metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
RETRACTED ARTICLE

This article has been retracted. To view the retraction notice, click here.

Retracted: Bis(4-chloro-2-formyl­phenolato)nickel(II)

aDepartment of Chemistry, Baoji University of Arts and Science, Baoji, Shaanxi 721007, People's Republic of China
*Correspondence e-mail: mingtian8001@163.com

(Received 5 November 2007; accepted 6 November 2007; online 18 December 2007)

The asymmetric unit of the title compound, [Ni(C7H4ClO2)2], contains one half-mol­ecule. The NiII ion, lying on an inversion centre, is four-coordinated by O atoms of 5-chloro­salicylaldehydate ligands in a square-planar geometry.

Related literature

For general background, see: Gavrilova & Bosnich (2004[Gavrilova, A. L. & Bosnich, B. (2004). Chem. Rev. 104, 349-383.]); Boudalis et al. (2004[Boudalis, A. K., Clemente-Juan, J.-M., Dahan, F. & Tuchagues, J.-P. (2004). Inorg. Chem. 43, 1574-1586.]); Veauthier et al. (2004[Veauthier, J. M., Cho, W.-S., Lynch, V. M. & Sessler, J. L. (2004). Inorg. Chem. 43, 1220-1228.]). For related structures, see: Erxleben et al. (2001[Erxleben, A. & Schumacher, D. (2001). Eur. J. Inorg. Chem. pp. 3039-3046.]). For bond-length data, see: Allen et al. 1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.].

[Scheme 1]

Experimental

Crystal data
  • [Ni(C7H4ClO2)2]

  • Mr = 369.81

  • Monoclinic, P 21 /c

  • a = 15.765 (3) Å

  • b = 5.6921 (14) Å

  • c = 7.8869 (14) Å

  • β = 93.896 (2)°

  • V = 706.1 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.76 mm−1

  • T = 298 (2) K

  • 0.20 × 0.17 × 0.12 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.720, Tmax = 0.816

  • 3455 measured reflections

  • 1250 independent reflections

  • 1056 reflections with I > 2σ(I)

  • Rint = 0.019

Refinement
  • R[F2 > 2σ(F2)] = 0.034

  • wR(F2) = 0.093

  • S = 1.10

  • 1250 reflections

  • 97 parameters

  • H-atom parameters constrained

  • Δρmax = 0.55 e Å−3

  • Δρmin = −0.43 e Å−3

Table 1
Selected geometric parameters (Å, °)

Ni1—O2 1.840 (2)
Ni1—O1 1.851 (3)
O2i—Ni1—O2 180
O2i—Ni1—O1 85.60 (10)
O2—Ni1—O1 94.40 (10)
O1—Ni1—O1i 180
Symmetry code: (i) -x+1, -y, -z.

Data collection: SMART (Bruker, 1997[Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1997[Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: SHELXTL (Sheldrick, 1995[Sheldrick, G. M. (1995). SHELXTL. Version 5.0. Siemens Analytical Instruments Inc, Madison, Wisconsin, USA.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The design of multidentate ligands and their metallosupramolecular chemistry are of great interest in the last few years (Gavrilova & Bosnich, 2004; Boudalis et al., 2004; Veauthier et al., 2004). As an extension of our ongoing studies on the structural characterization of Schiff base compounds, we report herein the crystal structure of the title compound, (I).

The asymmetric unit of (I) contains one-half molecule (Fig. 1), in which the bond lengths and angles (Table 1) are within normal ranges (Allen et al., 1987). It is a mononuclear NiII complex being structurally similar to the Co(II) and Zn(II) complexes derived from other Schiff base ligands (Erxleben et al., 2001). The NiII ion is four-coordinated by symmetry-related O atoms of 5-chlorosalicylaldehydato ligands.

Related literature top

For general background, see: Gavrilova & Bosnich (2004); Boudalis et al. (2004); Veauthier et al. (2004). For related structures, see: Erxleben et al. (2001). For bond-length data, see: Allen et al. 1987.

Experimental top

For the preparation of the title compound, (I), 5-chlorosalicylaldehyde (15.7 mg, 0.1 mmol) and Ni(NO3)2.6(H2O) (29.0 mg, 0.1 mmol) were dissolved in methanol (10 ml). The mixture was stirred for 30 min at room temperature to give a clear brown solution. After allowing the resulting solution to stand in air for 11 d, brown block-shaped crystals of (I) were formed by slow evaporation of the solvent. The crystals were collected, washed with methanol and dried in a vacuum desiccator using anhydrous CaCl2 (yield; 54%). Elemental analysis; found C 45.42%, H2.16%; calc. for C14H8Cl2Ni O4: C 45.44, H 2.61%.

Refinement top

H atoms were positioned geometrically, with C—H = 0.93 Å, for aromatic H atoms and constrained to ride on their parent atoms, with Uiso(H) = 1.2Ueq(C).

Structure description top

The design of multidentate ligands and their metallosupramolecular chemistry are of great interest in the last few years (Gavrilova & Bosnich, 2004; Boudalis et al., 2004; Veauthier et al., 2004). As an extension of our ongoing studies on the structural characterization of Schiff base compounds, we report herein the crystal structure of the title compound, (I).

The asymmetric unit of (I) contains one-half molecule (Fig. 1), in which the bond lengths and angles (Table 1) are within normal ranges (Allen et al., 1987). It is a mononuclear NiII complex being structurally similar to the Co(II) and Zn(II) complexes derived from other Schiff base ligands (Erxleben et al., 2001). The NiII ion is four-coordinated by symmetry-related O atoms of 5-chlorosalicylaldehydato ligands.

For general background, see: Gavrilova & Bosnich (2004); Boudalis et al. (2004); Veauthier et al. (2004). For related structures, see: Erxleben et al. (2001). For bond-length data, see: Allen et al. 1987.

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Sheldrick, 1995); software used to prepare material for publication: SHELXTL (Sheldrick, 1995).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.
Bis(4-chloro-2-formylphenolato)nickel(II) top
Crystal data top
[Ni(C7H4ClO2)2]F(000) = 372
Mr = 369.81Dx = 1.739 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1788 reflections
a = 15.765 (3) Åθ = 2.6–27.2°
b = 5.6921 (14) ŵ = 1.76 mm1
c = 7.8869 (14) ÅT = 298 K
β = 93.896 (2)°Block, brown
V = 706.1 (3) Å30.20 × 0.17 × 0.12 mm
Z = 2
Data collection top
Bruker SMART CCD area-detector
diffractometer
1250 independent reflections
Radiation source: fine-focus sealed tube1056 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.019
φ and ω scansθmax = 25.0°, θmin = 2.6°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1815
Tmin = 0.720, Tmax = 0.816k = 66
3455 measured reflectionsl = 79
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.093H-atom parameters constrained
S = 1.10 w = 1/[σ2(Fo2) + (0.0455P)2 + 0.5565P]
where P = (Fo2 + 2Fc2)/3
1250 reflections(Δ/σ)max < 0.001
97 parametersΔρmax = 0.55 e Å3
0 restraintsΔρmin = 0.43 e Å3
Crystal data top
[Ni(C7H4ClO2)2]V = 706.1 (3) Å3
Mr = 369.81Z = 2
Monoclinic, P21/cMo Kα radiation
a = 15.765 (3) ŵ = 1.76 mm1
b = 5.6921 (14) ÅT = 298 K
c = 7.8869 (14) Å0.20 × 0.17 × 0.12 mm
β = 93.896 (2)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
1250 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1056 reflections with I > 2σ(I)
Tmin = 0.720, Tmax = 0.816Rint = 0.019
3455 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0340 restraints
wR(F2) = 0.093H-atom parameters constrained
S = 1.10Δρmax = 0.55 e Å3
1250 reflectionsΔρmin = 0.43 e Å3
97 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni10.50000.00000.00000.0368 (2)
Cl10.06478 (6)0.1508 (2)0.19360 (16)0.0813 (4)
O10.45925 (17)0.2599 (5)0.1098 (3)0.0634 (7)
O20.39686 (13)0.1524 (3)0.0165 (3)0.0434 (5)
C10.3822 (2)0.3016 (5)0.1485 (4)0.0425 (7)
H10.37140.44310.20180.051*
C20.3126 (2)0.1431 (5)0.1141 (4)0.0398 (7)
C30.32369 (19)0.0744 (6)0.0312 (4)0.0389 (7)
C40.2507 (2)0.2141 (6)0.0042 (4)0.0465 (8)
H40.25570.35590.06130.056*
C50.1722 (2)0.1449 (6)0.0438 (5)0.0528 (9)
H50.12500.24020.01970.063*
C60.1633 (2)0.0666 (7)0.1281 (4)0.0497 (8)
C70.2316 (2)0.2091 (6)0.1627 (4)0.0460 (8)
H70.22480.35080.21890.055*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.0449 (3)0.0309 (3)0.0342 (3)0.0012 (2)0.0001 (2)0.0031 (2)
Cl10.0502 (6)0.0935 (9)0.1021 (9)0.0018 (5)0.0186 (5)0.0168 (7)
O10.0725 (18)0.0565 (15)0.0609 (16)0.0023 (13)0.0037 (13)0.0085 (13)
O20.0464 (12)0.0340 (11)0.0499 (13)0.0011 (9)0.0035 (10)0.0066 (10)
C10.0490 (19)0.0354 (16)0.0433 (18)0.0045 (14)0.0057 (14)0.0065 (14)
C20.0469 (17)0.0353 (17)0.0369 (16)0.0006 (13)0.0008 (13)0.0006 (13)
C30.0461 (18)0.0350 (15)0.0351 (16)0.0009 (13)0.0004 (13)0.0037 (13)
C40.054 (2)0.0388 (17)0.0462 (19)0.0042 (14)0.0003 (15)0.0023 (14)
C50.0481 (19)0.053 (2)0.056 (2)0.0091 (16)0.0002 (16)0.0002 (17)
C60.0443 (18)0.055 (2)0.050 (2)0.0024 (15)0.0048 (15)0.0025 (16)
C70.0518 (19)0.0422 (18)0.0441 (19)0.0056 (15)0.0046 (15)0.0015 (14)
Geometric parameters (Å, º) top
Ni1—O2i1.840 (2)C2—C71.408 (4)
Ni1—O21.840 (2)C2—C31.417 (4)
Ni1—O11.851 (3)C3—C41.411 (4)
Ni1—O1i1.851 (3)C4—C51.376 (5)
Cl1—C61.738 (3)C4—H40.9300
O1—C11.294 (4)C5—C61.387 (5)
O2—C31.315 (4)C5—H50.9300
C1—C21.433 (4)C6—C71.361 (5)
C1—H10.9300C7—H70.9300
O2i—Ni1—O2180O2—C3—C2124.5 (3)
O2i—Ni1—O185.60 (10)C4—C3—C2117.3 (3)
O2—Ni1—O194.40 (10)C5—C4—C3121.4 (3)
O2i—Ni1—O1i94.40 (10)C5—C4—H4119.3
O2—Ni1—O1i85.60 (10)C3—C4—H4119.3
O1—Ni1—O1i180C4—C5—C6120.2 (3)
C1—O1—Ni1128.2 (2)C4—C5—H5119.9
C3—O2—Ni1127.52 (19)C6—C5—H5119.9
O1—C1—C2124.0 (3)C7—C6—C5120.6 (3)
O1—C1—H1118.0C7—C6—Cl1119.1 (3)
C2—C1—H1118.0C5—C6—Cl1120.2 (3)
C7—C2—C3120.1 (3)C6—C7—C2120.4 (3)
C7—C2—C1118.5 (3)C6—C7—H7119.8
C3—C2—C1121.3 (3)C2—C7—H7119.8
O2—C3—C4118.2 (3)
O2i—Ni1—O1—C1177.8 (3)C7—C2—C3—C42.0 (4)
O2—Ni1—O1—C12.2 (3)C1—C2—C3—C4177.2 (3)
O1—Ni1—O2—C33.1 (3)O2—C3—C4—C5179.2 (3)
O1i—Ni1—O2—C3176.9 (3)C2—C3—C4—C51.7 (5)
Ni1—O1—C1—C21.5 (5)C3—C4—C5—C60.4 (5)
O1—C1—C2—C7179.9 (3)C4—C5—C6—C70.6 (5)
O1—C1—C2—C30.8 (5)C4—C5—C6—Cl1178.4 (3)
Ni1—O2—C3—C4175.5 (2)C5—C6—C7—C20.3 (5)
Ni1—O2—C3—C23.5 (4)Cl1—C6—C7—C2178.7 (2)
C7—C2—C3—O2178.9 (3)C3—C2—C7—C61.1 (5)
C1—C2—C3—O21.9 (5)C1—C2—C7—C6178.1 (3)
Symmetry code: (i) x+1, y, z.

Experimental details

Crystal data
Chemical formula[Ni(C7H4ClO2)2]
Mr369.81
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)15.765 (3), 5.6921 (14), 7.8869 (14)
β (°) 93.896 (2)
V3)706.1 (3)
Z2
Radiation typeMo Kα
µ (mm1)1.76
Crystal size (mm)0.20 × 0.17 × 0.12
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.720, 0.816
No. of measured, independent and
observed [I > 2σ(I)] reflections
3455, 1250, 1056
Rint0.019
(sin θ/λ)max1)0.594
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.093, 1.10
No. of reflections1250
No. of parameters97
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.55, 0.43

Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1997), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXTL (Sheldrick, 1995).

Selected geometric parameters (Å, º) top
Ni1—O21.840 (2)Ni1—O11.851 (3)
O2i—Ni1—O2180O2—Ni1—O194.40 (10)
O2i—Ni1—O185.60 (10)O1—Ni1—O1i180
Symmetry code: (i) x+1, y, z.
 

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationBoudalis, A. K., Clemente-Juan, J.-M., Dahan, F. & Tuchagues, J.-P. (2004). Inorg. Chem. 43, 1574–1586.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationBruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationErxleben, A. & Schumacher, D. (2001). Eur. J. Inorg. Chem. pp. 3039–3046.  CrossRef Google Scholar
First citationGavrilova, A. L. & Bosnich, B. (2004). Chem. Rev. 104, 349–383.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (1995). SHELXTL. Version 5.0. Siemens Analytical Instruments Inc, Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationVeauthier, J. M., Cho, W.-S., Lynch, V. M. & Sessler, J. L. (2004). Inorg. Chem. 43, 1220–1228.  Web of Science CSD CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds