metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

{9-Hexyl-2-[2-phenyl-6-(pyridin-2-yl)pyridin-4-yl]-9H-carbazole}di­iodido­zinc

aDepartment of Chemistry, Anhui University, Hefei 230039, People's Republic of China, and Key Laboratory of Functional Inorganic Materials, Chemistry, Hefei 230039, People's Republic of China
*Correspondence e-mail: yptian@ahu.edu.cn

(Received 9 August 2013; accepted 13 September 2013; online 21 September 2013)

In the title compound, [ZnI2(C34H31N3)], the ZnII atom is four-coordinated by two I atoms and the pyridine N atoms from the bidentate 6′-phenyl-2,2′-bi­pyridine ligand in a distorted tetra­hedral geometry.

Related literature

For the synthesis of the title compound and related structures, see: Alizadeh et al. (2009[Alizadeh, R., Kalateh, K., Khoshtarkib, Z., Ahmadi, R. & Amani, V. (2009). Acta Cryst. E65, m1439-m1440.]); Gao et al. (2009[Gao, Y. H., Wu, J. Y., Li, Y. M., Sun, P. P., Zhou, H. P., Yang, J. X., Zhang, S. Y., Jin, B. K. & Tian, Y. P. (2009). J. Am. Chem. Soc. 131, 5208-5213.]); Prokhorov et al. (2011[Prokhorov, A. M., Slepukhin, P. A., Rusinov, V. L., Kalinin, V. N. & Kozhevnikov, D. N. (2011). Chem. Commun. 47, 7713-7715.]).

[Scheme 1]

Experimental

Crystal data
  • [ZnI2(C34H31N3)]

  • Mr = 800.79

  • Monoclinic, P 21 /n

  • a = 15.3870 (14) Å

  • b = 9.8771 (9) Å

  • c = 21.3246 (19) Å

  • β = 99.306 (1)°

  • V = 3198.2 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.73 mm−1

  • T = 296 K

  • 0.22 × 0.22 × 0.21 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2002[Sheldrick, G. M. (2002). SADABS. University of Göttingen, Germany.]) Tmin = 0.586, Tmax = 0.598

  • 23438 measured reflections

  • 6226 independent reflections

  • 5325 reflections with I > 2σ(I)

  • Rint = 0.022

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.122

  • S = 1.04

  • 6226 reflections

  • 362 parameters

  • H-atom parameters constrained

  • Δρmax = 1.10 e Å−3

  • Δρmin = −0.92 e Å−3

Data collection: SMART (Bruker, 2002[Bruker (2002). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2002[Bruker (2002). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

In recent years, 6'-phenyl-2,2'-bipyridine based materials have attracted considerable interests because they have significant applications in optoelectronic functional materials (Prokhorov et al., 2011). In addition, zinc complexes are particularly attractive and most studied for their biocompatibility (Gao et al., 2009). Herewith, in this study, we report the crystal structure of the title compound (I).

In (I) (Fig.1), the ZnII atom is four-coordinated by two I atoms and the N atoms from 6'-phenyl-2,2'-bipyridine rings in a distorted tetrahedral geometry and with the coordinated pyridine moities oriented in an almost coplanar fashion with a dihedral angle of 12.68 (1)°, which is larger than what is reported in the literature, with formula [ZnCl2(C12H12N2)] (II) (7.57°) (Alizadeh et al., 2009), the reason is that the introduction of benzene increases steric hindrance. Zn—I bond distances are 2.5396 (6) and 2.5623 (6) Å, which are within normal range. Compared to (II),the distances of Zn—N are a little larger. I—Zn—I and N—Zn—N bond angles are 118.56 (2)° and 80.1 (1)°, which is smaller than that of (II), respectively.

Related literature top

For the synthesis of the title compound and related structures, see: Alizadeh et al. (2009); Gao et al. (2009); Prokhorov et al. (2011).

Experimental top

A solution of 9-hexyl-2-(2-phenyl-6-(pyridin-2-yl)pyridin-4-yl)-9H-carbazole (0.48 g, 1 mmol) in methanol (20 ml) was mixed with a zinc iodide (0.32 g, 1 mmol) in methanol (5 ml) and the reaction mixture was reflux for 4 h. The reaction mixture was cooled to room temperature and filtered into a large test tube. The light yellow crystals were obtained at room temperature after a week. Yield: 85%. 1H NMR (400 MHz, DMSO-d6) 8.89(s, 1H), 8.78–8.80(t, 2H), 8.66–8.68(d, 1H), 8.38–8.44 (m, 4H), 8.03–8.10 (q, 2H), 7.76–7.78 (d, 1H), 7.49–7.66 (q, 6H), 7.25–7.29 (t, 1H), 4.39–4.42 (t, 2H), 1.76–1.82 (q, 2H), 1.19–1.32 (q, 6H), 0.79–0.82 (t, 3H).

Refinement top

All hydrogen atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with C—H = 0.93–0.97 Å and Uiso(H) = 1.2–1.5 Ueq.

Computing details top

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. : The molecular structure of (I), with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms have been omitted.
{9-Hexyl-2-[2-phenyl-6-(pyridin-2-yl)pyridin-4-yl]-9H-carbazole}diiodidozinc top
Crystal data top
[ZnI2(C34H31N3)]F(000) = 1568
Mr = 800.79Dx = 1.663 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 9968 reflections
a = 15.3870 (14) Åθ = 2.3–26.0°
b = 9.8771 (9) ŵ = 2.73 mm1
c = 21.3246 (19) ÅT = 296 K
β = 99.306 (1)°Block, yellow
V = 3198.2 (5) Å30.22 × 0.22 × 0.21 mm
Z = 4
Data collection top
Bruker SMART CCD area-detector
diffractometer
6226 independent reflections
Radiation source: fine-focus sealed tube5325 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.022
phi and ω scansθmax = 26.0°, θmin = 1.5°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2002)
h = 1818
Tmin = 0.586, Tmax = 0.598k = 1211
23438 measured reflectionsl = 2326
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.122H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0673P)2 + 4.6302P]
where P = (Fo2 + 2Fc2)/3
6226 reflections(Δ/σ)max = 0.020
362 parametersΔρmax = 1.10 e Å3
0 restraintsΔρmin = 0.92 e Å3
Crystal data top
[ZnI2(C34H31N3)]V = 3198.2 (5) Å3
Mr = 800.79Z = 4
Monoclinic, P21/nMo Kα radiation
a = 15.3870 (14) ŵ = 2.73 mm1
b = 9.8771 (9) ÅT = 296 K
c = 21.3246 (19) Å0.22 × 0.22 × 0.21 mm
β = 99.306 (1)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
6226 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2002)
5325 reflections with I > 2σ(I)
Tmin = 0.586, Tmax = 0.598Rint = 0.022
23438 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0390 restraints
wR(F2) = 0.122H-atom parameters constrained
S = 1.04Δρmax = 1.10 e Å3
6226 reflectionsΔρmin = 0.92 e Å3
362 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.0246 (3)0.1788 (4)0.0159 (2)0.0519 (9)
H10.05030.12530.04370.062*
C20.0605 (3)0.1523 (5)0.0083 (2)0.0586 (11)
H20.09230.08330.03120.070*
C30.0979 (3)0.2296 (5)0.0339 (2)0.0625 (11)
H30.15530.21290.04030.075*
C40.0492 (3)0.3323 (5)0.0668 (2)0.0576 (10)
H40.07310.38430.09610.069*
C50.0354 (2)0.3570 (4)0.05571 (18)0.0438 (8)
C60.0905 (2)0.4704 (4)0.08513 (17)0.0415 (8)
C70.0553 (3)0.5746 (4)0.11583 (19)0.0448 (8)
H70.00410.57260.11960.054*
C80.1077 (3)0.6834 (4)0.14154 (18)0.0462 (8)
C90.1963 (3)0.6783 (4)0.13391 (19)0.0467 (8)
H90.23420.74730.15060.056*
C100.2285 (3)0.5719 (4)0.10179 (18)0.0451 (8)
C110.3224 (3)0.5669 (5)0.0938 (2)0.0541 (10)
C120.3621 (4)0.6800 (6)0.0716 (3)0.0770 (15)
H120.33040.75980.06280.092*
C130.4498 (4)0.6728 (9)0.0627 (4)0.101 (2)
H130.47660.74820.04810.121*
C140.4964 (4)0.5559 (10)0.0754 (4)0.106 (2)
H140.55410.55100.06790.127*
C150.4591 (4)0.4466 (9)0.0991 (4)0.099 (2)
H150.49220.36840.10890.118*
C160.3711 (3)0.4505 (6)0.1089 (3)0.0740 (14)
H160.34600.37560.12540.089*
C170.0706 (3)0.7983 (4)0.17284 (19)0.0484 (9)
C180.0098 (3)0.7825 (5)0.1959 (2)0.0605 (11)
H180.03730.69840.19270.073*
C190.0487 (3)0.8889 (5)0.2231 (3)0.0673 (13)
H190.10170.87700.23800.081*
C200.0068 (3)1.0139 (5)0.2275 (2)0.0570 (10)
C210.0745 (3)1.0319 (4)0.20552 (18)0.0493 (9)
C220.1119 (3)0.9250 (4)0.17774 (19)0.0480 (9)
H220.16450.93710.16230.058*
C230.1006 (3)1.1708 (4)0.21957 (19)0.0524 (10)
C240.1738 (3)1.2478 (5)0.2116 (2)0.0574 (10)
H240.21791.21090.19180.069*
C250.1801 (4)1.3793 (5)0.2336 (2)0.0652 (12)
H250.22901.43120.22870.078*
C260.1142 (4)1.4352 (5)0.2630 (2)0.0734 (14)
H260.12051.52390.27770.088*
C270.0402 (4)1.3642 (5)0.2710 (2)0.0717 (14)
H270.00401.40330.29000.086*
C280.0344 (3)1.2295 (5)0.2492 (2)0.0592 (11)
C290.1112 (5)1.1590 (8)0.2789 (4)0.103 (2)
H29A0.09591.21050.31780.123*
H29B0.13421.07240.29020.123*
C300.1837 (7)1.2325 (11)0.2369 (5)0.139 (3)
H30A0.22801.26100.26170.167*
H30B0.16001.31270.21950.167*
C310.2230 (9)1.1466 (14)0.1863 (7)0.170 (4)
H31A0.22071.05410.20170.204*
H31B0.18771.15090.15260.204*
C320.3178 (10)1.1793 (16)0.1580 (8)0.192 (5)
H32A0.35581.16980.18990.231*
H32B0.32251.27130.14190.231*
C330.3423 (11)1.0840 (17)0.1072 (8)0.202 (6)
H33A0.32781.12410.06870.243*
H33B0.30531.00460.11640.243*
C340.4308 (11)1.0396 (17)0.0940 (8)0.216 (6)
H34A0.43740.95860.11770.324*
H34B0.44651.02130.04940.324*
H34C0.46871.10880.10610.324*
I10.23267 (2)0.40572 (4)0.090212 (16)0.07186 (13)
I20.27913 (2)0.09387 (3)0.057852 (19)0.07051 (13)
N10.1767 (2)0.4681 (3)0.07773 (14)0.0428 (7)
N20.0721 (2)0.2792 (3)0.01525 (15)0.0450 (7)
N30.0309 (3)1.1340 (4)0.2530 (2)0.0645 (10)
Zn10.20504 (3)0.31593 (5)0.01641 (2)0.04805 (14)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.058 (2)0.043 (2)0.053 (2)0.0009 (17)0.0039 (18)0.0010 (17)
C20.059 (3)0.049 (2)0.065 (3)0.0094 (19)0.000 (2)0.002 (2)
C30.051 (2)0.062 (3)0.075 (3)0.013 (2)0.011 (2)0.001 (2)
C40.050 (2)0.059 (3)0.066 (3)0.0048 (19)0.015 (2)0.005 (2)
C50.0423 (19)0.0442 (19)0.045 (2)0.0018 (15)0.0064 (15)0.0023 (16)
C60.0397 (18)0.0434 (19)0.0417 (19)0.0004 (15)0.0069 (14)0.0030 (15)
C70.0416 (19)0.047 (2)0.046 (2)0.0027 (15)0.0089 (16)0.0004 (16)
C80.048 (2)0.047 (2)0.043 (2)0.0010 (16)0.0088 (16)0.0027 (16)
C90.045 (2)0.047 (2)0.048 (2)0.0013 (16)0.0063 (16)0.0034 (17)
C100.045 (2)0.046 (2)0.043 (2)0.0007 (16)0.0039 (16)0.0042 (16)
C110.042 (2)0.064 (3)0.055 (2)0.0022 (18)0.0069 (18)0.017 (2)
C120.061 (3)0.088 (4)0.085 (4)0.018 (3)0.020 (3)0.013 (3)
C130.072 (4)0.126 (6)0.110 (5)0.035 (4)0.027 (4)0.014 (4)
C140.055 (3)0.147 (7)0.116 (6)0.007 (4)0.020 (3)0.033 (5)
C150.056 (3)0.120 (5)0.115 (5)0.020 (4)0.001 (3)0.031 (4)
C160.049 (2)0.084 (3)0.086 (4)0.012 (2)0.001 (2)0.017 (3)
C170.051 (2)0.049 (2)0.046 (2)0.0049 (17)0.0113 (17)0.0038 (17)
C180.062 (3)0.055 (2)0.069 (3)0.005 (2)0.024 (2)0.009 (2)
C190.062 (3)0.067 (3)0.080 (3)0.002 (2)0.032 (2)0.012 (2)
C200.060 (2)0.057 (3)0.057 (2)0.007 (2)0.018 (2)0.0084 (19)
C210.054 (2)0.051 (2)0.042 (2)0.0046 (18)0.0069 (17)0.0038 (17)
C220.048 (2)0.052 (2)0.045 (2)0.0027 (17)0.0100 (16)0.0041 (17)
C230.066 (3)0.051 (2)0.0385 (19)0.0046 (19)0.0030 (18)0.0030 (17)
C240.069 (3)0.055 (2)0.046 (2)0.000 (2)0.0002 (19)0.0023 (19)
C250.083 (3)0.055 (3)0.051 (2)0.006 (2)0.006 (2)0.003 (2)
C260.103 (4)0.053 (3)0.059 (3)0.004 (3)0.002 (3)0.005 (2)
C270.096 (4)0.060 (3)0.060 (3)0.013 (3)0.014 (3)0.010 (2)
C280.077 (3)0.051 (2)0.049 (2)0.009 (2)0.010 (2)0.0063 (19)
C290.104 (5)0.102 (5)0.112 (5)0.018 (4)0.047 (4)0.009 (4)
C300.138 (8)0.139 (8)0.144 (8)0.020 (6)0.031 (6)0.003 (7)
C310.170 (11)0.174 (11)0.163 (11)0.014 (9)0.020 (9)0.011 (9)
C320.185 (13)0.199 (14)0.188 (13)0.008 (11)0.017 (11)0.014 (12)
C330.195 (16)0.211 (16)0.197 (15)0.000 (12)0.019 (13)0.021 (12)
C340.212 (16)0.219 (15)0.215 (16)0.020 (14)0.031 (13)0.012 (13)
I10.0582 (2)0.0995 (3)0.0634 (2)0.00331 (16)0.02620 (15)0.00944 (16)
I20.0692 (2)0.0546 (2)0.0881 (3)0.01550 (14)0.01370 (17)0.00181 (15)
N10.0402 (15)0.0457 (17)0.0419 (16)0.0035 (13)0.0048 (12)0.0004 (13)
N20.0466 (17)0.0403 (16)0.0478 (17)0.0002 (13)0.0066 (14)0.0011 (13)
N30.073 (2)0.058 (2)0.067 (2)0.010 (2)0.026 (2)0.0115 (19)
Zn10.0455 (3)0.0479 (3)0.0521 (3)0.00290 (19)0.01186 (19)0.0046 (2)
Geometric parameters (Å, º) top
C1—N21.342 (5)C20—C211.416 (6)
C1—C21.370 (6)C21—C221.382 (6)
C1—H10.9300C21—C231.447 (6)
C2—C31.376 (7)C22—H220.9300
C2—H20.9300C23—C241.392 (7)
C3—C41.383 (6)C23—C281.407 (6)
C3—H30.9300C24—C251.379 (7)
C4—C51.382 (6)C24—H240.9300
C4—H40.9300C25—C261.390 (8)
C5—N21.346 (5)C25—H250.9300
C5—C61.481 (5)C26—C271.371 (8)
C6—N11.362 (5)C26—H260.9300
C6—C71.376 (5)C27—C281.408 (7)
C7—C81.402 (6)C27—H270.9300
C7—H70.9300C28—N31.390 (7)
C8—C91.400 (6)C29—N31.454 (7)
C8—C171.477 (5)C29—C301.499 (12)
C9—C101.389 (5)C29—H29A0.9700
C9—H90.9300C29—H29B0.9700
C10—N11.348 (5)C30—C311.429 (14)
C10—C111.482 (6)C30—H30A0.9700
C11—C161.382 (7)C30—H30B0.9700
C11—C121.393 (7)C31—C321.520 (16)
C12—C131.394 (8)C31—H31A0.9700
C12—H120.9300C31—H31B0.9700
C13—C141.363 (11)C32—C331.439 (17)
C13—H130.9300C32—H32A0.9700
C14—C151.357 (11)C32—H32B0.9700
C14—H140.9300C33—C341.416 (17)
C15—C161.404 (8)C33—H33A0.9700
C15—H150.9300C33—H33B0.9700
C16—H160.9300C34—H34A0.9600
C17—C221.399 (6)C34—H34B0.9600
C17—C181.411 (6)C34—H34C0.9600
C18—C191.382 (6)I1—Zn12.5396 (6)
C18—H180.9300I2—Zn12.5623 (6)
C19—C201.389 (7)N1—Zn12.084 (3)
C19—H190.9300N2—Zn12.074 (3)
C20—N31.380 (6)
N2—C1—C2122.5 (4)C28—C23—C21106.7 (4)
N2—C1—H1118.7C25—C24—C23119.1 (5)
C2—C1—H1118.7C25—C24—H24120.4
C1—C2—C3118.7 (4)C23—C24—H24120.4
C1—C2—H2120.7C24—C25—C26120.7 (5)
C3—C2—H2120.7C24—C25—H25119.6
C2—C3—C4119.3 (4)C26—C25—H25119.6
C2—C3—H3120.4C27—C26—C25122.3 (5)
C4—C3—H3120.4C27—C26—H26118.8
C5—C4—C3119.5 (4)C25—C26—H26118.8
C5—C4—H4120.3C26—C27—C28116.9 (5)
C3—C4—H4120.3C26—C27—H27121.6
N2—C5—C4120.8 (4)C28—C27—H27121.6
N2—C5—C6115.7 (3)N3—C28—C23109.2 (4)
C4—C5—C6123.5 (4)N3—C28—C27129.1 (5)
N1—C6—C7122.2 (3)C23—C28—C27121.7 (5)
N1—C6—C5116.1 (3)N3—C29—C30116.8 (7)
C7—C6—C5121.6 (3)N3—C29—H29A108.1
C6—C7—C8120.9 (4)C30—C29—H29A108.1
C6—C7—H7119.5N3—C29—H29B108.1
C8—C7—H7119.5C30—C29—H29B108.1
C9—C8—C7115.9 (4)H29A—C29—H29B107.3
C9—C8—C17122.4 (4)C31—C30—C29110.3 (10)
C7—C8—C17121.7 (4)C31—C30—H30A109.6
C10—C9—C8121.1 (4)C29—C30—H30A109.6
C10—C9—H9119.4C31—C30—H30B109.6
C8—C9—H9119.4C29—C30—H30B109.6
N1—C10—C9121.8 (4)H30A—C30—H30B108.1
N1—C10—C11117.2 (3)C30—C31—C32115.8 (12)
C9—C10—C11121.0 (4)C30—C31—H31A108.3
C16—C11—C12119.7 (5)C32—C31—H31A108.3
C16—C11—C10120.2 (4)C30—C31—H31B108.3
C12—C11—C10120.1 (4)C32—C31—H31B108.3
C11—C12—C13119.5 (6)H31A—C31—H31B107.4
C11—C12—H12120.2C33—C32—C31106.1 (14)
C13—C12—H12120.2C33—C32—H32A110.5
C14—C13—C12120.4 (7)C31—C32—H32A110.5
C14—C13—H13119.8C33—C32—H32B110.5
C12—C13—H13119.8C31—C32—H32B110.5
C15—C14—C13120.5 (6)H32A—C32—H32B108.7
C15—C14—H14119.8C34—C33—C32118.6 (17)
C13—C14—H14119.8C34—C33—H33A107.7
C14—C15—C16120.6 (7)C32—C33—H33A107.7
C14—C15—H15119.7C34—C33—H33B107.7
C16—C15—H15119.7C32—C33—H33B107.7
C11—C16—C15119.2 (6)H33A—C33—H33B107.1
C11—C16—H16120.4C33—C34—H34A109.5
C15—C16—H16120.4C33—C34—H34B109.5
C22—C17—C18119.1 (4)H34A—C34—H34B109.5
C22—C17—C8121.1 (4)C33—C34—H34C109.5
C18—C17—C8119.8 (4)H34A—C34—H34C109.5
C19—C18—C17121.7 (4)H34B—C34—H34C109.5
C19—C18—H18119.1C10—N1—C6118.1 (3)
C17—C18—H18119.1C10—N1—Zn1128.1 (3)
C18—C19—C20118.5 (4)C6—N1—Zn1113.0 (2)
C18—C19—H19120.8C1—N2—C5119.2 (4)
C20—C19—H19120.8C1—N2—Zn1126.4 (3)
N3—C20—C19129.8 (4)C5—N2—Zn1114.0 (2)
N3—C20—C21109.3 (4)C20—N3—C28108.6 (4)
C19—C20—C21120.9 (4)C20—N3—C29126.5 (5)
C22—C21—C20119.8 (4)C28—N3—C29125.0 (5)
C22—C21—C23133.9 (4)N2—Zn1—N180.09 (12)
C20—C21—C23106.3 (4)N2—Zn1—I1110.98 (9)
C21—C22—C17120.0 (4)N1—Zn1—I1113.09 (9)
C21—C22—H22120.0N2—Zn1—I2103.73 (9)
C17—C22—H22120.0N1—Zn1—I2121.83 (9)
C24—C23—C28119.2 (4)I1—Zn1—I2118.56 (2)
C24—C23—C21134.1 (4)
N2—C1—C2—C31.4 (7)C21—C23—C24—C25176.8 (4)
C1—C2—C3—C40.7 (7)C23—C24—C25—C260.4 (7)
C2—C3—C4—C51.2 (7)C24—C25—C26—C270.6 (8)
C3—C4—C5—N22.6 (7)C25—C26—C27—C281.4 (8)
C3—C4—C5—C6175.7 (4)C24—C23—C28—N3178.9 (4)
N2—C5—C6—N112.0 (5)C21—C23—C28—N30.9 (5)
C4—C5—C6—N1169.7 (4)C24—C23—C28—C270.2 (7)
N2—C5—C6—C7165.4 (4)C21—C23—C28—C27178.2 (4)
C4—C5—C6—C712.9 (6)C26—C27—C28—N3177.8 (5)
N1—C6—C7—C80.5 (6)C26—C27—C28—C231.1 (7)
C5—C6—C7—C8177.8 (4)N3—C29—C30—C3171.8 (12)
C6—C7—C8—C90.1 (6)C29—C30—C31—C32154.4 (11)
C6—C7—C8—C17178.0 (4)C30—C31—C32—C33178.1 (13)
C7—C8—C9—C101.0 (6)C31—C32—C33—C34147.5 (16)
C17—C8—C9—C10177.1 (4)C9—C10—N1—C60.7 (5)
C8—C9—C10—N11.3 (6)C11—C10—N1—C6179.4 (4)
C8—C9—C10—C11180.0 (4)C9—C10—N1—Zn1169.4 (3)
N1—C10—C11—C1648.5 (6)C11—C10—N1—Zn111.8 (5)
C9—C10—C11—C16130.2 (5)C7—C6—N1—C100.2 (5)
N1—C10—C11—C12132.2 (4)C5—C6—N1—C10177.7 (3)
C9—C10—C11—C1249.0 (6)C7—C6—N1—Zn1170.2 (3)
C16—C11—C12—C132.4 (8)C5—C6—N1—Zn17.3 (4)
C10—C11—C12—C13178.4 (5)C2—C1—N2—C50.1 (6)
C11—C12—C13—C140.2 (10)C2—C1—N2—Zn1172.2 (3)
C12—C13—C14—C152.4 (11)C4—C5—N2—C11.9 (6)
C13—C14—C15—C162.1 (11)C6—C5—N2—C1176.5 (3)
C12—C11—C16—C152.7 (8)C4—C5—N2—Zn1171.2 (3)
C10—C11—C16—C15178.0 (5)C6—C5—N2—Zn110.5 (4)
C14—C15—C16—C110.5 (10)C19—C20—N3—C28177.1 (5)
C9—C8—C17—C2221.2 (6)C21—C20—N3—C281.3 (5)
C7—C8—C17—C22156.7 (4)C19—C20—N3—C293.6 (9)
C9—C8—C17—C18161.5 (4)C21—C20—N3—C29178.0 (5)
C7—C8—C17—C1820.5 (6)C23—C28—N3—C201.4 (5)
C22—C17—C18—C190.0 (7)C27—C28—N3—C20177.6 (5)
C8—C17—C18—C19177.3 (5)C23—C28—N3—C29177.9 (5)
C17—C18—C19—C200.0 (8)C27—C28—N3—C293.0 (9)
C18—C19—C20—N3179.1 (5)C30—C29—N3—C20100.8 (8)
C18—C19—C20—C210.8 (8)C30—C29—N3—C2878.4 (9)
N3—C20—C21—C22179.8 (4)C1—N2—Zn1—N1177.6 (3)
C19—C20—C21—C221.6 (7)C5—N2—Zn1—N15.2 (3)
N3—C20—C21—C230.8 (5)C1—N2—Zn1—I171.3 (3)
C19—C20—C21—C23177.8 (4)C5—N2—Zn1—I1116.2 (3)
C20—C21—C22—C171.6 (6)C1—N2—Zn1—I257.1 (3)
C23—C21—C22—C17177.7 (4)C5—N2—Zn1—I2115.4 (3)
C18—C17—C22—C210.8 (6)C10—N1—Zn1—N2170.6 (3)
C8—C17—C22—C21178.1 (4)C6—N1—Zn1—N21.4 (2)
C22—C21—C23—C241.7 (8)C10—N1—Zn1—I161.9 (3)
C20—C21—C23—C24177.7 (5)C6—N1—Zn1—I1107.3 (2)
C22—C21—C23—C28179.3 (5)C10—N1—Zn1—I289.3 (3)
C20—C21—C23—C280.1 (5)C6—N1—Zn1—I2101.5 (2)
C28—C23—C24—C250.6 (6)

Experimental details

Crystal data
Chemical formula[ZnI2(C34H31N3)]
Mr800.79
Crystal system, space groupMonoclinic, P21/n
Temperature (K)296
a, b, c (Å)15.3870 (14), 9.8771 (9), 21.3246 (19)
β (°) 99.306 (1)
V3)3198.2 (5)
Z4
Radiation typeMo Kα
µ (mm1)2.73
Crystal size (mm)0.22 × 0.22 × 0.21
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2002)
Tmin, Tmax0.586, 0.598
No. of measured, independent and
observed [I > 2σ(I)] reflections
23438, 6226, 5325
Rint0.022
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.122, 1.04
No. of reflections6226
No. of parameters362
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.10, 0.92

Computer programs: SMART (Bruker, 2002), SAINT (Bruker, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

This work was supported by the National Natural Science Foundation of China (21071001, 21271004).

References

First citationAlizadeh, R., Kalateh, K., Khoshtarkib, Z., Ahmadi, R. & Amani, V. (2009). Acta Cryst. E65, m1439–m1440.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBruker (2002). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationGao, Y. H., Wu, J. Y., Li, Y. M., Sun, P. P., Zhou, H. P., Yang, J. X., Zhang, S. Y., Jin, B. K. & Tian, Y. P. (2009). J. Am. Chem. Soc. 131, 5208–5213.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationProkhorov, A. M., Slepukhin, P. A., Rusinov, V. L., Kalinin, V. N. & Kozhevnikov, D. N. (2011). Chem. Commun. 47, 7713–7715.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2002). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds