)0.0234 (7)
H31.0708 (8)0.7727 (5)0.4548 (11)0.0443 (18)
C41.0000000.7890 (3)0.7500000.0172 (8)
C71.2345 (3)0.9042 (3)0.8345 (6)0.0304 (8)
H7A1.232 (2)0.848 (2)0.953 (4)0.071 (7)*0.53 (4)
H7B1.2488 (17)0.8589 (16)0.693 (3)0.056 (6)*0.53 (4)
H7C1.306 (2)0.9568 (19)0.883 (5)0.066 (6)*0.53 (4)
H7D1.2380 (18)0.8294 (16)0.782 (3)0.051 (6)*0.47 (4)
H7E1.262 (2)0.8971 (19)1.006 (4)0.059 (6)*0.47 (4)
H7F1.3073 (18)0.9511 (16)0.789 (4)0.050 (5)*0.47 (4)
C81.1111 (3)0.9549 (2)0.7874 (5)0.0214 (6)
C91.0000000.9012 (3)0.7500000.0206 (8)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.035 (2)0.0184 (16)0.0248 (15)0.0057 (15)0.0047 (13)0.0022 (13)
H1O0.041 (19)0.026 (5)0.042 (9)0.008 (6)0.000 (14)0.002 (8)
N10.0314 (16)0.0170 (14)0.0288 (15)0.0000.0045 (12)0.000
C20.0331 (16)0.0182 (14)0.0251 (14)0.0009 (12)0.0070 (12)0.0002 (11)
H20.078 (6)0.036 (4)0.041 (4)0.001 (4)0.030 (4)0.013 (3)
C30.0294 (15)0.0208 (14)0.0209 (13)0.0012 (12)0.0065 (11)0.0008 (10)
H30.073 (5)0.029 (3)0.035 (3)0.001 (3)0.023 (3)0.003 (3)
C40.0198 (18)0.0136 (16)0.0183 (16)0.0000.0036 (13)0.000
C70.0247 (14)0.0303 (17)0.0368 (17)0.0032 (13)0.0072 (13)0.0034 (14)
C80.0253 (14)0.0189 (13)0.0197 (11)0.0012 (11)0.0029 (10)0.0001 (11)
C90.0265 (19)0.0160 (18)0.0189 (17)0.0000.0023 (14)0.000
Geometric parameters (Å, º) top
O1—C81.294 (5)C7—C81.504 (5)
O1—H1O1.07 (3)C7—H7A1.07 (3)
N1—C2i1.344 (4)C7—H7B1.12 (2)
N1—C21.344 (4)C7—H7C1.06 (3)
C2—C31.393 (4)C7—H7D1.05 (2)
C2—H21.076 (7)C7—H7E1.09 (2)
C3—C41.401 (4)C7—H7F1.09 (2)
C3—H31.088 (7)C8—C91.404 (4)
C4—C91.491 (6)
C8—O1—H1O105.3 (9)H7A—C7—H7C111 (2)
C2i—N1—C2117.3 (3)H7B—C7—H7C113.1 (18)
N1—C2—C3123.3 (3)C8—C7—H7D116.1 (11)
N1—C2—H2115.8 (5)C8—C7—H7E109.1 (12)
C3—C2—H2120.9 (5)H7D—C7—H7E102.8 (18)
C2—C3—C4119.5 (3)C8—C7—H7F111.9 (11)
C2—C3—H3120.1 (5)H7D—C7—H7F112.7 (17)
C4—C3—H3120.4 (5)H7E—C7—H7F102.9 (17)
C3i—C4—C3117.1 (4)O1—C8—C9121.2 (3)
C3i—C4—C9121.45 (18)O1—C8—C7116.0 (3)
C3—C4—C9121.45 (18)C9—C8—C7122.8 (3)
C8—C7—H7A109.2 (13)C8—C9—C8i118.9 (4)
C8—C7—H7B108.9 (10)C8—C9—C4120.53 (19)
H7A—C7—H7B102.5 (18)C8i—C9—C4120.53 (19)
C8—C7—H7C111.6 (13)
C2i—N1—C2—C30.1 (2)O1—C8—C9—C4179.7 (3)
N1—C2—C3—C40.3 (5)C7—C8—C9—C41.6 (3)
C2—C3—C4—C3i0.1 (2)C3i—C4—C9—C8108.8 (2)
C2—C3—C4—C9179.9 (2)C3—C4—C9—C871.2 (2)
O1—C8—C9—C8i0.3 (3)C3i—C4—C9—C8i71.2 (2)
C7—C8—C9—C8i178.4 (3)C3—C4—C9—C8i108.8 (2)
Symmetry code: (i) x+2, y, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1O···O1i1.07 (3)1.45 (3)2.450 (8)152.3 (12)
Symmetry code: (i) x+2, y, z+3/2.
(2k5) top
Crystal data top
C10H11NO2Z = 2
Mr = 177.20F(000) = 18
Triclinic, P1Dx = 1.299 Mg m3
a = 6.2755 (2) ÅNeutrons radiation, λ = 0.793 Å
b = 8.6368 (2) ÅCell parameters from 34 reflections
c = 8.6570 (2) ŵ = 0.001 mm1
α = 101.482 (3)°T = 3 K
β = 96.2307 (13)°Prism, colourless
γ = 96.0785 (13)°4.4 × 4.3 × 3.3 mm
V = 453.17 (2) Å3
Data collection top
Closed Eulerian cradle HEiDi
diffractometer
Rint = 0.073
Radiation source: FRM IIθmax = 36.1°, θmin = 2.7°
rocking scanh = 87
2315 measured reflectionsk = 1111
1555 independent reflectionsl = 1110
1121 reflections with I > 2σ(I)
Refinement top
Refinement on F2Hydrogen site location: difference Fourier map
Least-squares matrix: fullAll H-atom parameters refined
R[F2 > 2σ(F2)] = 0.107 w = 1/[σ2(Fo2) + (0.120P)2 + 0.3P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.284(Δ/σ)max = 0.002
S = 1.08Δρmax = 0.27 e Å3
1555 reflectionsΔρmin = 0.19 e Å3
160 parametersExtinction correction: SHELXL-2014/7 (Sheldrick 2014, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
67 restraintsExtinction coefficient: 1.9 (8)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refined as a 2-component twin; twin law is a twofold axis.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.2910 (14)0.5563 (10)0.6676 (10)0.0183 (17)*
H1O0.255 (3)0.4448 (14)0.5948 (16)0.036 (3)
O20.2195 (16)0.3361 (11)0.4370 (11)0.026 (2)*
N10.2422 (12)0.9204 (6)0.0759 (7)0.0233 (8)
C20.0833 (13)0.9040 (10)0.1666 (10)0.0241 (18)*
H20.043 (2)0.981 (2)0.157 (2)0.034 (4)
C30.0819 (13)0.8013 (10)0.2749 (11)0.0258 (18)*
H30.059 (3)0.791 (2)0.344 (2)0.039 (4)
C40.2464 (14)0.7082 (9)0.2872 (9)0.0197 (10)*
C50.4106 (12)0.7264 (10)0.1913 (9)0.0187 (15)*
H50.536 (3)0.657 (2)0.195 (2)0.039 (4)
C60.4005 (12)0.8329 (9)0.0869 (9)0.0196 (16)*
H60.532 (4)0.852 (3)0.019 (3)0.049 (5)
C70.3386 (13)0.8261 (9)0.6446 (9)0.0221 (15)*
H7A0.261 (4)0.855 (2)0.751 (3)0.058 (5)
H7B0.288 (4)0.9095 (19)0.5690 (19)0.051 (4)
H7C0.520 (3)0.853 (2)0.685 (3)0.061 (5)
C80.2870 (12)0.6557 (9)0.5660 (9)0.0180 (14)*
C90.2541 (15)0.6009 (9)0.4030 (9)0.0197 (10)*
C100.2142 (13)0.4325 (9)0.3400 (10)0.0221 (15)*
C110.1715 (13)0.3650 (9)0.1635 (9)0.0214 (16)*
H11A0.140 (3)0.2315 (14)0.1491 (19)0.036 (3)
H11B0.308 (3)0.395 (2)0.1022 (19)0.051 (4)
H11C0.034 (3)0.405 (2)0.1195 (19)0.046 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
H1O0.044 (7)0.013 (5)0.041 (7)0.002 (5)0.011 (7)0.015 (5)
N10.0267 (19)0.015 (3)0.024 (3)0.000 (2)0.006 (2)0.0067 (12)
H20.014 (6)0.042 (8)0.049 (8)0.009 (6)0.004 (6)0.012 (6)
H30.041 (9)0.030 (7)0.055 (9)0.012 (6)0.031 (7)0.012 (6)
H50.034 (8)0.032 (7)0.047 (8)0.009 (6)0.013 (7)0.002 (6)
H60.059 (10)0.049 (9)0.048 (9)0.015 (8)0.029 (8)0.013 (7)
H7A0.069 (11)0.052 (9)0.062 (10)0.032 (8)0.035 (9)0.008 (7)
H7B0.082 (11)0.039 (7)0.035 (7)0.029 (8)0.009 (7)0.015 (6)
H7C0.038 (7)0.046 (8)0.074 (10)0.022 (6)0.000 (7)0.028 (7)
H11A0.046 (8)0.012 (5)0.043 (7)0.006 (5)0.011 (6)0.013 (5)
H11B0.046 (8)0.060 (9)0.031 (7)0.017 (7)0.020 (6)0.020 (6)
H11C0.034 (7)0.050 (8)0.040 (7)0.011 (6)0.000 (6)0.020 (6)
Geometric parameters (Å, º) top
O1—C81.346 (11)C5—H51.04 (2)
O1—H1O1.028 (12)C6—H61.08 (2)
O2—C101.296 (13)C7—C81.479 (10)
O2—H1O1.475 (14)C7—H7A1.09 (2)
N1—C61.317 (11)C7—H7B1.113 (16)
N1—C21.348 (11)C7—H7C1.140 (18)
C2—C31.413 (12)C8—C91.382 (11)
C2—H21.09 (2)C9—C101.433 (11)
C3—C41.382 (9)C10—C111.507 (11)
C3—H31.125 (18)C11—H11A1.128 (14)
C4—C51.407 (9)C11—H11B1.092 (18)
C4—C91.495 (7)C11—H11C1.025 (19)
C5—C61.413 (10)
C8—O1—H1O103.9 (11)H7A—C7—H7B105.6 (17)
C10—O2—H1O103.1 (9)C8—C7—H7C108.5 (11)
C6—N1—C2117.8 (4)H7A—C7—H7C106.2 (18)
N1—C2—C3123.3 (8)H7B—C7—H7C109.8 (19)
N1—C2—H2115.6 (13)O1—C8—C9122.3 (7)
C3—C2—H2121.0 (13)O1—C8—C7113.9 (7)
C4—C3—C2119.6 (8)C9—C8—C7123.7 (7)
C4—C3—H3121.0 (13)C8—C9—C10118.8 (4)
C2—C3—H3119.3 (12)C8—C9—C4123.5 (8)
C3—C4—C5116.4 (5)C10—C9—C4117.6 (8)
C3—C4—C9121.3 (8)O2—C10—C9119.2 (8)
C5—C4—C9122.2 (7)O2—C10—C11119.3 (8)
C4—C5—C6120.4 (7)C9—C10—C11121.5 (7)
C4—C5—H5119.0 (13)C10—C11—H11A106.0 (10)
C6—C5—H5120.5 (13)C10—C11—H11B112.6 (10)
N1—C6—C5122.6 (7)H11A—C11—H11B109.4 (15)
N1—C6—H6117.2 (15)C10—C11—H11C107.9 (10)
C5—C6—H6120.1 (15)H11A—C11—H11C109.2 (15)
C8—C7—H7A112.2 (13)H11B—C11—H11C111.4 (18)
C8—C7—H7B114.3 (11)
C6—N1—C2—C31.7 (13)O1—C8—C9—C4179.3 (8)
N1—C2—C3—C42.0 (13)C7—C8—C9—C45.9 (14)
C2—C3—C4—C51.7 (14)C3—C4—C9—C866.4 (13)
C2—C3—C4—C9178.5 (9)C5—C4—C9—C8110.2 (11)
C3—C4—C5—C61.2 (13)C3—C4—C9—C10110.4 (10)
C9—C4—C5—C6178.0 (8)C5—C4—C9—C1073.0 (12)
C2—N1—C6—C51.2 (12)C8—C9—C10—O23.0 (15)
C4—C5—C6—N11.0 (12)C4—C9—C10—O2180.0 (9)
O1—C8—C9—C102.6 (15)C8—C9—C10—C11178.4 (7)
C7—C8—C9—C10177.3 (7)C4—C9—C10—C111.5 (13)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1O···O21.028 (12)1.475 (14)2.432 (8)152.3 (15)
 

Follow Acta Cryst. B
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds