Download citation
Download citation
link to html
In the mol­ecule of the title compound, C15H12N2O4, the benzene rings are oriented at a dihedral angle of 8.01 (3)°. In the crystal structure, inter­molecular N—H...O hydrogen bonds result in the formation of a supra­molecular network structure.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S160053680705204X/hk2347sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S160053680705204X/hk2347Isup2.hkl
Contains datablock I

CCDC reference: 1271213

Key indicators

  • Single-crystal X-ray study
  • T = 273 K
  • Mean [sigma](C-C) = 0.004 Å
  • R factor = 0.052
  • wR factor = 0.133
  • Data-to-parameter ratio = 14.8

checkCIF/PLATON results

No syntax errors found



Alert level B PLAT230_ALERT_2_B Hirshfeld Test Diff for O1 - C1 .. 15.18 su PLAT230_ALERT_2_B Hirshfeld Test Diff for O2 - C1 .. 22.61 su PLAT230_ALERT_2_B Hirshfeld Test Diff for C1 - C2 .. 9.99 su PLAT242_ALERT_2_B Check Low Ueq as Compared to Neighbors for C1 PLAT420_ALERT_2_B D-H Without Acceptor O1 - H1 ... ?
Alert level C PLAT026_ALERT_3_C Ratio Observed / Unique Reflections too Low .... 46 Perc. PLAT029_ALERT_3_C _diffrn_measured_fraction_theta_full Low ....... 0.96 PLAT066_ALERT_1_C Predicted and Reported Transmissions Identical . ?
0 ALERT level A = In general: serious problem 5 ALERT level B = Potentially serious problem 3 ALERT level C = Check and explain 0 ALERT level G = General alerts; check 1 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 5 ALERT type 2 Indicator that the structure model may be wrong or deficient 2 ALERT type 3 Indicator that the structure quality may be low 0 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

Comment top

In the synthesis of crystal structures by design, the assembly of molecular units in predefined arrangements is a key goal (Desiraju, 1995, 1997; Braga et al., 1998). Due to carboxyl groups are one of the most important classes of biological ligands, the coordination of metal-carboxyl groups complexes are of critical importance in biological systems, organic materials and coordination chemistry. Recently, carboxyl groups with variable coordination modes have been used to construct metal-organic supramolecular structures (Mccann et al., 1996; Mccann et al., 1995; Wai et al., 1990; Yaghi et al., 1996; Min & Lee 2002; Maira et al., 2001). We originally attempted to synthesize complexes featuring La metal chains by reaction of the lanthanum(III) ion with N-(2-benzamido)-2-carboxamido-benzoic acid ligand. Unfortunately, we obtained only the title compound, (I), and we report herein its crystal structure.

In the molecule of (I) (Fig. 1), the ligand bond lengths and angles are within normal ranges (Allen et al., 1987). The rings A (C2—C7) and B (C10—C15) are, of course, planar and they are oriented at a dihedral angle of 8.01 (3)°.

In the crystal structure, intermolecular N—H···O hydrogen bonds (Table 1, Fig. 2) result in the formation of a supramolecular network structure.

Related literature top

For general backgroud, see: Desiraju (1995); Desiraju (1997); Braga et al. (1998); Mccann et al. (1996); Mccann et al. (1995); Wai et al. (1990); Yaghi et al. (1996); Min & Lee (2002); Maira et al. (2001). For bond-length data, see: Allen et al. (1987).

Experimental top

Crystals of the title compound were synthesized using hydrothermal method in a 23 ml Teflon-lined Parr bomb. Lanthanum (III) nitrate hexahydrate (432.8 mg, 1 mmol), N-(2-benzamido)-2-carboxamido-benzoic acid (568.6 mg, 2 mmol), ammonia (0.5 mol/l, 4 ml) and distilled water (8 g) were placed into the bomb and sealed. The bomb was then heated under autogenous pressure up to 453 K over the course of 7 d and allowed to cool at room temperature for 24 h. Upon opening the bomb, a clear colorless solution was decanted from small colorless crystals. These crystals were washed with distilled water followed by ethanol and allowed to air-dry at room temperature.

Refinement top

H atoms were positioned geometrically, with O—H = 0.82 Å (for OH), N—H = 0.86 Å (for NH) and C—H = 0.93 Å for aromatic H, and constrained to ride on their parent atoms, with Uiso(H) = xUeq(C,N,O), where x = 1.5 for OH H atom and x = 1.2 for all other H atoms.

Structure description top

In the synthesis of crystal structures by design, the assembly of molecular units in predefined arrangements is a key goal (Desiraju, 1995, 1997; Braga et al., 1998). Due to carboxyl groups are one of the most important classes of biological ligands, the coordination of metal-carboxyl groups complexes are of critical importance in biological systems, organic materials and coordination chemistry. Recently, carboxyl groups with variable coordination modes have been used to construct metal-organic supramolecular structures (Mccann et al., 1996; Mccann et al., 1995; Wai et al., 1990; Yaghi et al., 1996; Min & Lee 2002; Maira et al., 2001). We originally attempted to synthesize complexes featuring La metal chains by reaction of the lanthanum(III) ion with N-(2-benzamido)-2-carboxamido-benzoic acid ligand. Unfortunately, we obtained only the title compound, (I), and we report herein its crystal structure.

In the molecule of (I) (Fig. 1), the ligand bond lengths and angles are within normal ranges (Allen et al., 1987). The rings A (C2—C7) and B (C10—C15) are, of course, planar and they are oriented at a dihedral angle of 8.01 (3)°.

In the crystal structure, intermolecular N—H···O hydrogen bonds (Table 1, Fig. 2) result in the formation of a supramolecular network structure.

For general backgroud, see: Desiraju (1995); Desiraju (1997); Braga et al. (1998); Mccann et al. (1996); Mccann et al. (1995); Wai et al. (1990); Yaghi et al. (1996); Min & Lee (2002); Maira et al. (2001). For bond-length data, see: Allen et al. (1987).

Computing details top

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT (Siemens, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Siemens, 1996); software used to prepare material for publication: SHELXTL (Siemens, 1996).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. A packing diagram of (I). Hydrogen bonds are shown as dashed lines.
2-(Benzoylhydrazinocarbonyl)benzoic acid top
Crystal data top
C15H12N2O4F(000) = 592
Mr = 284.27Dx = 1.393 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -p 2ynCell parameters from 1987 reflections
a = 8.1489 (15) Åθ = 2.4–21.0°
b = 12.9061 (11) ŵ = 0.10 mm1
c = 12.8993 (12) ÅT = 273 K
β = 92.669 (4)°Prism, colorless
V = 1355.2 (3) Å30.28 × 0.18 × 0.15 mm
Z = 4
Data collection top
Bruker SMART CCD area-detector
diffractometer
2844 independent reflections
Radiation source: fine-focus sealed tube1313 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.044
φ and ω scansθmax = 27.0°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1010
Tmin = 0.972, Tmax = 0.985k = 1616
9163 measured reflectionsl = 1616
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.052H-atom parameters constrained
wR(F2) = 0.133 w = 1/[σ2(Fo2) + (0.0568P)2 + 0.0776P]
where P = (Fo2 + 2Fc2)/3
S = 0.99(Δ/σ)max < 0.001
2844 reflectionsΔρmax = 0.24 e Å3
192 parametersΔρmin = 0.21 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 1997), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0094 (16)
Crystal data top
C15H12N2O4V = 1355.2 (3) Å3
Mr = 284.27Z = 4
Monoclinic, P21/nMo Kα radiation
a = 8.1489 (15) ŵ = 0.10 mm1
b = 12.9061 (11) ÅT = 273 K
c = 12.8993 (12) Å0.28 × 0.18 × 0.15 mm
β = 92.669 (4)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
2844 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1313 reflections with I > 2σ(I)
Tmin = 0.972, Tmax = 0.985Rint = 0.044
9163 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0520 restraints
wR(F2) = 0.133H-atom parameters constrained
S = 0.99Δρmax = 0.24 e Å3
2844 reflectionsΔρmin = 0.21 e Å3
192 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.7542 (4)0.37592 (18)0.54854 (18)0.1346 (9)
H10.77670.38880.48860.202*
O20.8669 (2)0.23458 (15)0.51418 (13)0.0873 (6)
O30.9292 (2)0.01113 (12)0.62646 (12)0.0645 (5)
O40.5678 (2)0.15831 (12)0.51278 (13)0.0691 (5)
N10.7074 (2)0.02917 (14)0.51870 (15)0.0637 (6)
H1A0.61700.06190.50520.076*
N20.7560 (2)0.04919 (14)0.45305 (14)0.0637 (6)
H2A0.83140.03820.40990.076*
C10.7822 (3)0.28611 (16)0.56705 (17)0.0503 (6)
C20.7146 (3)0.23995 (16)0.65641 (16)0.0540 (6)
C30.6407 (3)0.30410 (17)0.72595 (19)0.0622 (7)
H30.63330.37490.71320.075*
C40.5796 (3)0.26387 (18)0.81212 (18)0.0650 (7)
H40.53130.30710.85970.078*
C50.5881 (3)0.15840 (19)0.83039 (18)0.0681 (7)
H50.54390.13090.88960.082*
C60.6616 (3)0.09405 (18)0.76139 (17)0.0620 (6)
H60.66780.02340.77500.074*
C70.7262 (3)0.13252 (15)0.67258 (16)0.0505 (6)
C80.8005 (3)0.05369 (16)0.60246 (18)0.0529 (6)
C90.6826 (3)0.14349 (18)0.45807 (17)0.0549 (6)
C100.7452 (3)0.22494 (17)0.38889 (17)0.0576 (6)
C110.8233 (3)0.2020 (2)0.3001 (2)0.0706 (7)
H110.84130.13350.28140.085*
C120.8755 (3)0.2832 (3)0.2380 (2)0.0939 (10)
H120.92850.26860.17740.113*
C130.8493 (5)0.3839 (3)0.2657 (3)0.1095 (13)
H130.88370.43720.22330.131*
C140.7743 (5)0.4064 (2)0.3534 (3)0.1063 (11)
H140.76030.47520.37260.128*
C150.7178 (3)0.3281 (2)0.4152 (2)0.0795 (8)
H150.66160.34410.47420.095*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.213 (3)0.0746 (15)0.1225 (19)0.0185 (15)0.0767 (17)0.0326 (13)
O20.1097 (15)0.0780 (13)0.0771 (12)0.0115 (11)0.0352 (11)0.0096 (10)
O30.0654 (11)0.0509 (10)0.0779 (11)0.0094 (8)0.0106 (8)0.0019 (8)
O40.0708 (12)0.0628 (11)0.0752 (11)0.0048 (9)0.0171 (9)0.0010 (8)
N10.0635 (13)0.0541 (12)0.0739 (14)0.0105 (10)0.0069 (11)0.0224 (10)
N20.0706 (13)0.0523 (12)0.0698 (13)0.0016 (10)0.0226 (10)0.0179 (10)
C10.0723 (16)0.0277 (11)0.0529 (13)0.0017 (11)0.0249 (12)0.0042 (10)
C20.0598 (14)0.0436 (13)0.0590 (14)0.0042 (11)0.0090 (11)0.0035 (11)
C30.0760 (17)0.0393 (12)0.0719 (16)0.0011 (11)0.0095 (13)0.0095 (11)
C40.0781 (17)0.0572 (16)0.0609 (16)0.0009 (13)0.0154 (13)0.0148 (12)
C50.0829 (18)0.0649 (17)0.0580 (15)0.0062 (14)0.0199 (12)0.0024 (12)
C60.0769 (17)0.0475 (14)0.0631 (15)0.0004 (12)0.0195 (12)0.0018 (11)
C70.0570 (14)0.0400 (12)0.0552 (14)0.0003 (10)0.0099 (11)0.0047 (10)
C80.0594 (15)0.0365 (12)0.0640 (15)0.0009 (12)0.0152 (12)0.0016 (11)
C90.0575 (15)0.0510 (15)0.0562 (14)0.0065 (12)0.0019 (12)0.0025 (11)
C100.0596 (15)0.0491 (14)0.0637 (15)0.0077 (11)0.0023 (12)0.0119 (11)
C110.0736 (18)0.0697 (17)0.0688 (17)0.0063 (13)0.0065 (13)0.0221 (13)
C120.084 (2)0.118 (3)0.080 (2)0.0162 (19)0.0002 (15)0.0407 (19)
C130.123 (3)0.089 (3)0.114 (3)0.039 (2)0.027 (2)0.052 (2)
C140.147 (3)0.0493 (17)0.119 (3)0.0257 (19)0.030 (2)0.0241 (19)
C150.093 (2)0.0544 (17)0.0899 (19)0.0070 (14)0.0115 (15)0.0081 (14)
Geometric parameters (Å, º) top
O1—C11.203 (3)C5—C61.375 (3)
O1—H10.8200C5—H50.9300
O2—C11.195 (2)C6—C71.375 (3)
O3—C81.211 (2)C6—H60.9300
O4—C91.212 (3)C7—C81.507 (3)
N1—C81.329 (3)C9—C101.485 (3)
N1—N21.389 (2)C10—C111.368 (3)
N1—H1A0.8600C10—C151.395 (3)
N2—C91.359 (3)C11—C121.397 (3)
N2—H2A0.8600C11—H110.9300
C1—C21.430 (3)C12—C131.367 (5)
C2—C31.380 (3)C12—H120.9300
C2—C71.405 (3)C13—C141.343 (5)
C3—C41.344 (3)C13—H130.9300
C3—H30.9300C14—C151.379 (4)
C4—C51.383 (3)C14—H140.9300
C4—H40.9300C15—H150.9300
C1—O1—H1109.5C6—C7—C8115.86 (19)
C8—N1—N2120.05 (18)C2—C7—C8127.10 (19)
C8—N1—H1A120.0O3—C8—N1123.7 (2)
N2—N1—H1A120.0O3—C8—C7121.3 (2)
C9—N2—N1118.97 (19)N1—C8—C7114.7 (2)
C9—N2—H2A120.5O4—C9—N2121.5 (2)
N1—N2—H2A120.5O4—C9—C10122.3 (2)
O2—C1—O1122.2 (2)N2—C9—C10116.1 (2)
O2—C1—C2118.8 (2)C11—C10—C15119.8 (2)
O1—C1—C2119.0 (2)C11—C10—C9122.4 (2)
C3—C2—C7121.6 (2)C15—C10—C9117.8 (2)
C3—C2—C1118.0 (2)C10—C11—C12118.9 (3)
C7—C2—C1120.35 (19)C10—C11—H11120.5
C4—C3—C2119.7 (2)C12—C11—H11120.5
C4—C3—H3120.1C13—C12—C11120.5 (3)
C2—C3—H3120.1C13—C12—H12119.7
C3—C4—C5120.3 (2)C11—C12—H12119.7
C3—C4—H4119.9C14—C13—C12120.6 (3)
C5—C4—H4119.9C14—C13—H13119.7
C6—C5—C4120.3 (2)C12—C13—H13119.7
C6—C5—H5119.9C13—C14—C15120.4 (3)
C4—C5—H5119.9C13—C14—H14119.8
C5—C6—C7121.1 (2)C15—C14—H14119.8
C5—C6—H6119.5C14—C15—C10119.8 (3)
C7—C6—H6119.5C14—C15—H15120.1
C6—C7—C2117.03 (19)C10—C15—H15120.1
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O4i0.861.962.809 (2)169
N2—H2A···O3ii0.862.062.849 (2)153
Symmetry codes: (i) x+1, y, z+1; (ii) x+2, y, z+1.

Experimental details

Crystal data
Chemical formulaC15H12N2O4
Mr284.27
Crystal system, space groupMonoclinic, P21/n
Temperature (K)273
a, b, c (Å)8.1489 (15), 12.9061 (11), 12.8993 (12)
β (°) 92.669 (4)
V3)1355.2 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.28 × 0.18 × 0.15
Data collection
DiffractometerBruker SMART CCD area-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.972, 0.985
No. of measured, independent and
observed [I > 2σ(I)] reflections
9163, 2844, 1313
Rint0.044
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.052, 0.133, 0.99
No. of reflections2844
No. of parameters192
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.24, 0.21

Computer programs: SMART (Siemens, 1996), SAINT (Siemens, 1996), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXTL (Siemens, 1996).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O4i0.861.962.809 (2)169
N2—H2A···O3ii0.862.062.849 (2)153
Symmetry codes: (i) x+1, y, z+1; (ii) x+2, y, z+1.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds