Download citation
Download citation
link to html
In the crystal structure of the title complex, C7H7N2O2·H2O, inter­molecular O—H...O and N—H...O hydrogen bonds result in the formation of a supra­molecular network structure; intra­molecular O—H...O and O—H...N hydrogen bonds are also present.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807040652/hk2312sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807040652/hk2312Isup2.hkl
Contains datablock I

CCDC reference: 1125483

Key indicators

  • Single-crystal X-ray study
  • T = 273 K
  • Mean [sigma](C-C) = 0.005 Å
  • R factor = 0.055
  • wR factor = 0.187
  • Data-to-parameter ratio = 12.7

checkCIF/PLATON results

No syntax errors found



Alert level B PLAT230_ALERT_2_B Hirshfeld Test Diff for C5 - C6 .. 17.45 su PLAT230_ALERT_2_B Hirshfeld Test Diff for C6 - C7 .. 7.39 su PLAT417_ALERT_2_B Short Inter D-H..H-D H1A .. H3B .. 1.13 Ang. PLAT480_ALERT_4_B Long H...A H-Bond Reported H1A .. O1 .. 3.10 Ang.
Alert level C PLAT029_ALERT_3_C _diffrn_measured_fraction_theta_full Low ....... 0.97 PLAT031_ALERT_4_C Refined Extinction Parameter within Range ...... 2.63 Sigma PLAT063_ALERT_3_C Crystal Probably too Large for Beam Size ....... 0.64 mm PLAT066_ALERT_1_C Predicted and Reported Transmissions Identical . ? PLAT094_ALERT_2_C Ratio of Maximum / Minimum Residual Density .... 2.70 PLAT320_ALERT_2_C Check Hybridisation of C6 in Main Residue . ? PLAT340_ALERT_3_C Low Bond Precision on C-C Bonds (x 1000) Ang ... 5 PLAT366_ALERT_2_C Short? C(sp?)-C(sp?) Bond C5 - C6 ... 1.37 Ang. PLAT432_ALERT_2_C Short Inter X...Y Contact O3 .. C6 .. 2.98 Ang. PLAT480_ALERT_4_C Long H...A H-Bond Reported H3A .. O1 .. 2.61 Ang. PLAT482_ALERT_4_C Small D-H..A Angle Rep for O1 .. O1 .. 91.00 Deg.
Alert level G PLAT860_ALERT_3_G Note: Number of Least-Squares Restraints ....... 7
0 ALERT level A = In general: serious problem 4 ALERT level B = Potentially serious problem 11 ALERT level C = Check and explain 1 ALERT level G = General alerts; check 1 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 7 ALERT type 2 Indicator that the structure model may be wrong or deficient 4 ALERT type 3 Indicator that the structure quality may be low 4 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

Comment top

In the synthesis of crystal structures by design, the assembly of molecular units in predefined arrangements is a key goal (Desiraju, 1995, 1997; Braga et al., 1998). Due to hydrogen-bonding interactions are of critical importance in biological systems, organic materials and coordination chemistry, hydrogen-bonding is currently the best tool in achieving this goal (Zaworotko, 1997; Braga & Grepioni, 2000). Supramolecular architectures are of considerable contemporary interest by virtue of their potential applications in various fields (Moulton & Zaworotko, 2001; Pan et al., 2001; Ma et al., 2001; Prior & Rosseinsky, 2001). We originally attempted to synthesize complexes featuring La metal chains by reaction of the lanthanum(III) ion with 1-hydroxy-2-acetylamido- pyridine ligand. Unfortunately, we obtained only the title compound, (I), and we report herein its crystal structure.

In the molecule of (I) (Fig. 1), the ligand bond lengths and angles are within normal ranges (Allen et al., 1987). It contains one (C7H7N2O2) molecule and one water molecule.

In the crystal structure, intramolecular O—H···O and O—H···N and intermolecular O—H···O and N—H···O hydrogen bonds (Table 1) result in the formation of a supramolecular network structure (Fig. 2).

Related literature top

For general background, see: Desiraju (1995, 1997); Braga et al. (1998); Zaworotko (1997); Braga & Grepioni (2000); Moulton & Zaworotko (2001); Pan et al. (2001); Ma et al. (2001); Prior & Rosseinsky (2001). For bond-length data, see: Allen et al. (1987).

Experimental top

Crystals of the title compound were synthesized using hydrothermal method in a 23 ml Teflon-lined Parr bomb. Lanthanum (III) nitrate hexahydrate (216.4 mg, 0.5 mmol), 1-hydroxy-2-acetylamidopyridine (151.2 mg, 1 mmol) and distilled water (3 g) were placed into the bomb and sealed. The bomb was then heated under autogenous pressure up to 443 K over the course of 7 d and allowed to cool at room temperature for 24 h. Upon opening the bomb, a clear colorless solution was decanted from small colorless crystals. These crystals were washed with distilled water followed by ethanol, and allowed to air-dry at room temperature.

Refinement top

H3A, H3B (for OH2) and H2A, H2B (for NH2) were located in difference syntheses and refined isotropically [O—H = 0.86 (2) and 0.86 (4) Å, Uiso(H) = 0.099 (14) and 0.121 (17) Å2; N—H = 0.883 (18) and 0.887 (17) Å, Uiso(H) = 0.088 (11) and 0.086 (11) Å2]. The remaining H atoms were positioned geometrically, with O—H = 0.82 Å (for OH) and C—H = 0.93 Å for aromatic H, and constrained to ride on their parent atoms, with Uiso(H) = xUeq(C,O), where x = 1.2 for aromatic H and x = 1.5 for OH H atoms.

Structure description top

In the synthesis of crystal structures by design, the assembly of molecular units in predefined arrangements is a key goal (Desiraju, 1995, 1997; Braga et al., 1998). Due to hydrogen-bonding interactions are of critical importance in biological systems, organic materials and coordination chemistry, hydrogen-bonding is currently the best tool in achieving this goal (Zaworotko, 1997; Braga & Grepioni, 2000). Supramolecular architectures are of considerable contemporary interest by virtue of their potential applications in various fields (Moulton & Zaworotko, 2001; Pan et al., 2001; Ma et al., 2001; Prior & Rosseinsky, 2001). We originally attempted to synthesize complexes featuring La metal chains by reaction of the lanthanum(III) ion with 1-hydroxy-2-acetylamido- pyridine ligand. Unfortunately, we obtained only the title compound, (I), and we report herein its crystal structure.

In the molecule of (I) (Fig. 1), the ligand bond lengths and angles are within normal ranges (Allen et al., 1987). It contains one (C7H7N2O2) molecule and one water molecule.

In the crystal structure, intramolecular O—H···O and O—H···N and intermolecular O—H···O and N—H···O hydrogen bonds (Table 1) result in the formation of a supramolecular network structure (Fig. 2).

For general background, see: Desiraju (1995, 1997); Braga et al. (1998); Zaworotko (1997); Braga & Grepioni (2000); Moulton & Zaworotko (2001); Pan et al. (2001); Ma et al. (2001); Prior & Rosseinsky (2001). For bond-length data, see: Allen et al. (1987).

Computing details top

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT (Siemens, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Siemens, 1996); software used to prepare material for publication: SHELXTL (Siemens, 1996).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. A packing diagram of (I). Hydrogen bonds are shown as dashed lines.
2-(1-Hydroxy-2-pyridyl)acetamide monohydrate top
Crystal data top
C7H7N2O2·H2OF(000) = 356
Mr = 169.16Dx = 1.483 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 1902 reflections
a = 12.998 (3) Åθ = 2.7–28.0°
b = 4.0992 (11) ŵ = 0.12 mm1
c = 15.581 (4) ÅT = 273 K
β = 114.159 (5)°Prism, colourless
V = 757.5 (3) Å30.64 × 0.13 × 0.09 mm
Z = 4
Data collection top
Bruker SMART CCD area-detector
diffractometer
1611 independent reflections
Radiation source: fine-focus sealed tube896 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.054
φ and ω scansθmax = 27.0°, θmin = 2.9°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1615
Tmin = 0.929, Tmax = 0.990k = 54
4820 measured reflectionsl = 1919
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.055H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.187 w = 1/[σ2(Fo2) + (0.1181P)2 + 0.01P]
where P = (Fo2 + 2Fc2)/3
S = 1.00(Δ/σ)max < 0.001
1611 reflectionsΔρmax = 0.56 e Å3
127 parametersΔρmin = 0.21 e Å3
7 restraintsExtinction correction: SHELXTL (Siemens, 1996), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.050 (19)
Crystal data top
C7H7N2O2·H2OV = 757.5 (3) Å3
Mr = 169.16Z = 4
Monoclinic, P21/nMo Kα radiation
a = 12.998 (3) ŵ = 0.12 mm1
b = 4.0992 (11) ÅT = 273 K
c = 15.581 (4) Å0.64 × 0.13 × 0.09 mm
β = 114.159 (5)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
1611 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
896 reflections with I > 2σ(I)
Tmin = 0.929, Tmax = 0.990Rint = 0.054
4820 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0557 restraints
wR(F2) = 0.187H atoms treated by a mixture of independent and constrained refinement
S = 1.00Δρmax = 0.56 e Å3
1611 reflectionsΔρmin = 0.21 e Å3
127 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.63246 (18)0.9693 (6)0.06578 (17)0.0777 (8)
H1A0.60070.85590.09090.117*
O20.82022 (17)1.1177 (6)0.13760 (13)0.0687 (7)
O30.5047 (2)0.5292 (7)0.10867 (16)0.0724 (7)
H3A0.507 (3)0.354 (5)0.079 (2)0.099 (14)*
H3B0.551 (3)0.631 (7)0.092 (3)0.121 (17)*
N10.73275 (19)0.8485 (6)0.08390 (17)0.0551 (7)
N20.6565 (2)1.3944 (7)0.19117 (18)0.0645 (8)
H2A0.660 (3)1.481 (8)0.2419 (18)0.088 (11)*
H2B0.597 (2)1.479 (8)0.185 (2)0.086 (11)*
C10.7882 (3)0.6667 (8)0.1618 (2)0.0651 (9)
H10.75410.62750.20280.078*
C20.8904 (3)0.5416 (8)0.1817 (2)0.0643 (9)
H20.92680.41540.23530.077*
C30.9408 (3)0.6049 (8)0.1203 (2)0.0651 (9)
H31.01230.52300.13300.078*
C40.8851 (2)0.7890 (8)0.0404 (2)0.0567 (8)
H40.91880.82630.00110.068*
C50.7793 (2)0.9193 (7)0.02133 (19)0.0507 (7)
C60.71272 (18)1.1137 (6)0.05215 (15)0.0363 (6)
C70.7356 (2)1.2057 (7)0.12975 (19)0.0523 (8)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0782 (15)0.0862 (17)0.0987 (17)0.0263 (12)0.0668 (14)0.0342 (13)
O20.0629 (13)0.0955 (18)0.0645 (14)0.0075 (11)0.0432 (11)0.0086 (11)
O30.0850 (16)0.0765 (17)0.0741 (15)0.0080 (13)0.0512 (13)0.0056 (13)
N10.0585 (14)0.0589 (15)0.0633 (15)0.0061 (11)0.0406 (12)0.0056 (12)
N20.0637 (17)0.083 (2)0.0563 (16)0.0042 (14)0.0336 (14)0.0096 (14)
C10.082 (2)0.065 (2)0.0635 (18)0.0092 (16)0.0453 (17)0.0103 (16)
C20.0676 (19)0.066 (2)0.0581 (18)0.0012 (15)0.0241 (15)0.0017 (15)
C30.0515 (16)0.065 (2)0.078 (2)0.0033 (14)0.0250 (16)0.0090 (17)
C40.0501 (15)0.068 (2)0.0609 (17)0.0097 (13)0.0311 (14)0.0064 (15)
C50.0550 (15)0.0537 (17)0.0552 (16)0.0160 (13)0.0346 (13)0.0148 (13)
C60.0392 (12)0.0416 (14)0.0351 (12)0.0058 (10)0.0223 (10)0.0023 (10)
C70.0545 (16)0.0630 (18)0.0484 (15)0.0183 (14)0.0302 (13)0.0124 (14)
Geometric parameters (Å, º) top
O1—N11.313 (3)C1—C21.337 (4)
O1—H1A0.8200C1—H10.9300
O2—C71.210 (3)C2—C31.386 (4)
O3—H3A0.86 (2)C2—H20.9300
O3—H3B0.86 (4)C3—C41.381 (4)
N1—C11.353 (4)C3—H30.9300
N1—C51.373 (3)C4—C51.388 (4)
N2—C71.329 (4)C4—H40.9300
N2—H2A0.883 (18)C5—C61.373 (4)
N2—H2B0.887 (17)C6—C71.410 (3)
N1—O1—H1A109.5C4—C3—C2120.2 (3)
H3A—O3—H3B94 (3)C4—C3—H3119.9
O1—N1—C1121.2 (2)C2—C3—H3119.9
O1—N1—C5117.1 (2)C3—C4—C5120.7 (3)
C1—N1—C5121.7 (2)C3—C4—H4119.6
C7—N2—H2B127 (2)C5—C4—H4119.6
C7—N2—H2A125 (2)C6—C5—N1113.8 (2)
H2B—N2—H2A108 (2)C6—C5—C4129.3 (2)
C2—C1—N1122.3 (3)N1—C5—C4116.9 (3)
C2—C1—H1118.9C5—C6—C7126.0 (2)
N1—C1—H1118.9O2—C7—N2124.6 (3)
C1—C2—C3118.2 (3)O2—C7—C6121.8 (3)
C1—C2—H2120.9N2—C7—C6113.6 (2)
C3—C2—H2120.9
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3B···N10.86 (4)2.58 (4)3.404 (3)163 (4)
O3—H3B···O10.86 (4)1.89 (4)2.715 (3)162 (4)
O1—H1A···O30.821.932.715 (3)161
N2—H2A···O2i0.88 (2)2.08 (2)2.951 (3)171 (3)
N2—H2B···O3ii0.89 (2)2.11 (2)2.888 (4)146 (3)
O3—H3A···O1iii0.86 (2)2.61 (3)3.282 (4)137 (3)
O3—H3A···O1iv0.86 (2)2.34 (2)3.063 (3)142 (3)
Symmetry codes: (i) x+3/2, y+1/2, z1/2; (ii) x+1, y+2, z; (iii) x+1, y+1, z; (iv) x, y1, z.

Experimental details

Crystal data
Chemical formulaC7H7N2O2·H2O
Mr169.16
Crystal system, space groupMonoclinic, P21/n
Temperature (K)273
a, b, c (Å)12.998 (3), 4.0992 (11), 15.581 (4)
β (°) 114.159 (5)
V3)757.5 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.12
Crystal size (mm)0.64 × 0.13 × 0.09
Data collection
DiffractometerBruker SMART CCD area-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.929, 0.990
No. of measured, independent and
observed [I > 2σ(I)] reflections
4820, 1611, 896
Rint0.054
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.055, 0.187, 1.00
No. of reflections1611
No. of parameters127
No. of restraints7
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.56, 0.21

Computer programs: SMART (Siemens, 1996), SAINT (Siemens, 1996), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXTL (Siemens, 1996).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3B···N10.86 (4)2.58 (4)3.404 (3)163 (4)
O3—H3B···O10.86 (4)1.89 (4)2.715 (3)162 (4)
O1—H1A···O30.821.932.715 (3)161
N2—H2A···O2i0.883 (18)2.076 (18)2.951 (3)171 (3)
N2—H2B···O3ii0.887 (17)2.11 (2)2.888 (4)146 (3)
O3—H3A···O1iii0.86 (2)2.61 (3)3.282 (4)137 (3)
O3—H3A···O1iv0.86 (2)2.34 (2)3.063 (3)142 (3)
Symmetry codes: (i) x+3/2, y+1/2, z1/2; (ii) x+1, y+2, z; (iii) x+1, y+1, z; (iv) x, y1, z.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds