Download citation
Download citation
link to html
In the mol­ecule of the title compound, C18H20N2O3, the five-membered ring adopts an envelope conformation. Intra­molecular C—H...N hydrogen bonds cause the formation of two further five-membered planar rings. In the crystal structure, inter­molecular C—H...O and N—H...·O hydrogen bonds link the mol­ecules to form a three-dimensional network.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807036562/hk2301sup1.cif
Contains datablocks I, global, s2

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807036562/hk2301Isup2.hkl
Contains datablock I

CCDC reference: 657885

Key indicators

  • Single-crystal X-ray study
  • T = 298 K
  • Mean [sigma](C-C) = 0.005 Å
  • R factor = 0.076
  • wR factor = 0.187
  • Data-to-parameter ratio = 16.2

checkCIF/PLATON results

No syntax errors found



Alert level C DIFMN02_ALERT_2_C The minimum difference density is < -0.1*ZMAX*0.75 _refine_diff_density_min given = -0.746 Test value = -0.600 DIFMN03_ALERT_1_C The minimum difference density is < -0.1*ZMAX*0.75 The relevant atom site should be identified. PLAT066_ALERT_1_C Predicted and Reported Transmissions Identical . ? PLAT098_ALERT_2_C Minimum (Negative) Residual Density ............ -0.75 e/A    PLAT154_ALERT_1_C The su's on the Cell Angles are Equal (x 10000) 3000 Deg. PLAT180_ALERT_3_C Check Cell Rounding: # of Values Ending with 0 = 3 PLAT220_ALERT_2_C Large Non-Solvent C Ueq(max)/Ueq(min) ... 2.72 Ratio PLAT222_ALERT_3_C Large Non-Solvent H Ueq(max)/Ueq(min) ... 3.17 Ratio PLAT340_ALERT_3_C Low Bond Precision on C-C Bonds (x 1000) Ang ... 5 PLAT380_ALERT_4_C Check Incorrectly? Oriented X(sp2)-Methyl Moiety C18 PLAT790_ALERT_4_C Centre of Gravity not Within Unit Cell: Resd. # 1 C18 H20 N2 O3
Alert level G PLAT793_ALERT_1_G Check the Absolute Configuration of C9 = ... R
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 11 ALERT level C = Check and explain 1 ALERT level G = General alerts; check 4 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 3 ALERT type 2 Indicator that the structure model may be wrong or deficient 3 ALERT type 3 Indicator that the structure quality may be low 2 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

Comment top

Pyrazolidin-3-one derivatives are of great interest because of their biological properties, such as antipyretic activity (Menozzi et al., 1990), liphoxygenase enzyme inhibition (Brooks et al., 1990) and cholecystokinin (CCK) receptor antagonist activity (Greenwood et al., 1995). In the process of synthesis, we obtained the title compound, (I), and we herein report its crystal structure.

In the molecule of the title compound, (I), (Fig. 1) the bond lengths and angles are within normal ranges (Allen et al., 1987). The intramolecular C—H···N hydrogen bonds (Table 1) cause to the formation of two five-membered planar rings A (N1/C9/C6/C5/H5A) and B (N2/N1/C12/C17/H17A). The five-membered ring C (N1/N2/C9—C11) is not planar and has an envelope conformation with atom C9 is displaced by -0.470 (3) Å from the plane of the other ring atoms. D (C3—C8) and E (C12—C17) rings are, of course, planar and the dihedral angles between the planar rings are A/B = 83.84 (2)°, A/D = 1.65 (3) and B/E = 2.22 (3)°.

In the crystal structure, intermolecular C—H···O and N—H···.O hydrogen bonds (Table 1) link the molecules to form a three-dimensional network (Fig. 2). The intra- and intermolecular hydrogen bonds seem to be effective in the stabilization of the crystal structure.

Related literature top

For general background, see: Menozzi et al. (1990); Brooks et al. (1990); Greenwood et al. (1995). For related literatue, see: Zhu et al. (2004). For bond- length data, see: Allen et al. (1987).

Experimental top

To a solution of sodium (40 mmol) in anhydrous methanol (9 ml) was added ethanolamine (4 ml) and n-butanol (20 ml). The methanol was removed by distillation and ethyl 3-(3,4-dimethoxyphenyl)acrylate (9.4 g) was added. The resulting mixture was refluxed for 1 h at 373 K, then 4-methylphenylhydrazine (4.9 g) was added. The reaction mixture was refluxed for a further 6 h, left to cool to room temperature, acidified with acetic acid (36%), allowed to stand, filtered, and the filter cake was crystallized from ethanol to give the title compound (m.p. 412 K). Crystals of (I) suitable for X-ray analysis were obtained by slow evaporation of an ethanol solution (Zhu et al., 2004).

Refinement top

H atoms were positioned geometrically with N—H = 0.86 Å (for NH), C—H = 0.93, 0.98, 0.97 and 0.96 Å for aromatic, methine, methylene and methyl H atoms, respectively, and constrained to ride on their parent atoms, with Uiso(H) = xUeq(C,N), where x = 1.5 for methyl H, and x = 1.2 for all other H atoms.

Structure description top

Pyrazolidin-3-one derivatives are of great interest because of their biological properties, such as antipyretic activity (Menozzi et al., 1990), liphoxygenase enzyme inhibition (Brooks et al., 1990) and cholecystokinin (CCK) receptor antagonist activity (Greenwood et al., 1995). In the process of synthesis, we obtained the title compound, (I), and we herein report its crystal structure.

In the molecule of the title compound, (I), (Fig. 1) the bond lengths and angles are within normal ranges (Allen et al., 1987). The intramolecular C—H···N hydrogen bonds (Table 1) cause to the formation of two five-membered planar rings A (N1/C9/C6/C5/H5A) and B (N2/N1/C12/C17/H17A). The five-membered ring C (N1/N2/C9—C11) is not planar and has an envelope conformation with atom C9 is displaced by -0.470 (3) Å from the plane of the other ring atoms. D (C3—C8) and E (C12—C17) rings are, of course, planar and the dihedral angles between the planar rings are A/B = 83.84 (2)°, A/D = 1.65 (3) and B/E = 2.22 (3)°.

In the crystal structure, intermolecular C—H···O and N—H···.O hydrogen bonds (Table 1) link the molecules to form a three-dimensional network (Fig. 2). The intra- and intermolecular hydrogen bonds seem to be effective in the stabilization of the crystal structure.

For general background, see: Menozzi et al. (1990); Brooks et al. (1990); Greenwood et al. (1995). For related literatue, see: Zhu et al. (2004). For bond- length data, see: Allen et al. (1987).

Computing details top

Data collection: CAD-4 Software (Enraf–Nonius, 1985); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 2000); software used to prepare material for publication: SHELXTL.

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 40% probability level. Hydrogen bonds are shown as dashed lines.
[Figure 2] Fig. 2. A packing diagram of (I). Hydrogen bonds are shown as dashed lines.
5-(3,4-Dimethoxyphenyl)-1-(4-methylphenyl)pyrazolidin-3-one top
Crystal data top
C18H20N2O3Z = 2
Mr = 312.36F(000) = 332
Triclinic, P1Dx = 1.248 Mg m3
Hall symbol: -P 1Melting point: 412 K
a = 9.4290 (19) ÅMo Kα radiation, λ = 0.71073 Å
b = 10.107 (2) ÅCell parameters from 25 reflections
c = 10.848 (2) Åθ = 10–13°
α = 96.50 (3)°µ = 0.09 mm1
β = 111.60 (3)°T = 298 K
γ = 114.43 (3)°Block, colorless
V = 831.0 (5) Å30.40 × 0.30 × 0.20 mm
Data collection top
Enraf–Nonius CAD-4
diffractometer
2256 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.033
Graphite monochromatorθmax = 26.0°, θmin = 2.1°
ω/2θ scansh = 1110
Absorption correction: ψ scan
(North et al., 1968)
k = 1212
Tmin = 0.965, Tmax = 0.982l = 013
3477 measured reflections3 standard reflections every 120 min
3266 independent reflections intensity decay: none
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.076Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.187H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.05P)2 + 1.3P]
where P = (Fo2 + 2Fc2)/3
3266 reflections(Δ/σ)max < 0.001
202 parametersΔρmax = 0.54 e Å3
0 restraintsΔρmin = 0.75 e Å3
Crystal data top
C18H20N2O3γ = 114.43 (3)°
Mr = 312.36V = 831.0 (5) Å3
Triclinic, P1Z = 2
a = 9.4290 (19) ÅMo Kα radiation
b = 10.107 (2) ŵ = 0.09 mm1
c = 10.848 (2) ÅT = 298 K
α = 96.50 (3)°0.40 × 0.30 × 0.20 mm
β = 111.60 (3)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
2256 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.033
Tmin = 0.965, Tmax = 0.9823 standard reflections every 120 min
3477 measured reflections intensity decay: none
3266 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0760 restraints
wR(F2) = 0.187H-atom parameters constrained
S = 1.05Δρmax = 0.54 e Å3
3266 reflectionsΔρmin = 0.75 e Å3
202 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.9140 (3)0.7698 (3)1.6030 (3)0.0823 (10)
O20.6384 (4)0.7591 (3)1.4264 (3)0.0622 (7)
O30.4293 (3)0.1296 (3)0.9351 (2)0.0507 (6)
N10.3685 (3)0.0623 (3)1.2249 (3)0.0408 (6)
N20.4294 (4)0.0539 (3)1.1247 (3)0.0443 (6)
H2A0.48750.00721.12420.053*
C11.0718 (7)0.7904 (6)1.6861 (6)0.102
H1A1.14890.89631.74070.152*
H1B1.11880.76051.63010.152*
H1C1.06130.72901.74700.152*
C20.4899 (6)0.7622 (4)1.3261 (4)0.0689 (11)
H2B0.51060.86541.34330.103*
H2C0.38710.69891.33440.103*
H2D0.47290.72451.23370.103*
C30.7828 (5)0.6260 (4)1.5139 (4)0.0520 (9)
C40.7907 (5)0.4925 (4)1.5148 (4)0.0577 (9)
H4A0.89160.49621.57850.069*
C50.6475 (4)0.3518 (4)1.4203 (3)0.0471 (8)
H5A0.65280.26221.42270.057*
C60.4998 (4)0.3456 (3)1.3244 (3)0.0375 (7)
C70.4940 (4)0.4819 (3)1.3249 (3)0.0411 (7)
H7A0.39350.47831.26050.049*
C80.6322 (4)0.6205 (3)1.4175 (3)0.0431 (7)
C90.3381 (4)0.1974 (3)1.2193 (3)0.0397 (7)
H9A0.23750.18031.23590.048*
C100.3897 (4)0.1241 (3)1.0309 (3)0.0397 (7)
C110.2950 (4)0.1966 (3)1.0682 (3)0.0427 (7)
H11A0.16970.13691.00740.051*
H11B0.33740.29981.06230.051*
C120.2129 (4)0.0769 (3)1.1967 (3)0.0391 (7)
C130.1462 (5)0.0834 (4)1.2907 (4)0.0539 (9)
H13A0.19900.00171.36790.065*
C140.0013 (5)0.2156 (4)1.2711 (4)0.0594 (10)
H14A0.04350.21751.33470.071*
C150.0788 (4)0.3457 (4)1.1586 (4)0.0502 (8)
C160.0111 (5)0.3373 (4)1.0668 (4)0.0502 (8)
H16A0.06390.42250.98970.060*
C170.1349 (4)0.2051 (4)1.0845 (3)0.0441 (8)
H17A0.17940.20351.02080.053*
C180.2397 (5)0.4880 (4)1.1361 (5)0.0746 (12)
H18A0.27650.56611.05410.112*
H18B0.33220.46511.12420.112*
H18C0.21300.52351.21570.112*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0469 (15)0.0648 (18)0.084 (2)0.0143 (13)0.0090 (15)0.0226 (15)
O20.0804 (18)0.0322 (12)0.0575 (15)0.0212 (12)0.0256 (14)0.0059 (11)
O30.0699 (16)0.0443 (13)0.0469 (13)0.0281 (12)0.0347 (12)0.0180 (11)
N10.0494 (15)0.0334 (13)0.0480 (15)0.0201 (12)0.0298 (13)0.0165 (12)
N20.0559 (16)0.0431 (15)0.0554 (17)0.0305 (13)0.0366 (14)0.0250 (13)
C10.1020.1020.1020.0500.0470.032
C20.100 (3)0.051 (2)0.055 (2)0.041 (2)0.030 (2)0.0209 (18)
C30.048 (2)0.0449 (19)0.0448 (19)0.0137 (16)0.0198 (16)0.0044 (15)
C40.046 (2)0.063 (2)0.049 (2)0.0275 (18)0.0114 (17)0.0023 (17)
C50.0481 (19)0.0451 (18)0.0462 (19)0.0231 (16)0.0207 (16)0.0104 (15)
C60.0419 (17)0.0340 (15)0.0346 (15)0.0146 (13)0.0209 (14)0.0088 (12)
C70.0492 (18)0.0366 (16)0.0369 (16)0.0190 (14)0.0218 (14)0.0110 (13)
C80.0530 (19)0.0341 (16)0.0409 (17)0.0168 (14)0.0267 (16)0.0080 (13)
C90.0411 (17)0.0307 (15)0.0463 (18)0.0153 (13)0.0219 (14)0.0120 (13)
C100.0419 (17)0.0282 (15)0.0408 (17)0.0128 (13)0.0168 (14)0.0086 (13)
C110.0457 (18)0.0343 (16)0.0412 (17)0.0197 (14)0.0143 (14)0.0078 (13)
C120.0431 (17)0.0319 (15)0.0402 (16)0.0164 (13)0.0185 (14)0.0145 (13)
C130.065 (2)0.0410 (18)0.0421 (18)0.0117 (17)0.0296 (17)0.0066 (15)
C140.071 (2)0.052 (2)0.053 (2)0.0188 (19)0.038 (2)0.0196 (17)
C150.0482 (19)0.0357 (17)0.055 (2)0.0140 (15)0.0187 (17)0.0193 (15)
C160.054 (2)0.0315 (16)0.053 (2)0.0182 (15)0.0186 (17)0.0072 (14)
C170.0531 (19)0.0394 (17)0.0467 (18)0.0250 (15)0.0279 (16)0.0104 (14)
C180.062 (3)0.049 (2)0.088 (3)0.0066 (19)0.033 (2)0.026 (2)
Geometric parameters (Å, º) top
O1—C11.336 (6)C6—C91.521 (4)
O1—C31.376 (4)C7—C81.370 (4)
O2—C81.369 (4)C7—H7A0.9300
O2—C21.438 (5)C9—C111.535 (4)
O3—C101.226 (4)C9—H9A0.9800
N1—N21.412 (3)C10—C111.496 (4)
N1—C121.446 (4)C11—H11A0.9700
N1—C91.511 (4)C11—H11B0.9700
N2—C101.335 (4)C12—C131.376 (4)
N2—H2A0.8600C12—C171.377 (4)
C1—H1A0.9600C13—C141.382 (5)
C1—H1B0.9600C13—H13A0.9300
C1—H1C0.9600C14—C151.387 (5)
C2—H2B0.9600C14—H14A0.9300
C2—H2C0.9600C15—C161.360 (5)
C2—H2D0.9600C15—C181.508 (5)
C3—C41.383 (5)C16—C171.394 (5)
C3—C81.393 (5)C16—H16A0.9300
C4—C51.399 (5)C17—H17A0.9300
C4—H4A0.9300C18—H18A0.9600
C5—C61.369 (4)C18—H18B0.9600
C5—H5A0.9300C18—H18C0.9600
C6—C71.401 (4)
C1—O1—C3119.4 (4)N1—C9—C11102.6 (2)
C8—O2—C2117.6 (3)C6—C9—C11112.0 (2)
N2—N1—C12113.3 (2)N1—C9—H9A110.2
N2—N1—C9103.1 (2)C6—C9—H9A110.2
C12—N1—C9112.8 (2)C11—C9—H9A110.2
C10—N2—N1114.9 (2)O3—C10—N2125.2 (3)
C10—N2—H2A122.6O3—C10—C11127.6 (3)
N1—N2—H2A122.6N2—C10—C11107.2 (3)
O1—C1—H1A109.5C10—C11—C9103.3 (3)
O1—C1—H1B109.5C10—C11—H11A111.1
H1A—C1—H1B109.5C9—C11—H11A111.1
O1—C1—H1C109.5C10—C11—H11B111.1
H1A—C1—H1C109.5C9—C11—H11B111.1
H1B—C1—H1C109.5H11A—C11—H11B109.1
O2—C2—H2B109.5C13—C12—C17118.9 (3)
O2—C2—H2C109.5C13—C12—N1118.1 (3)
H2B—C2—H2C109.5C17—C12—N1122.9 (3)
O2—C2—H2D109.5C12—C13—C14120.4 (3)
H2B—C2—H2D109.5C12—C13—H13A119.8
H2C—C2—H2D109.5C14—C13—H13A119.8
O1—C3—C4125.3 (3)C13—C14—C15121.4 (3)
O1—C3—C8114.9 (3)C13—C14—H14A119.3
C4—C3—C8119.8 (3)C15—C14—H14A119.3
C3—C4—C5120.3 (3)C16—C15—C14117.4 (3)
C3—C4—H4A119.8C16—C15—C18121.6 (3)
C5—C4—H4A119.8C14—C15—C18121.0 (4)
C6—C5—C4120.2 (3)C15—C16—C17122.1 (3)
C6—C5—H5A119.9C15—C16—H16A118.9
C4—C5—H5A119.9C17—C16—H16A118.9
C5—C6—C7118.7 (3)C12—C17—C16119.8 (3)
C5—C6—C9123.5 (3)C12—C17—H17A120.1
C7—C6—C9117.8 (3)C16—C17—H17A120.1
C8—C7—C6121.8 (3)C15—C18—H18A109.5
C8—C7—H7A119.1C15—C18—H18B109.5
C6—C7—H7A119.1H18A—C18—H18B109.5
O2—C8—C7126.0 (3)C15—C18—H18C109.5
O2—C8—C3114.9 (3)H18A—C18—H18C109.5
C7—C8—C3119.1 (3)H18B—C18—H18C109.5
N1—C9—C6111.6 (3)
C12—N1—N2—C10102.0 (3)C7—C6—C9—N1176.2 (2)
C9—N1—N2—C1020.3 (3)C5—C6—C9—C11120.1 (3)
C1—O1—C3—C49.6 (6)C7—C6—C9—C1161.8 (3)
C1—O1—C3—C8170.8 (4)N1—N2—C10—O3179.6 (3)
O1—C3—C4—C5178.9 (3)N1—N2—C10—C112.1 (4)
C8—C3—C4—C50.6 (5)O3—C10—C11—C9161.6 (3)
C3—C4—C5—C61.3 (5)N2—C10—C11—C916.7 (3)
C4—C5—C6—C71.2 (5)N1—C9—C11—C1027.6 (3)
C4—C5—C6—C9179.3 (3)C6—C9—C11—C1092.2 (3)
C5—C6—C7—C80.6 (4)N2—N1—C12—C13177.5 (3)
C9—C6—C7—C8178.8 (3)C9—N1—C12—C1365.8 (4)
C2—O2—C8—C72.8 (5)N2—N1—C12—C171.2 (4)
C2—O2—C8—C3177.5 (3)C9—N1—C12—C17117.8 (3)
C6—C7—C8—O2179.7 (3)C17—C12—C13—C141.2 (5)
C6—C7—C8—C30.1 (5)N1—C12—C13—C14177.7 (3)
O1—C3—C8—O20.1 (4)C12—C13—C14—C151.2 (6)
C4—C3—C8—O2179.7 (3)C13—C14—C15—C161.2 (6)
O1—C3—C8—C7179.6 (3)C13—C14—C15—C18178.3 (4)
C4—C3—C8—C70.0 (5)C14—C15—C16—C171.1 (5)
N2—N1—C9—C691.5 (3)C18—C15—C16—C17178.3 (3)
C12—N1—C9—C6146.0 (2)C13—C12—C17—C161.2 (5)
N2—N1—C9—C1128.6 (3)N1—C12—C17—C16177.5 (3)
C12—N1—C9—C1193.9 (3)C15—C16—C17—C121.2 (5)
C5—C6—C9—N15.8 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O3i0.862.002.836 (5)163
C1—H1A···O3ii0.962.573.472 (6)156
C13—H13A···O2iii0.932.523.452 (5)176
C5—H5A···N10.932.492.846 (5)103
C17—H17A···N20.932.432.755 (5)101
Symmetry codes: (i) x+1, y, z+2; (ii) x+1, y+1, z+1; (iii) x+1, y+1, z+3.

Experimental details

Crystal data
Chemical formulaC18H20N2O3
Mr312.36
Crystal system, space groupTriclinic, P1
Temperature (K)298
a, b, c (Å)9.4290 (19), 10.107 (2), 10.848 (2)
α, β, γ (°)96.50 (3), 111.60 (3), 114.43 (3)
V3)831.0 (5)
Z2
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.40 × 0.30 × 0.20
Data collection
DiffractometerEnraf–Nonius CAD-4
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.965, 0.982
No. of measured, independent and
observed [I > 2σ(I)] reflections
3477, 3266, 2256
Rint0.033
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.076, 0.187, 1.05
No. of reflections3266
No. of parameters202
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.54, 0.75

Computer programs: CAD-4 Software (Enraf–Nonius, 1985), CAD-4 Software, XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXTL (Bruker, 2000), SHELXTL.

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O3i0.862.002.836 (5)163.00
C1—H1A···O3ii0.962.573.472 (6)156.00
C13—H13A···O2iii0.932.523.452 (5)176.00
C5—H5A···N10.932.492.846 (5)103.00
C17—H17A···N20.932.432.755 (5)101.00
Symmetry codes: (i) x+1, y, z+2; (ii) x+1, y+1, z+1; (iii) x+1, y+1, z+3.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds