Download citation
Download citation
link to html
The mol­ecule of the title compound, [Ni2Zn(C17H20N2O2)2(C2H3O2)2(C3H7NO)2], contains a linear hetero-trinuclear arrangement with a central ZnII ion located on an inversion centre. The Zn...Ni pairs are triply bridged via O atoms of SALPD2− [N,N′-bis­(salicyl­idene)-1,3-propane­diaminate] and acetate ligands. The central ZnII ion is in a distorted octa­hedral coordination environment formed by four O atoms of two SALPD2− ligands in the equatorial plane and two O atoms of two symmetry-related acetate ligands in the axial positions. The terminal NiII ions, related by an inversion centre, also have distorted octa­hedral coordination environments formed by two O and two N atoms of SALPD2− ligands in the equatorial plane; the axial positions are occupied by O atoms of dimethyl­formamide and acetate ligands, which are trans with respect to the terminal Ni atoms. The crystal structure is stabilized by weak inter­molecular C—H...O hydrogen bonds.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S160053680704144X/hk2314sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S160053680704144X/hk2314Isup2.hkl
Contains datablock I

CCDC reference: 660169

Key indicators

  • Single-crystal X-ray study
  • T = 298 K
  • Mean [sigma](C-C) = 0.010 Å
  • R factor = 0.056
  • wR factor = 0.176
  • Data-to-parameter ratio = 14.1

checkCIF/PLATON results

No syntax errors found



Alert level B REFLT03_ALERT_3_B Reflection count < 90% complete (theta max?) From the CIF: _diffrn_reflns_theta_max 74.24 From the CIF: _diffrn_reflns_theta_full 74.24 From the CIF: _reflns_number_total 4017 TEST2: Reflns within _diffrn_reflns_theta_max Count of symmetry unique reflns 4723 Completeness (_total/calc) 85.05% PLAT022_ALERT_3_B Ratio Unique / Expected Reflections too Low .... 0.85
Alert level C PLAT066_ALERT_1_C Predicted and Reported Transmissions Identical . ? PLAT220_ALERT_2_C Large Non-Solvent C Ueq(max)/Ueq(min) ... 2.61 Ratio PLAT232_ALERT_2_C Hirshfeld Test Diff (M-X) Zn - O1 .. 5.90 su PLAT232_ALERT_2_C Hirshfeld Test Diff (M-X) Zn - O2 .. 7.38 su PLAT232_ALERT_2_C Hirshfeld Test Diff (M-X) Zn - O3 .. 7.91 su PLAT242_ALERT_2_C Check Low Ueq as Compared to Neighbors for N3 PLAT341_ALERT_3_C Low Bond Precision on C-C Bonds (x 1000) Ang ... 10 PLAT380_ALERT_4_C Check Incorrectly? Oriented X(sp2)-Methyl Moiety C21 PLAT380_ALERT_4_C Check Incorrectly? Oriented X(sp2)-Methyl Moiety C22 PLAT380_ALERT_4_C Check Incorrectly? Oriented X(sp2)-Methyl Moiety C19 PLAT420_ALERT_2_C D-H Without Acceptor N1 - H1 ... ? PLAT420_ALERT_2_C D-H Without Acceptor N2 - H2 ... ?
Alert level G PLAT793_ALERT_1_G Check the Absolute Configuration of N1 = ... S PLAT793_ALERT_1_G Check the Absolute Configuration of N2 = ... R PLAT794_ALERT_5_G Check Predicted Bond Valency for Zn (2) 2.15 PLAT794_ALERT_5_G Check Predicted Bond Valency for Ni (2) 1.99
0 ALERT level A = In general: serious problem 2 ALERT level B = Potentially serious problem 12 ALERT level C = Check and explain 4 ALERT level G = General alerts; check 3 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 7 ALERT type 2 Indicator that the structure model may be wrong or deficient 3 ALERT type 3 Indicator that the structure quality may be low 3 ALERT type 4 Improvement, methodology, query or suggestion 2 ALERT type 5 Informative message, check

Comment top

As it is well known, Schiff bases are easily reduced in alcoholic media with the presence of NaBH4 giving secondary amines. The ONNO phenol amines are obtained by the reduction of ONNO type Schiff bases (Aneetha et al., 1999; Reglinski et al., 2006). Bis-N,N'(2-salicylidene)-1,3-propanediamine is a Schiff base ligand tending to give polynuclear complexes [Fukuhara et al., 1990], and its reduction results in the formation of bis-N,N'(2-hydroxybenzyl) -1, 3-propanediamine. In its complexes, various combinations of metal ions in the central and terminal locations, as well as the µ-bridges, such as acetato, formato (CHO2), nitrato (NO3) or nitrito (NO2) anions are possible. Oxygen-bridged polynuclear complexes of transition series based on Schiff base ligands with similar formula have been the subject of much interest in our laboratory Ülkü et al., 1997; Tahir et al., 1998; Atakol et al., 1999;Ülkü et al., 1999;Ülkü et al., 2001; Arıcı et al., 2001; Tatar & Atakol, 2002; Tatar et al., 2007). The structure determination of the title compound, (I), a hetero-trinuclear [Zn{Ni(SALPD2-)(acetato)(dmf)}2] complex [where SALPD2- is N,N'-bis(salicylidene)-1, 3-propanediaminato and dmf is dimethylformamide], was undertaken in order to determine the ligands properties and also to compare the results obtained with those reported previously.

The molecule of the title compound, (I), contains a linear hetero-trinuclear arrangement with a central ZnII ion located on an inversion centre and two terminal NiII ions related by an inversion centre (Fig. 1). Four O atoms of two SALPD2- ligands in the equatorial plane and two O atoms of two acetate ligands located at the axial positions constitute the distorted octahedral coordination sphere around the Zn atom. The terminal NiII ions also have distorted octahedral coordination environments formed by two O and two N atoms of SALPD2- ligands in the equatorial plane. The Ni atom is 0.0548 (9) Å away from the equatorial plane. The dihedral angle between (O1/Ni/O2) and (N1/Ni/N2) planes is 4.22 (14)°. The axial positions are occupied by O atoms of dmf and acetato ligands, in which they are trans about the terminal Ni atoms. The dihedral angle between (O1/Zn/O2) and (O1/Ni/O2) planes is 19.44 (13)°. The overall result is three edge shared octahedrons, in which the closest Zn···Ni distance is 3.0702 (11) Å.

The coordination geometry about the central metal ion (Mc = Zn, Ni, Cu, Co) and the terminal metal ions (Mt = Ni, Zn, Cu) are very similar to those found for the corresponding complexes, in which the metal ions or type of µ-bridges are replaced. Mc ions of these complexes retain the distorted octahedral coordination. If there is a solvent molecule (e.g. dmf, DMSO: dimethylsulfoxide) in the coordination sphere of the terminal metal ion, its coordination will be six-coordinated polyhedron and the solvent molecule will be coordinated to the metal ion with longest coordination bond. If there is no solvent molecule in the coordination sphere of the terminal metal ion, its coordination will be five-coordinated polyhedron. A comparison of the properties of coordination bond length ranges (Mc—O and Mt—O/N), bond angle ranges (O—Mc—O and O/N—Mt—O/N) and Mc···Mt distances are given in Table 2, for the similar oxygen-bridged trinuclear complexes reported previously. The crystal structure may be stabilized by weak intermolecular C—H···O hydrogen bonds (Table 1).

Related literature top

For general backgroud, see: Aneetha et al. (1999); Reglinski et al. (2006); Fukuhara et al. (1990). For related literature, see: Ülkü et al. (1997); Tahir et al. (1998); Atakol et al. (1999); Ülkü et al. (1999); Ülkü et al. (2001); Arıcı et al. (2001); Tatar & Atakol (2002); Tatar et al. (2007).

Experimental top

The bis-N,N'(salicylidene)-1,3-propanedimine Schiff base was prepared through the condensation reaction of 1,3-propanediamine and salicylaldehyde in EtOH and it was reduced with NaBH4 in MeOH until the solution totally colorless. The phenolic amine ligand was precipitated with the addition of the excess of ice. The complex was prepared with template method, since it was very cumbersome to isolate mononuclear bis-N,N'(2-oxybenzyl)-1,3-propanediaminato -nickel(II) complex. Bis-N,N'(2-hydroxybenzyl)-1,3-propanediamine (568 mg, 2 mmol) was dissolved in hot dmf (50 ml). NiCl2.6H2O solution (475 mg, 2 mmol) in hot methanol (20 ml) and ET3N (0.5 ml) were added to it and the mixture was stirred for 10 min. Then, a solution of Zn(CH3COO)2.2H2O (220 mg, 1 mmol) in hot MeOH (10 ml) was added and the resulting mixture was kept on the bench for 2–3 d. The blue crystals were filtered off, and dried on air (yield; 440 mg, 44%).

Refinement top

H atoms were positioned geometrically, with N—H = 0.91 Å (for NH) and C—H = 0.93, 0.97 and 0.96 Å for aromatic, methylene and methyl H, and constrained to ride on their parent atoms, with Uiso(H) = xUeq(C,N), where x = 1.5 for methyl H, and x = 1.2 for all other H atoms.

Structure description top

As it is well known, Schiff bases are easily reduced in alcoholic media with the presence of NaBH4 giving secondary amines. The ONNO phenol amines are obtained by the reduction of ONNO type Schiff bases (Aneetha et al., 1999; Reglinski et al., 2006). Bis-N,N'(2-salicylidene)-1,3-propanediamine is a Schiff base ligand tending to give polynuclear complexes [Fukuhara et al., 1990], and its reduction results in the formation of bis-N,N'(2-hydroxybenzyl) -1, 3-propanediamine. In its complexes, various combinations of metal ions in the central and terminal locations, as well as the µ-bridges, such as acetato, formato (CHO2), nitrato (NO3) or nitrito (NO2) anions are possible. Oxygen-bridged polynuclear complexes of transition series based on Schiff base ligands with similar formula have been the subject of much interest in our laboratory Ülkü et al., 1997; Tahir et al., 1998; Atakol et al., 1999;Ülkü et al., 1999;Ülkü et al., 2001; Arıcı et al., 2001; Tatar & Atakol, 2002; Tatar et al., 2007). The structure determination of the title compound, (I), a hetero-trinuclear [Zn{Ni(SALPD2-)(acetato)(dmf)}2] complex [where SALPD2- is N,N'-bis(salicylidene)-1, 3-propanediaminato and dmf is dimethylformamide], was undertaken in order to determine the ligands properties and also to compare the results obtained with those reported previously.

The molecule of the title compound, (I), contains a linear hetero-trinuclear arrangement with a central ZnII ion located on an inversion centre and two terminal NiII ions related by an inversion centre (Fig. 1). Four O atoms of two SALPD2- ligands in the equatorial plane and two O atoms of two acetate ligands located at the axial positions constitute the distorted octahedral coordination sphere around the Zn atom. The terminal NiII ions also have distorted octahedral coordination environments formed by two O and two N atoms of SALPD2- ligands in the equatorial plane. The Ni atom is 0.0548 (9) Å away from the equatorial plane. The dihedral angle between (O1/Ni/O2) and (N1/Ni/N2) planes is 4.22 (14)°. The axial positions are occupied by O atoms of dmf and acetato ligands, in which they are trans about the terminal Ni atoms. The dihedral angle between (O1/Zn/O2) and (O1/Ni/O2) planes is 19.44 (13)°. The overall result is three edge shared octahedrons, in which the closest Zn···Ni distance is 3.0702 (11) Å.

The coordination geometry about the central metal ion (Mc = Zn, Ni, Cu, Co) and the terminal metal ions (Mt = Ni, Zn, Cu) are very similar to those found for the corresponding complexes, in which the metal ions or type of µ-bridges are replaced. Mc ions of these complexes retain the distorted octahedral coordination. If there is a solvent molecule (e.g. dmf, DMSO: dimethylsulfoxide) in the coordination sphere of the terminal metal ion, its coordination will be six-coordinated polyhedron and the solvent molecule will be coordinated to the metal ion with longest coordination bond. If there is no solvent molecule in the coordination sphere of the terminal metal ion, its coordination will be five-coordinated polyhedron. A comparison of the properties of coordination bond length ranges (Mc—O and Mt—O/N), bond angle ranges (O—Mc—O and O/N—Mt—O/N) and Mc···Mt distances are given in Table 2, for the similar oxygen-bridged trinuclear complexes reported previously. The crystal structure may be stabilized by weak intermolecular C—H···O hydrogen bonds (Table 1).

For general backgroud, see: Aneetha et al. (1999); Reglinski et al. (2006); Fukuhara et al. (1990). For related literature, see: Ülkü et al. (1997); Tahir et al. (1998); Atakol et al. (1999); Ülkü et al. (1999); Ülkü et al. (2001); Arıcı et al. (2001); Tatar & Atakol (2002); Tatar et al. (2007).

Computing details top

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994); cell refinement: CAD-4 EXPRESS (Enraf–Nonius, 1994); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule with the atom-numbering scheme. Displacement ellipsoids are drawn at the 25% probability level [symmetry code: (i) -x, -y, -z].
Bis[µ2-N,N'-bis(2-oxidobenzyl)propane-1,3-diamine]- 1κ4O,N,N',O':2κ2O,O'; 2κ2O,O':3κ4O,N,N',O'- bis(N,N'-dimethylformamide)-1κO,3κO-di-µ2– formato-1:2κ2O:O';2:3κ2O:O'- dinickel(II)zinc(II) top
Crystal data top
[Ni2Zn(C17H20N2O2)2(C2H3O2)2(C3H7NO)2]F(000) = 1064
Mr = 1015.75Dx = 1.444 Mg m3
Monoclinic, P21/nCu Kα radiation, λ = 1.54184 Å
Hall symbol: -P 2ynCell parameters from 15 reflections
a = 10.3035 (13) Åθ = 21.2–23.6°
b = 17.894 (4) ŵ = 2.06 mm1
c = 12.584 (2) ÅT = 298 K
β = 92.124 (13)°Needle, blue
V = 2318.5 (7) Å30.3 × 0.1 × 0.1 mm
Z = 2
Data collection top
Enraf–Nonius TurboCAD-4
diffractometer
2381 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.033
Graphite monochromatorθmax = 74.2°, θmin = 4.3°
non–profiled ω scansh = 120
Absorption correction: ψ scan
(North et al., 1968)
k = 022
Tmin = 0.781, Tmax = 0.814l = 1515
4319 measured reflections3 standard reflections every 120 min
4017 independent reflections intensity decay: 1%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.056Hydrogen site location: geomt
wR(F2) = 0.176H-atom parameters not refined
S = 1.03 w = 1/[σ2(Fo2) + (0.0755P)2 + 2.4395P]
where P = (Fo2 + 2Fc2)/3
4017 reflections(Δ/σ)max < 0.001
285 parametersΔρmax = 0.32 e Å3
0 restraintsΔρmin = 0.85 e Å3
Crystal data top
[Ni2Zn(C17H20N2O2)2(C2H3O2)2(C3H7NO)2]V = 2318.5 (7) Å3
Mr = 1015.75Z = 2
Monoclinic, P21/nCu Kα radiation
a = 10.3035 (13) ŵ = 2.06 mm1
b = 17.894 (4) ÅT = 298 K
c = 12.584 (2) Å0.3 × 0.1 × 0.1 mm
β = 92.124 (13)°
Data collection top
Enraf–Nonius TurboCAD-4
diffractometer
2381 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.033
Tmin = 0.781, Tmax = 0.8143 standard reflections every 120 min
4319 measured reflections intensity decay: 1%
4017 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0560 restraints
wR(F2) = 0.176H-atom parameters not refined
S = 1.03Δρmax = 0.32 e Å3
4017 reflectionsΔρmin = 0.85 e Å3
285 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn0000.0520 (4)
Ni0.03300 (9)0.14110 (5)0.13520 (7)0.0397 (3)
O10.0849 (4)0.0312 (2)0.1398 (3)0.0419 (9)
O20.0889 (3)0.1023 (2)0.0233 (3)0.0400 (9)
O30.1493 (4)0.0619 (2)0.0801 (3)0.0434 (10)
O40.1688 (4)0.1660 (2)0.0187 (3)0.0469 (10)
O50.1190 (4)0.1291 (2)0.2579 (3)0.0506 (11)
N10.1567 (5)0.1698 (3)0.2571 (4)0.0488 (13)
H10.10660.1730.3180.059*
N20.0410 (4)0.2498 (3)0.1248 (4)0.0438 (12)
H20.09840.25550.18090.053*
N30.3129 (5)0.0750 (3)0.2948 (4)0.0551 (14)
C10.1100 (5)0.0014 (4)0.2319 (5)0.0452 (14)
C20.0630 (6)0.0711 (4)0.2601 (6)0.0602 (18)
H2A0.01670.09840.21130.072*
C30.0832 (8)0.1012 (5)0.3592 (7)0.081 (3)
H30.04910.14780.37730.098*
C40.1544 (10)0.0616 (6)0.4316 (6)0.092 (3)
H40.16640.08050.49940.111*
C50.2067 (9)0.0058 (6)0.4019 (6)0.087 (3)
H50.25710.03130.44980.104*
C60.1877 (6)0.0369 (4)0.3051 (5)0.0560 (17)
C70.2506 (6)0.1092 (4)0.2724 (6)0.064 (2)
H7A0.30090.10160.20660.077*
H7B0.31020.12420.32640.077*
C80.2227 (6)0.2431 (4)0.2424 (5)0.0617 (19)
H8A0.27880.25160.30140.074*
H8B0.27690.24150.17770.074*
C90.1284 (6)0.3073 (4)0.2357 (5)0.0598 (19)
H9A0.06560.30370.29480.072*
H9B0.17570.35370.24350.072*
C100.0561 (6)0.3104 (3)0.1333 (5)0.0559 (17)
H10A0.11810.3070.07370.067*
H10B0.01230.35820.1290.067*
C110.1156 (6)0.2582 (3)0.0284 (5)0.0502 (16)
H11A0.14560.30940.02360.06*
H11B0.05920.24820.03330.06*
C120.2309 (5)0.2065 (3)0.0269 (4)0.0417 (14)
C130.3568 (6)0.2341 (4)0.0311 (5)0.0596 (18)
H130.37030.28530.0380.072*
C140.4622 (6)0.1873 (4)0.0254 (6)0.065 (2)
H140.54610.20650.02970.078*
C150.4417 (6)0.1110 (4)0.0130 (5)0.0599 (18)
H150.51250.07920.00750.072*
C160.3172 (6)0.0817 (4)0.0088 (5)0.0505 (16)
H160.3050.03060.00120.061*
C170.2101 (5)0.1283 (3)0.0194 (4)0.0402 (13)
C180.1879 (5)0.1269 (4)0.0641 (5)0.0441 (14)
C190.2672 (7)0.1630 (4)0.1520 (5)0.0622 (19)
H19A0.29140.21250.13090.093*
H19B0.34410.13390.16680.093*
H19C0.21710.16580.21470.093*
C200.1918 (6)0.0743 (4)0.2577 (5)0.0530 (17)
H200.15910.02980.22960.064*
C210.3956 (9)0.0099 (5)0.2891 (8)0.105 (3)
H21A0.480.02150.31960.158*
H21B0.40350.00440.21610.158*
H21C0.35830.03050.32780.158*
C220.3717 (7)0.1418 (4)0.3325 (7)0.093 (3)
H22A0.45980.13170.35580.14*
H22B0.32440.16080.3910.14*
H22C0.37090.17810.27640.14*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn0.0468 (7)0.0557 (8)0.0534 (7)0.0001 (6)0.0004 (5)0.0038 (6)
Ni0.0329 (5)0.0467 (6)0.0395 (5)0.0020 (4)0.0006 (4)0.0042 (5)
O10.039 (2)0.046 (2)0.041 (2)0.0007 (18)0.0041 (17)0.0011 (18)
O20.033 (2)0.043 (2)0.044 (2)0.0033 (17)0.0021 (17)0.0048 (18)
O30.043 (2)0.040 (2)0.047 (2)0.0032 (19)0.0082 (18)0.0009 (19)
O40.042 (2)0.053 (3)0.046 (2)0.0076 (19)0.0054 (18)0.009 (2)
O50.044 (2)0.060 (3)0.047 (2)0.007 (2)0.0066 (19)0.005 (2)
N10.040 (3)0.068 (3)0.039 (3)0.003 (3)0.001 (2)0.010 (3)
N20.040 (3)0.047 (3)0.044 (3)0.004 (2)0.002 (2)0.006 (2)
N30.044 (3)0.059 (4)0.061 (3)0.006 (3)0.017 (3)0.013 (3)
C10.035 (3)0.054 (4)0.046 (3)0.011 (3)0.000 (3)0.007 (3)
C20.047 (4)0.070 (5)0.064 (4)0.009 (3)0.003 (3)0.025 (4)
C30.065 (5)0.089 (6)0.089 (6)0.025 (5)0.011 (5)0.039 (5)
C40.106 (7)0.121 (8)0.050 (5)0.041 (7)0.012 (5)0.021 (5)
C50.092 (6)0.110 (8)0.060 (5)0.023 (6)0.024 (4)0.002 (5)
C60.046 (4)0.078 (5)0.044 (4)0.019 (4)0.008 (3)0.004 (3)
C70.045 (4)0.083 (5)0.065 (5)0.004 (4)0.020 (3)0.024 (4)
C80.047 (4)0.079 (5)0.058 (4)0.016 (4)0.001 (3)0.022 (4)
C90.053 (4)0.070 (5)0.057 (4)0.017 (4)0.004 (3)0.019 (4)
C100.057 (4)0.044 (4)0.065 (4)0.011 (3)0.008 (3)0.005 (3)
C110.054 (4)0.043 (4)0.053 (4)0.005 (3)0.003 (3)0.001 (3)
C120.035 (3)0.047 (4)0.043 (3)0.007 (3)0.002 (3)0.003 (3)
C130.052 (4)0.063 (5)0.065 (4)0.017 (3)0.010 (3)0.012 (4)
C140.038 (4)0.090 (6)0.068 (5)0.016 (4)0.007 (3)0.006 (4)
C150.035 (3)0.078 (5)0.068 (5)0.003 (3)0.011 (3)0.005 (4)
C160.035 (3)0.053 (4)0.064 (4)0.002 (3)0.008 (3)0.003 (3)
C170.032 (3)0.053 (4)0.036 (3)0.003 (3)0.005 (2)0.000 (3)
C180.032 (3)0.054 (4)0.047 (3)0.003 (3)0.002 (2)0.003 (3)
C190.067 (5)0.060 (4)0.058 (4)0.014 (4)0.013 (4)0.001 (3)
C200.046 (4)0.063 (4)0.049 (4)0.012 (3)0.015 (3)0.006 (3)
C210.087 (6)0.088 (6)0.1370.028 (5)0.043 (6)0.025 (6)
C220.057 (5)0.084 (6)0.137 (8)0.003 (5)0.017 (5)0.036 (6)
Geometric parameters (Å, º) top
Zn—O1i2.070 (4)C5—H50.93
Zn—O12.070 (4)C6—C71.497 (9)
Zn—O22.064 (4)C7—H7A0.97
Zn—O2i2.064 (4)C7—H7B0.97
Zn—O3i2.121 (4)C8—C91.510 (9)
Zn—O32.121 (4)C8—H8A0.97
Zn—Nii3.0705 (11)C8—H8B0.97
Zn—Ni3.0705 (11)C9—C101.513 (9)
Ni—O12.039 (4)C9—H9A0.97
Ni—O22.043 (4)C9—H9B0.97
Ni—O42.038 (4)C10—H10A0.97
Ni—O52.168 (4)C10—H10B0.97
Ni—N12.094 (5)C11—H11A0.97
Ni—N22.095 (5)C11—H11B0.97
O1—C11.331 (7)C12—C111.505 (8)
O2—C171.334 (6)C12—C131.387 (8)
O3—C181.248 (7)C13—C141.375 (9)
O4—C181.264 (7)C13—H130.93
O5—C201.234 (7)C14—H140.93
N1—C71.470 (8)C15—C141.389 (9)
N1—C81.486 (8)C15—H150.93
N1—H10.91C16—C151.386 (8)
N2—C101.482 (7)C16—H160.93
N2—C111.468 (7)C17—C161.394 (8)
N2—H20.91C17—C121.420 (8)
N3—C201.316 (7)C18—C191.498 (8)
N3—C211.446 (9)C19—H19A0.96
N3—C221.414 (8)C19—H19B0.96
C1—C21.380 (8)C19—H19C0.96
C1—C61.419 (9)C20—H200.93
C2—C31.382 (9)C21—H21A0.96
C2—H2A0.93C21—H21B0.96
C3—C41.386 (12)C21—H21C0.96
C3—H30.93C22—H22A0.96
C4—H40.93C22—H22B0.96
C5—C41.367 (12)C22—H22C0.96
C5—C61.361 (10)
O2—Zn—O2i180.0 (3)C4—C5—H5118.7
O2—Zn—O1i99.24 (15)N2—C11—C12112.7 (5)
O2i—Zn—O1i80.76 (15)N2—C11—H11A109.1
O2—Zn—O180.76 (15)C12—C11—H11A109.1
O2i—Zn—O199.24 (15)N2—C11—H11B109.1
O1i—Zn—O1180.0 (3)C12—C11—H11B109.1
O2—Zn—O3i94.90 (15)H11A—C11—H11B107.8
O2i—Zn—O3i85.10 (15)N1—C8—C9112.7 (5)
O1i—Zn—O3i86.64 (14)N1—C8—H8A109
O1—Zn—O3i93.36 (14)C9—C8—H8A109
O2—Zn—O385.10 (15)N1—C8—H8B109
O2i—Zn—O394.90 (15)C9—C8—H8B109
O1i—Zn—O393.36 (14)H8A—C8—H8B107.8
O1—Zn—O386.64 (14)C8—C9—C10114.4 (5)
O3i—Zn—O3180.0 (3)C8—C9—H9A108.7
O2—Zn—Nii138.64 (10)C10—C9—H9A108.7
O2i—Zn—Nii41.36 (10)C8—C9—H9B108.7
O1i—Zn—Nii41.27 (11)C10—C9—H9B108.7
O1—Zn—Nii138.73 (11)H9A—C9—H9B107.6
O3i—Zn—Nii74.97 (10)C5—C6—C1119.1 (8)
O3—Zn—Nii105.03 (10)C5—C6—C7121.7 (7)
O2—Zn—Ni41.36 (10)C1—C6—C7119.2 (6)
O2i—Zn—Ni138.64 (10)N1—C7—C6113.1 (5)
O1i—Zn—Ni138.73 (11)N1—C7—H7A109
O1—Zn—Ni41.27 (11)C6—C7—H7A109
O3i—Zn—Ni105.03 (10)N1—C7—H7B109
O3—Zn—Ni74.97 (10)C6—C7—H7B109
Nii—Zn—Ni180.00 (3)H7A—C7—H7B107.8
O4—Ni—O193.30 (16)C18—O4—Ni123.6 (4)
O4—Ni—O290.10 (15)C18—O3—Zn129.8 (4)
O1—Ni—O281.99 (15)C20—N3—C22121.0 (6)
O4—Ni—N193.04 (18)C20—N3—C21121.9 (6)
O1—Ni—N192.76 (18)C22—N3—C21116.8 (6)
O2—Ni—N1174.03 (18)O3—C18—O4127.5 (6)
O4—Ni—N289.64 (18)O3—C18—C19116.8 (5)
O1—Ni—N2173.45 (17)O4—C18—C19115.8 (6)
O2—Ni—N292.17 (17)C16—C15—C14120.9 (6)
N1—Ni—N292.9 (2)C16—C15—H15119.5
O4—Ni—O5172.84 (17)C14—C15—H15119.5
O1—Ni—O593.85 (16)O5—C20—N3124.2 (6)
O2—Ni—O590.62 (15)O5—C20—H20117.9
N1—Ni—O586.90 (17)N3—C20—H20117.9
N2—Ni—O583.21 (17)C14—C13—C12121.4 (7)
O4—Ni—Zn82.44 (11)C14—C13—H13119.3
O1—Ni—Zn42.04 (10)C12—C13—H13119.3
O2—Ni—Zn41.86 (10)N2—C10—C9112.9 (5)
N1—Ni—Zn133.64 (15)N2—C10—H10A109
N2—Ni—Zn132.91 (14)C9—C10—H10A109
O5—Ni—Zn102.77 (12)N2—C10—H10B109
C20—O5—Ni120.1 (4)C9—C10—H10B109
C17—O2—Ni120.5 (3)H10A—C10—H10B107.8
C17—O2—Zn135.6 (4)C1—C2—C3121.4 (7)
Ni—O2—Zn96.77 (15)C1—C2—H2A119.3
C1—O1—Ni120.4 (4)C3—C2—H2A119.3
C1—O1—Zn136.4 (4)N3—C22—H22A109.5
Ni—O1—Zn96.69 (16)N3—C22—H22B109.5
C7—N1—C8111.5 (5)H22A—C22—H22B109.5
C7—N1—Ni109.7 (4)N3—C22—H22C109.5
C8—N1—Ni114.4 (4)H22A—C22—H22C109.5
C7—N1—H1106.9H22B—C22—H22C109.5
C8—N1—H1106.9C13—C14—C15119.1 (6)
Ni—N1—H1106.9C13—C14—H14120.4
C11—N2—C10111.1 (5)C15—C14—H14120.4
C11—N2—Ni110.5 (3)C2—C3—C4119.7 (8)
C10—N2—Ni115.3 (4)C2—C3—H3120.1
C11—N2—H2106.5C4—C3—H3120.1
C10—N2—H2106.5N3—C21—H21A109.5
Ni—N2—H2106.5N3—C21—H21B109.5
O2—C17—C16122.7 (5)H21A—C21—H21B109.5
O2—C17—C12118.7 (5)N3—C21—H21C109.5
C16—C17—C12118.6 (5)H21A—C21—H21C109.5
O1—C1—C2122.8 (6)H21B—C21—H21C109.5
O1—C1—C6119.1 (6)C5—C4—C3119.0 (8)
C2—C1—C6118.1 (6)C5—C4—H4120.5
C13—C12—C17119.5 (6)C3—C4—H4120.5
C13—C12—C11121.2 (6)C18—C19—H19A109.5
C17—C12—C11119.3 (5)C18—C19—H19B109.5
C15—C16—C17120.3 (6)H19A—C19—H19B109.5
C15—C16—H16119.8C18—C19—H19C109.5
C17—C16—H16119.8H19A—C19—H19C109.5
C6—C5—C4122.5 (9)H19B—C19—H19C109.5
C6—C5—H5118.7
O2—Zn—Ni—O498.7 (2)N2—Ni—N1—C7167.5 (4)
O2i—Zn—Ni—O481.3 (2)O5—Ni—N1—C7109.4 (4)
O1i—Zn—Ni—O476.47 (19)Zn—Ni—N1—C74.7 (5)
O1—Zn—Ni—O4103.53 (19)O4—Ni—N1—C848.4 (4)
O3i—Zn—Ni—O4178.82 (16)O1—Ni—N1—C8141.9 (4)
O3—Zn—Ni—O41.18 (16)N2—Ni—N1—C841.4 (4)
O2—Zn—Ni—O1157.8 (2)O5—Ni—N1—C8124.4 (4)
O2i—Zn—Ni—O122.2 (2)Zn—Ni—N1—C8130.9 (4)
O1i—Zn—Ni—O1180O4—Ni—N2—C1174.7 (4)
O3i—Zn—Ni—O177.64 (19)O2—Ni—N2—C1115.4 (4)
O3—Zn—Ni—O1102.36 (19)N1—Ni—N2—C11167.7 (4)
O2i—Zn—Ni—O2180O5—Ni—N2—C11105.8 (4)
O1i—Zn—Ni—O222.2 (2)Zn—Ni—N2—C114.6 (5)
O1—Zn—Ni—O2157.8 (2)O4—Ni—N2—C1052.3 (4)
O3i—Zn—Ni—O280.15 (19)O2—Ni—N2—C10142.4 (4)
O3—Zn—Ni—O299.85 (19)N1—Ni—N2—C1040.7 (4)
O2—Zn—Ni—N1174.3 (2)O5—Ni—N2—C10127.2 (4)
O2i—Zn—Ni—N15.7 (2)Zn—Ni—N2—C10131.7 (4)
O1i—Zn—Ni—N1163.4 (2)Ni—O2—C17—C16134.1 (5)
O1—Zn—Ni—N116.6 (2)Zn—O2—C17—C168.7 (8)
O3i—Zn—Ni—N194.2 (2)Ni—O2—C17—C1245.6 (6)
O3—Zn—Ni—N185.8 (2)Zn—O2—C17—C12171.6 (4)
O2—Zn—Ni—N216.3 (2)Ni—O1—C1—C2135.3 (5)
O2i—Zn—Ni—N2163.7 (2)Zn—O1—C1—C29.0 (9)
O1i—Zn—Ni—N25.9 (2)Ni—O1—C1—C644.3 (7)
O1—Zn—Ni—N2174.1 (2)Zn—O1—C1—C6171.4 (4)
O3i—Zn—Ni—N296.4 (2)O2—C17—C12—C13175.2 (5)
O3—Zn—Ni—N283.6 (2)C16—C17—C12—C134.5 (8)
O2—Zn—Ni—O576.33 (19)O2—C17—C12—C115.8 (8)
O2i—Zn—Ni—O5103.67 (19)C16—C17—C12—C11174.5 (5)
O1i—Zn—Ni—O598.5 (2)O2—C17—C16—C15175.2 (6)
O1—Zn—Ni—O581.5 (2)C12—C17—C16—C154.4 (9)
O3i—Zn—Ni—O53.82 (16)C10—N2—C11—C12169.4 (5)
O3—Zn—Ni—O5176.18 (16)Ni—N2—C11—C1261.3 (5)
O1—Ni—O5—C2042.3 (5)C13—C12—C11—N2114.2 (6)
O2—Ni—O5—C2039.7 (5)C17—C12—C11—N266.8 (7)
N1—Ni—O5—C20134.8 (5)C7—N1—C8—C9175.1 (5)
N2—Ni—O5—C20131.8 (5)Ni—N1—C8—C959.6 (6)
Zn—Ni—O5—C200.7 (5)N1—C8—C9—C1072.0 (7)
O4—Ni—O2—C17126.7 (4)C4—C5—C6—C10.5 (12)
O1—Ni—O2—C17140.0 (4)C4—C5—C6—C7177.3 (8)
N2—Ni—O2—C1737.0 (4)O1—C1—C6—C5175.9 (6)
O5—Ni—O2—C1746.2 (4)C2—C1—C6—C53.7 (9)
Zn—Ni—O2—C17154.8 (5)O1—C1—C6—C76.3 (9)
O4—Ni—O2—Zn78.51 (17)C2—C1—C6—C7174.1 (6)
O1—Ni—O2—Zn14.81 (15)C8—N1—C7—C6170.6 (5)
N2—Ni—O2—Zn168.16 (17)Ni—N1—C7—C661.6 (6)
O5—Ni—O2—Zn108.61 (16)C5—C6—C7—N1115.0 (7)
O1i—Zn—O2—C1746.3 (5)C1—C6—C7—N167.2 (8)
O1—Zn—O2—C17133.7 (5)O1—Ni—O4—C1846.3 (5)
O3i—Zn—O2—C1741.1 (5)O2—Ni—O4—C1835.7 (5)
O3—Zn—O2—C17138.9 (5)N1—Ni—O4—C18139.2 (5)
Nii—Zn—O2—C1731.6 (6)N2—Ni—O4—C18127.9 (5)
Ni—Zn—O2—C17148.4 (6)Zn—Ni—O4—C185.6 (4)
O1i—Zn—O2—Ni165.37 (14)O2—Zn—O3—C1831.5 (5)
O1—Zn—O2—Ni14.63 (14)O2i—Zn—O3—C18148.5 (5)
O3i—Zn—O2—Ni107.25 (16)O1i—Zn—O3—C18130.5 (5)
O3—Zn—O2—Ni72.75 (16)O1—Zn—O3—C1849.5 (5)
Nii—Zn—O2—Ni180Nii—Zn—O3—C18170.7 (5)
O4—Ni—O1—C1129.0 (4)Ni—Zn—O3—C189.3 (5)
O2—Ni—O1—C1141.3 (4)Zn—O3—C18—O418.1 (9)
N1—Ni—O1—C135.8 (4)Zn—O3—C18—C19162.7 (4)
O5—Ni—O1—C151.2 (4)Ni—O4—C18—O315.1 (9)
Zn—Ni—O1—C1156.1 (5)Ni—O4—C18—C19165.7 (4)
O4—Ni—O1—Zn74.88 (16)C17—C16—C15—C141.5 (10)
O2—Ni—O1—Zn14.76 (14)Ni—O5—C20—N3150.1 (5)
N1—Ni—O1—Zn168.08 (17)C22—N3—C20—O54.1 (11)
O5—Ni—O1—Zn104.84 (16)C21—N3—C20—O5177.7 (7)
O2—Zn—O1—C1134.9 (5)C17—C12—C13—C141.7 (10)
O2i—Zn—O1—C145.1 (5)C11—C12—C13—C14177.3 (6)
O3i—Zn—O1—C140.5 (5)C11—N2—C10—C9175.7 (5)
O3—Zn—O1—C1139.5 (5)Ni—N2—C10—C957.6 (6)
Nii—Zn—O1—C130.5 (6)C8—C9—C10—N270.7 (7)
Ni—Zn—O1—C1149.5 (6)O1—C1—C2—C3175.4 (6)
O2—Zn—O1—Ni14.66 (14)C6—C1—C2—C34.2 (9)
O2i—Zn—O1—Ni165.34 (14)C12—C13—C14—C151.2 (11)
O3i—Zn—O1—Ni109.08 (16)C16—C15—C14—C131.4 (11)
O3—Zn—O1—Ni70.92 (16)C1—C2—C3—C41.4 (11)
Nii—Zn—O1—Ni180C6—C5—C4—C32.4 (14)
O4—Ni—N1—C777.7 (4)C2—C3—C4—C52.0 (13)
O1—Ni—N1—C715.7 (4)
Symmetry code: (i) x, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2A···O3i0.932.513.211 (7)133
C16—H16···O3i0.932.553.241 (8)132
C20—H20···O3i0.932.503.325 (8)149
Symmetry code: (i) x, y, z.

Experimental details

Crystal data
Chemical formula[Ni2Zn(C17H20N2O2)2(C2H3O2)2(C3H7NO)2]
Mr1015.75
Crystal system, space groupMonoclinic, P21/n
Temperature (K)298
a, b, c (Å)10.3035 (13), 17.894 (4), 12.584 (2)
β (°) 92.124 (13)
V3)2318.5 (7)
Z2
Radiation typeCu Kα
µ (mm1)2.06
Crystal size (mm)0.3 × 0.1 × 0.1
Data collection
DiffractometerEnraf–Nonius TurboCAD-4
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.781, 0.814
No. of measured, independent and
observed [I > 2σ(I)] reflections
4319, 4017, 2381
Rint0.033
(sin θ/λ)max1)0.624
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.056, 0.176, 1.03
No. of reflections4017
No. of parameters285
H-atom treatmentH-atom parameters not refined
Δρmax, Δρmin (e Å3)0.32, 0.85

Computer programs: CAD-4 EXPRESS (Enraf–Nonius, 1994), XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2A···O3i0.932.513.211 (7)133
C16—H16···O3i0.932.553.241 (8)132
C20—H20···O3i0.932.503.325 (8)149
Symmetry code: (i) x, y, z.
? top
ComplexMc···MtMc-OO-Mc-OMt-O/NO/N-Mt-O/N
(I)3.0705 (11)2.064 (4)80.76 (15)2.038 (4)81.99 (15)
2.121 (4)99.24 (15)2.168 (4)93.85 (16)
(II)3.0520 (8)2.098 (3)77.5 (1)1.975 (4)80.3 (1)
2.124 (4)102.5 (1)2.071 (4)104.9 (2)
(III)3.0017 (6)2.055 (2)76.04 (9)1.941 (2)81.5 (1)
2.188 (2)93.74 (9)2.355 (3)97.0 (1)
(IV)Not_given2.083 (6)79.0 (2)1.995 (5)82.1 (2)
2.118 (5)84.5 (2)2.179 (6)97.8 (3)
(V)3.043 (2)2.024 (3)79.4 (1)2.010 (3)79.4 (1)
2.098 (3)87.1 (1)2.254 (3)96.2 (2)
(VI)2.9967 (4)2.048 (2)78.70 (8)2.003 (2)80.88 (8)
2.103 (2)85.86 (9)2.152 (2)98.5 (1)
(VII)3.0556 (5)2.0705 (19)78.89 (8)2.0082 (19)81.65 (8)
2.082 (2)92.92 (8)2.186 (2)97.95 (10)
(VIII)3.0601 (6)2.052 (2)80.96 (9)2.029 (2)81.79 (9)
2.102 (2)86.57 (9)2.165 (2)96.95 (10)
(IX)3.0857 (14)2.075 (3)80.34 (12)2.037 (3)81.85 (12)
2.160 (3)99.66 (12)2.147 (3)93.54 (13)
Notes: (II) [Zn{Zn(SALPD2-)(acetato)}2] (Ülkü et al., 2001); (III) [Zn{Cu(SALPD2-)(nitrato)}2] (Ülkü et al., 1999); (IV) [Co{Ni(SALPD2-)(nitrito) (DMF)}2] (Atakol et al., 1999); (V) [Ni{Ni(SALPD2-)(acetato)(DMSO)}2] (Ülkü et al., 1997); (VI) [Cu{Ni(SALPD2-)(nitrito)(DMF)}2] (Tahir et al., 1998); (VII) [Cu{Ni(SALPD2-)(acetato)(DMF)}2] (Arıcı et al., 2001); (VIII) [Ni{Ni(SALPD2-)(acetato)(DMF)}2] (Tatar & Atakol, 2002); (IX) [Ni{Ni(DMLH2)(formato)(DMF)}2], where DMLH2 = (C19H24N2O2) (Tatar et al., 2007).
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds