Download citation
Download citation
link to html
The the crystal structure of the title compound, C2H9N2+·ClO4, C—H...O, N—H...O and N—H...Cl hydrogen bonds result in the formation of a supra­molecular network structure.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807059909/hk2389sup1.cif
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807059909/hk2389Isup2.hkl
Contains datablock I

CCDC reference: 1176552

Key indicators

  • Single-crystal X-ray study
  • T = 273 K
  • Mean [sigma](C-C) = 0.004 Å
  • R factor = 0.048
  • wR factor = 0.143
  • Data-to-parameter ratio = 16.1

checkCIF/PLATON results

No syntax errors found



Alert level B PLAT430_ALERT_2_B Short Inter D...A Contact O1 .. O2 .. 2.59 Ang.
Alert level C PLAT029_ALERT_3_C _diffrn_measured_fraction_theta_full Low ....... 0.96 PLAT480_ALERT_4_C Long H...A H-Bond Reported H2E .. CL1 .. 2.89 Ang.
0 ALERT level A = In general: serious problem 1 ALERT level B = Potentially serious problem 2 ALERT level C = Check and explain 0 ALERT level G = General alerts; check 0 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 1 ALERT type 2 Indicator that the structure model may be wrong or deficient 1 ALERT type 3 Indicator that the structure quality may be low 1 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

Comment top

In the synthesis of crystal structures by design, the assembly of molecular units in predefined arrangements is a key goal (Desiraju, 1995, 1997; Braga et al., 1998). Due to hydrogen-bonding interactions are of critical importance in biological systems, organic materials and coordination chemistry, hydrogen -bonding is currently the best tool in achieving this goal (Zaworotko, 1997; Braga & Grepioni, 2000). Supramolecular architectures are of considerable contemporary interest by virtue of their potential applications in various fields (Moulton & Zaworotko, 2001; Pan et al., 2001; Ma et al., 2001; Prior & Rosseinsky, 2001). We originally attempted to synthesize complexes featuring Dy metal chains by reaction of the dysprosium (III) ion with ethylene diamine and p-acetaminobenzoic acid ligands. Unfortunately, we obtained only the title compound, (I), and we report herein its crystal structure.

In the molecule of (I) (Fig. 1), the ligand bond lengths and angles are within normal ranges (Allen et al., 1987). It contains one C2N2H9+ cation and one ClO4- anion.

In the crystal structure, C—H···O, N—H···O and N—H···Cl hydrogen bonds (Table 1, Fig. 2) result in the formation of a supramolecular network structure.

Related literature top

For related literature, see: Desiraju (1995, 1997); Braga et al. (1998); Zaworotko (1997); Braga & Grepioni (2000); Moulton & Zaworotko (2001); Pan et al. (2001); Ma et al. (2001); Prior & Rosseinsky (2001). For bond-length data, see: Allen et al. (1987)

Experimental top

Crystals of the title compound were synthesized using hydrothermal method in a 23 ml Teflon-lined Parr bomb. Dysprosium (III) perchlorate hexahydrate (558.8 mg, 1 mmol), ethylene diamine (120.2 mg, 2 mmol), p-acetaminobenzoic acid (179.1 mg, 1 mmol) and distilled water (8 g) were placed into the bomb and sealed. The bomb was then heated under autogenous pressure up to 453 K over the course of 7 d and allowed to cool at room temperature for 24 h. Upon opening the bomb, a clear colorless solution was decanted from small colorless crystals. These crystals were washed with distilled water followed by ethanol, and allowed to air-dry at room temperature.

Refinement top

H atoms were positioned geometrically, with N—H = 0.86 Å (for NH2), 0.89 Å (for NH3) and C—H = 0.97 Å for methylene H atoms, and constrained to ride on their parent atoms, with Uiso(H) = xUeq(C,N), where x = 1.5 for NH3 H, and x = 1.2 for all other H atoms.

Computing details top

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT (Siemens, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Siemens, 1996); software used to prepare material for publication: SHELXTL (Siemens, 1996).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. A packing diagram of (I). Hydrogen bonds are shown as dashed lines.
Ethylenediammonium perchlorate top
Crystal data top
C2H9N2+·ClO4F(000) = 336
Mr = 160.56Dx = 1.587 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2295 reflections
a = 7.417 (2) Åθ = 2.5–27.9°
b = 11.9078 (13) ŵ = 0.52 mm1
c = 8.1023 (16) ÅT = 273 K
β = 110.105 (4)°Prism, colorless
V = 672.0 (2) Å30.22 × 0.17 × 0.16 mm
Z = 4
Data collection top
Bruker SMART CCD area-detector
diffractometer
1334 independent reflections
Radiation source: fine-focus sealed tube1078 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.021
ϕ and ω scansθmax = 26.5°, θmin = 2.9°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 98
Tmin = 0.892, Tmax = 0.924k = 1414
4245 measured reflectionsl = 910
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.143H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0847P)2 + 1.0354P]
where P = (Fo2 + 2Fc2)/3
1334 reflections(Δ/σ)max < 0.001
83 parametersΔρmax = 0.87 e Å3
0 restraintsΔρmin = 0.66 e Å3
Crystal data top
C2H9N2+·ClO4V = 672.0 (2) Å3
Mr = 160.56Z = 4
Monoclinic, P21/cMo Kα radiation
a = 7.417 (2) ŵ = 0.52 mm1
b = 11.9078 (13) ÅT = 273 K
c = 8.1023 (16) Å0.22 × 0.17 × 0.16 mm
β = 110.105 (4)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
1334 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1078 reflections with I > 2σ(I)
Tmin = 0.892, Tmax = 0.924Rint = 0.021
4245 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0480 restraints
wR(F2) = 0.143H-atom parameters constrained
S = 1.01Δρmax = 0.87 e Å3
1334 reflectionsΔρmin = 0.66 e Å3
83 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.58506 (9)0.36384 (5)0.24194 (8)0.0190 (3)
O10.6650 (3)0.25634 (16)0.3425 (2)0.0239 (5)
O20.6771 (3)0.38079 (17)0.0940 (3)0.0246 (5)
O30.6418 (3)0.46860 (16)0.3568 (2)0.0209 (4)
O40.3699 (3)0.35523 (16)0.1531 (2)0.0209 (5)
N10.2506 (3)0.65783 (19)0.2210 (3)0.0183 (5)
H1D0.30920.60610.14830.022*
H1C0.31550.70880.25110.022*
N20.2444 (3)0.55704 (19)0.2860 (3)0.0179 (5)
H2D0.29050.62000.25660.027*
H2C0.28470.49850.23990.027*
H2E0.28580.55050.40250.027*
C10.0398 (4)0.6591 (2)0.2940 (4)0.0217 (6)
H1A0.00330.65340.42110.026*
H1B0.00870.72880.26340.026*
C20.0337 (4)0.5605 (3)0.2183 (4)0.0269 (7)
H2A0.01640.49140.24870.032*
H2B0.01140.56650.09120.032*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0188 (4)0.0196 (4)0.0189 (4)0.0006 (2)0.0071 (3)0.0003 (2)
O10.0284 (10)0.0206 (10)0.0236 (10)0.0083 (8)0.0101 (8)0.0064 (7)
O20.0288 (11)0.0267 (10)0.0249 (11)0.0074 (8)0.0178 (9)0.0032 (8)
O30.0265 (10)0.0185 (10)0.0187 (9)0.0040 (8)0.0090 (7)0.0032 (7)
O40.0142 (10)0.0251 (11)0.0219 (10)0.0017 (7)0.0042 (8)0.0013 (7)
N10.0099 (10)0.0227 (11)0.0217 (11)0.0030 (8)0.0045 (8)0.0039 (8)
N20.0130 (11)0.0210 (11)0.0195 (11)0.0020 (8)0.0052 (8)0.0011 (8)
C10.0122 (13)0.0252 (14)0.0262 (14)0.0003 (10)0.0048 (10)0.0076 (11)
C20.0138 (13)0.0295 (15)0.0344 (16)0.0002 (11)0.0043 (11)0.0143 (12)
Geometric parameters (Å, º) top
Cl1—O41.512 (2)N2—H2D0.8900
Cl1—O11.5236 (19)N2—H2C0.8900
Cl1—O31.5266 (19)N2—H2E0.8900
Cl1—O21.583 (2)C1—C21.511 (4)
N1—C11.469 (3)C1—H1A0.9700
N1—H1D0.8600C1—H1B0.9700
N1—H1C0.8600C2—H2A0.9700
N2—C21.468 (3)C2—H2B0.9700
O4—Cl1—O1110.52 (11)H2C—N2—H2E109.5
O4—Cl1—O3111.74 (11)N1—C1—C2108.1 (2)
O1—Cl1—O3112.68 (11)N1—C1—H1A110.1
O4—Cl1—O2107.91 (11)C2—C1—H1A110.1
O1—Cl1—O2108.79 (11)N1—C1—H1B110.1
O3—Cl1—O2104.91 (10)C2—C1—H1B110.1
C1—N1—H1D120.0H1A—C1—H1B108.4
C1—N1—H1C120.0N2—C2—C1110.9 (2)
H1D—N1—H1C120.0N2—C2—H2A109.5
C2—N2—H2D109.5C1—C2—H2A109.5
C2—N2—H2C109.5N2—C2—H2B109.5
H2D—N2—H2C109.5C1—C2—H2B109.5
C2—N2—H2E109.5H2A—C2—H2B108.0
H2D—N2—H2E109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2C···O40.892.032.914 (3)174
N2—H2C···Cl10.892.743.525 (2)148
N2—H2C···O30.892.512.994 (3)115
N2—H2E···Cl1i0.892.893.714 (2)154
N2—H2E···O3i0.891.852.739 (3)176
N2—H2D···O1ii0.891.892.765 (3)168
N1—H1C···Cl1iii0.862.743.574 (2)165
N1—H1C···O1iii0.862.503.162 (3)134
N1—H1C···O4iii0.862.012.823 (3)158
N1—H1D···O4iv0.862.372.855 (3)116
C2—H2A···O2v0.972.553.280 (4)132
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y+1/2, z+1/2; (iii) x, y+1/2, z+1/2; (iv) x, y+1, z; (v) x1, y, z.

Experimental details

Crystal data
Chemical formulaC2H9N2+·ClO4
Mr160.56
Crystal system, space groupMonoclinic, P21/c
Temperature (K)273
a, b, c (Å)7.417 (2), 11.9078 (13), 8.1023 (16)
β (°) 110.105 (4)
V3)672.0 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.52
Crystal size (mm)0.22 × 0.17 × 0.16
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.892, 0.924
No. of measured, independent and
observed [I > 2σ(I)] reflections
4245, 1334, 1078
Rint0.021
(sin θ/λ)max1)0.628
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.143, 1.01
No. of reflections1334
No. of parameters83
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.87, 0.66

Computer programs: SMART (Siemens, 1996), SAINT (Siemens, 1996), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXTL (Siemens, 1996).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2C···O40.892.032.914 (3)174
N2—H2C···Cl10.892.743.525 (2)148
N2—H2C···O30.892.512.994 (3)114.5
N2—H2E···Cl1i0.892.893.714 (2)154
N2—H2E···O3i0.891.852.739 (3)176
N2—H2D···O1ii0.891.892.765 (3)168
N1—H1C···Cl1iii0.862.743.574 (2)165
N1—H1C···O1iii0.862.503.162 (3)134
N1—H1C···O4iii0.862.012.823 (3)158
N1—H1D···O4iv0.862.372.855 (3)116
C2—H2A···O2v0.972.553.280 (4)132
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y+1/2, z+1/2; (iii) x, y+1/2, z+1/2; (iv) x, y+1, z; (v) x1, y, z.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds