Download citation
Download citation
link to html
In the mol­ecule of the title compound, C12H9N5O4, the rings are oriented at a dihedral angle of 8.00 (2)°. In the crystal structure, inter­molecular N—H...O hydrogen bonds result in the formation of a supra­molecular network.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807054876/hk2357sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807054876/hk2357Isup2.hkl
Contains datablock I

CCDC reference: 1250492

Key indicators

  • Single-crystal X-ray study
  • T = 273 K
  • Mean [sigma](C-C) = 0.004 Å
  • R factor = 0.050
  • wR factor = 0.144
  • Data-to-parameter ratio = 14.2

checkCIF/PLATON results

No syntax errors found



Alert level B PLAT029_ALERT_3_B _diffrn_measured_fraction_theta_full Low ....... 0.96 PLAT230_ALERT_2_B Hirshfeld Test Diff for N3 - C3 .. 17.70 su PLAT230_ALERT_2_B Hirshfeld Test Diff for N3 - C4 .. 14.55 su PLAT230_ALERT_2_B Hirshfeld Test Diff for N4 - C10 .. 13.35 su PLAT230_ALERT_2_B Hirshfeld Test Diff for N4 - C11 .. 9.95 su PLAT241_ALERT_2_B Check High Ueq as Compared to Neighbors for N3
Alert level C PLAT066_ALERT_1_C Predicted and Reported Transmissions Identical . ? PLAT241_ALERT_2_C Check High Ueq as Compared to Neighbors for N4 PLAT242_ALERT_2_C Check Low Ueq as Compared to Neighbors for N5
0 ALERT level A = In general: serious problem 6 ALERT level B = Potentially serious problem 3 ALERT level C = Check and explain 0 ALERT level G = General alerts; check 1 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 7 ALERT type 2 Indicator that the structure model may be wrong or deficient 1 ALERT type 3 Indicator that the structure quality may be low 0 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

Comment top

In the synthesis of crystal structures by design, the assembly of molecular units in predefined arrangements is a key goal (Desiraju, 1995, 1997; Braga et al., 1998). Due to pyridine groups are one of the most important classes of biological ligands, the coordination of metal-pyridine groups complexes are of critical importance in biological systems, organic materials and coordination chemistry. Recently, pyridine groups with variable coordination modes have been used to construct metal-organic supramolecular structures (Wu et al., 2003; Pan & Xu, 2004; Liu et al., 2004; Li et al., 2005). We originally attempted to synthesize complexes featuring Cu metal chains by the reaction of copper(II) ion with 3-nitro-4-[N-(4-carbonylhydrazinopyridyl)- carbonyl]pyridine ligand. Unfortunately, we obtained only the title compound, (I), and we report herein its crystal structure.

In the molecule of (I) (Fig. 1), the ligand bond lengths and angles are within normal ranges (Allen et al., 1987). The rings A (N3/C1—C5) and B (N4/C8—C12) are, of course, planar and they are oriented at a dihedral angle of 8.00 (2)°.

In the crystal structure, intermolecular N—H···O hydrogen bonds (Table 1) result in the formation of a supramolecular network structure.

Related literature top

For general backgroud, see: Desiraju (1995, 1997); Braga et al. (1998); Li et al. (2005); Liu et al. (2004); Pan & Xu (2004); Wu et al. (2003). For bond-length data, see: Allen et al. (1987).

Experimental top

Crystals of the title compound were synthesized using hydrothermal method in a 23 ml Teflon-lined Parr bomb. Copper dinitrate hexahydrate (147.8 mg, 0.5 mmol), 3-nitro-4-[N-(4-carbonylhydrazinopyridyl)-carbonyl]pyridine (278.4 mg, 1 mmol) and distilled water (6 g) were placed into the bomb and sealed. The bomb was then heated under autogenous pressure up to 453 K over the course of 7 d and allowed to cool at room temperature for 24 h. Upon opening the bomb, a clear colorless solution was decanted from small colorless crystals. These crystals were washed with distilled water followed by ethanol, and allowed to air-dry at room temperature.

Refinement top

H atoms were positioned geometrically, with N—H = 0.86 Å (for NH) and C—H = 0.93 Å for aromatic H, and constrained to ride on their parent atoms, with Uiso(H) = 1.2Ueq(C,N).

Computing details top

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT (Siemens, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Siemens, 1996); software used to prepare material for publication: SHELXTL (Siemens, 1996).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.
N'-(3-Nitro-4-pyridylcarbonyl)pyridine-4-carbohydrazide top
Crystal data top
C12H9N5O4F(000) = 592
Mr = 287.24Dx = 1.393 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -p 2ynCell parameters from 2003 reflections
a = 8.2027 (12) Åθ = 2.4–20.9°
b = 12.8813 (17) ŵ = 0.11 mm1
c = 12.970 (2) ÅT = 273 K
β = 92.491 (7)°Prism, colorless
V = 1369.1 (3) Å30.27 × 0.17 × 0.16 mm
Z = 4
Data collection top
Bruker SMART CCD area-detector
diffractometer
2718 independent reflections
Radiation source: fine-focus sealed tube1360 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.043
ϕ and ω scansθmax = 26.5°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1010
Tmin = 0.971, Tmax = 0.983k = 1616
8849 measured reflectionsl = 1615
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.050H-atom parameters constrained
wR(F2) = 0.144 w = 1/[σ2(Fo2) + (0.0601P)2 + 0.155P]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max < 0.001
2718 reflectionsΔρmax = 0.40 e Å3
191 parametersΔρmin = 0.26 e Å3
0 restraintsExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0065 (15)
Crystal data top
C12H9N5O4V = 1369.1 (3) Å3
Mr = 287.24Z = 4
Monoclinic, P21/nMo Kα radiation
a = 8.2027 (12) ŵ = 0.11 mm1
b = 12.8813 (17) ÅT = 273 K
c = 12.970 (2) Å0.27 × 0.17 × 0.16 mm
β = 92.491 (7)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
2718 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1360 reflections with I > 2σ(I)
Tmin = 0.971, Tmax = 0.983Rint = 0.043
8849 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0500 restraints
wR(F2) = 0.144H-atom parameters constrained
S = 1.02Δρmax = 0.40 e Å3
2718 reflectionsΔρmin = 0.26 e Å3
191 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.9294 (2)0.01082 (13)0.62609 (13)0.0612 (5)
O20.5681 (2)0.15846 (13)0.51252 (15)0.0660 (5)
O30.7545 (4)0.37731 (18)0.5472 (2)0.1294 (10)
O40.8681 (3)0.23389 (16)0.51340 (15)0.0835 (7)
N10.7077 (3)0.02937 (16)0.51883 (17)0.0614 (6)
H1A0.61790.06220.50580.074*
N20.7559 (3)0.04917 (15)0.45297 (16)0.0611 (6)
H2A0.83060.03810.40980.073*
N30.8478 (5)0.3838 (3)0.2666 (4)0.1365 (15)
N40.5791 (3)0.2646 (2)0.8124 (2)0.0876 (8)
N50.7828 (3)0.28597 (18)0.56574 (19)0.0696 (7)
C10.7452 (3)0.22485 (19)0.38874 (19)0.0549 (7)
C20.7185 (4)0.3276 (2)0.4150 (2)0.0773 (9)
H20.66310.34290.47410.093*
C30.7725 (5)0.4065 (3)0.3550 (3)0.1009 (12)
H30.75770.47520.37450.121*
C40.8753 (4)0.2817 (3)0.2375 (3)0.0889 (10)
H40.92780.26680.17710.107*
C50.8225 (3)0.2021 (2)0.3006 (2)0.0683 (8)
H50.83990.13330.28250.082*
C60.6826 (3)0.14377 (19)0.45812 (19)0.0521 (6)
C70.8009 (3)0.05374 (18)0.6022 (2)0.0502 (6)
C80.7259 (3)0.13277 (17)0.67218 (18)0.0484 (6)
C90.7149 (3)0.23985 (17)0.65642 (18)0.0505 (6)
C100.6410 (3)0.30405 (19)0.7257 (2)0.0590 (7)
H100.63380.37490.71270.071*
C110.5878 (3)0.1582 (2)0.8306 (2)0.0645 (8)
H110.54390.13050.88960.077*
C120.6613 (3)0.0937 (2)0.7616 (2)0.0600 (7)
H120.66770.02290.77510.072*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0632 (12)0.0470 (10)0.0741 (12)0.0084 (9)0.0107 (9)0.0013 (8)
O20.0679 (13)0.0583 (12)0.0729 (12)0.0038 (10)0.0167 (10)0.0012 (9)
O30.207 (3)0.0549 (14)0.132 (2)0.0219 (16)0.0728 (18)0.0345 (14)
O40.1065 (17)0.0721 (14)0.0751 (14)0.0053 (12)0.0420 (12)0.0020 (11)
N10.0625 (14)0.0513 (13)0.0708 (15)0.0114 (11)0.0078 (12)0.0203 (11)
N20.0683 (15)0.0504 (13)0.0664 (14)0.0034 (11)0.0216 (11)0.0176 (11)
N30.144 (3)0.117 (3)0.144 (3)0.050 (3)0.038 (3)0.066 (3)
N40.099 (2)0.0762 (19)0.088 (2)0.0024 (15)0.0108 (15)0.0131 (15)
N50.0926 (19)0.0477 (15)0.0704 (16)0.0033 (13)0.0237 (14)0.0032 (12)
C10.0558 (17)0.0486 (16)0.0599 (17)0.0075 (12)0.0019 (13)0.0120 (12)
C20.091 (2)0.0503 (18)0.089 (2)0.0082 (16)0.0111 (17)0.0083 (15)
C30.146 (4)0.0531 (19)0.101 (3)0.024 (2)0.018 (3)0.020 (2)
C40.088 (2)0.096 (3)0.083 (2)0.017 (2)0.0013 (17)0.037 (2)
C50.0700 (19)0.0669 (18)0.0683 (19)0.0063 (15)0.0055 (15)0.0214 (15)
C60.0555 (17)0.0466 (16)0.0540 (16)0.0052 (13)0.0017 (13)0.0015 (12)
C70.0579 (17)0.0346 (13)0.0592 (17)0.0020 (13)0.0157 (13)0.0002 (12)
C80.0540 (15)0.0379 (13)0.0540 (15)0.0010 (12)0.0094 (12)0.0037 (11)
C90.0586 (16)0.0396 (14)0.0539 (15)0.0043 (12)0.0096 (12)0.0012 (11)
C100.0768 (19)0.0381 (14)0.0630 (17)0.0033 (13)0.0134 (14)0.0045 (12)
C110.084 (2)0.0541 (17)0.0574 (16)0.0052 (15)0.0219 (14)0.0011 (13)
C120.0736 (19)0.0454 (15)0.0624 (17)0.0006 (13)0.0194 (14)0.0014 (13)
Geometric parameters (Å, º) top
O1—C71.218 (3)C1—C61.485 (3)
O2—C61.213 (3)C2—C31.365 (4)
O3—N51.221 (3)C2—H20.9300
O4—N51.201 (3)C3—H30.9300
N1—C71.334 (3)C4—C51.392 (4)
N1—N21.392 (3)C4—H40.9300
N1—H1A0.8600C5—H50.9300
N2—C61.362 (3)C7—C81.512 (3)
N2—H2A0.8600C8—C121.391 (3)
N3—C31.357 (6)C8—C91.397 (3)
N3—C41.390 (6)C9—C101.380 (3)
N4—C101.353 (4)C10—H100.9300
N4—C111.392 (3)C11—C121.379 (3)
N5—C91.450 (3)C11—H110.9300
C1—C51.363 (4)C12—H120.9300
C1—C21.386 (4)
C7—N1—N2120.0 (2)C1—C5—H5119.9
C7—N1—H1A120.0C4—C5—H5119.9
N2—N1—H1A120.0O2—C6—N2121.5 (2)
C6—N2—N1118.9 (2)O2—C6—C1122.7 (2)
C6—N2—H2A120.6N2—C6—C1115.8 (2)
N1—N2—H2A120.6O1—C7—N1123.9 (2)
C3—N3—C4121.2 (3)O1—C7—C8121.5 (2)
C10—N4—C11119.5 (2)N1—C7—C8114.3 (2)
O4—N5—O3122.5 (2)C12—C8—C9117.0 (2)
O4—N5—C9118.9 (2)C12—C8—C7115.9 (2)
O3—N5—C9118.6 (2)C9—C8—C7127.0 (2)
C5—C1—C2119.7 (2)C10—C9—C8121.6 (2)
C5—C1—C6122.9 (2)C10—C9—N5118.5 (2)
C2—C1—C6117.4 (3)C8—C9—N5119.9 (2)
C3—C2—C1120.8 (3)N4—C10—C9120.5 (2)
C3—C2—H2119.6N4—C10—H10119.8
C1—C2—H2119.6C9—C10—H10119.8
N3—C3—C2119.5 (3)C12—C11—N4120.2 (2)
N3—C3—H3120.3C12—C11—H11119.9
C2—C3—H3120.3N4—C11—H11119.9
N3—C4—C5118.6 (3)C11—C12—C8121.1 (2)
N3—C4—H4120.7C11—C12—H12119.4
C5—C4—H4120.7C8—C12—H12119.4
C1—C5—C4120.2 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O2i0.861.972.823 (3)170
N2—H2A···O1ii0.862.072.862 (3)152
Symmetry codes: (i) x+1, y, z+1; (ii) x+2, y, z+1.

Experimental details

Crystal data
Chemical formulaC12H9N5O4
Mr287.24
Crystal system, space groupMonoclinic, P21/n
Temperature (K)273
a, b, c (Å)8.2027 (12), 12.8813 (17), 12.970 (2)
β (°) 92.491 (7)
V3)1369.1 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.27 × 0.17 × 0.16
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.971, 0.983
No. of measured, independent and
observed [I > 2σ(I)] reflections
8849, 2718, 1360
Rint0.043
(sin θ/λ)max1)0.628
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.050, 0.144, 1.02
No. of reflections2718
No. of parameters191
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.40, 0.26

Computer programs: SMART (Siemens, 1996), SAINT (Siemens, 1996), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXTL (Siemens, 1996).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O2i0.861.972.823 (3)170
N2—H2A···O1ii0.862.072.862 (3)152
Symmetry codes: (i) x+1, y, z+1; (ii) x+2, y, z+1.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds