Download citation
Download citation
link to html
The title compound, poly[μ-difluoridooxidonitrato-potassium], [KNOF2]n, crystallizes in the ortho­rhom­bic system and adopts the ordered KNO3 structure type. A crystallographic mirror plane passes through N, O and K. In the crystal structure, the polymer chains are linked by weak bonds into an infinite three-dimensional framework.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807027195/hk2267sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807027195/hk2267Isup2.hkl
Contains datablock I

Key indicators

  • Single-crystal X-ray study
  • T = 273 K
  • Mean [sigma](O-N) = 0.004 Å
  • R factor = 0.039
  • wR factor = 0.163
  • Data-to-parameter ratio = 13.3

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT029_ALERT_3_C _diffrn_measured_fraction_theta_full Low ....... 0.97 PLAT042_ALERT_1_C Calc. and Rep. MoietyFormula Strings Differ .... ? PLAT242_ALERT_2_C Check Low Ueq as Compared to Neighbors for N1
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 3 ALERT level C = Check and explain 0 ALERT level G = General alerts; check 1 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 1 ALERT type 2 Indicator that the structure model may be wrong or deficient 1 ALERT type 3 Indicator that the structure quality may be low 0 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

Comment top

Inorganic compounds with various anions attract attention because of the features of their crystal chemistry (Berdonosov et al., 2000; Ruck & Schmidt, 2003; Lipp & Schleid, 2005; Ben Hamida & Wickleder, 2005).The first probable crystallographic path in single crystals of KNO3 was reported by Swaminathan et al. in 1975. In the following years, the compounds KNO3 were synthesized and characterized by Nimmo & Lucas (1976), Soltzberg et al. (1994) and Christensen et al. (1996). We herein report the crystal structure of the title compound, (I).

In the molecule of (I), the bond lengths and angles (Table 1) are within normal ranges. One of F atoms in KNOF2 (Fig. 1) is symmetry related with symmetry code (x, -y + 3/2, z). KNOF2 crystallizes in the orthorhombic system and adopts the ordered KNO3 structure type. The [KNOF2]n structure is a coordination network polymer, in which K+ cations are connected by the anions coordinated through F and O atoms.

Related literature top

For related literature, see: Ben Hamida & Wickleder (2005); Berdonosov et al. (2000); Christensen et al. (1996); Lipp & Schleid (2005); Nimmo & Lucas (1976); Ruck & Schmidt (2003); Soltzberg et al. (1994); Swaminathan & Srinivasan (1975).

Experimental top

Crystals of the title compound were synthesized using solid-state reaction method. KF (58 mg, 1 mmol), NaNO3 (170 mg, 2 mmol), corresponding to a molar ratio of 1:2, were heated in a graphite crucible under a static atmosphere of a (98/2)% mixture of N2/H2 up to 1173 K over the course of 6 h. This temperature was held for 2 h and then decreased to 773 K within 20 h. After cooling to room temperature, the solidified melt was leached with demineralized water. From the remaining residue, colourless plates of KNOF2 could be isolated.

Structure description top

Inorganic compounds with various anions attract attention because of the features of their crystal chemistry (Berdonosov et al., 2000; Ruck & Schmidt, 2003; Lipp & Schleid, 2005; Ben Hamida & Wickleder, 2005).The first probable crystallographic path in single crystals of KNO3 was reported by Swaminathan et al. in 1975. In the following years, the compounds KNO3 were synthesized and characterized by Nimmo & Lucas (1976), Soltzberg et al. (1994) and Christensen et al. (1996). We herein report the crystal structure of the title compound, (I).

In the molecule of (I), the bond lengths and angles (Table 1) are within normal ranges. One of F atoms in KNOF2 (Fig. 1) is symmetry related with symmetry code (x, -y + 3/2, z). KNOF2 crystallizes in the orthorhombic system and adopts the ordered KNO3 structure type. The [KNOF2]n structure is a coordination network polymer, in which K+ cations are connected by the anions coordinated through F and O atoms.

For related literature, see: Ben Hamida & Wickleder (2005); Berdonosov et al. (2000); Christensen et al. (1996); Lipp & Schleid (2005); Nimmo & Lucas (1976); Ruck & Schmidt (2003); Soltzberg et al. (1994); Swaminathan & Srinivasan (1975).

Computing details top

Data collection: APEX2 (Bruker, YEAR?); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Siemens, 1996); software used to prepare material for publication: SHELXTL.

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level [symmetry code (A): -x + 1, -y + 1, -z + 1; (C): -x + 1, -y + 2, -z + 1; (E): x, -y + 3/2, z; (G): -x + 3/2, -y + 2, z + 1/2].
[Figure 2] Fig. 2. A packing diagram for (I).
poly[µ-difluoridooxidonitrato-potassium] top
Crystal data top
KNOF2F(000) = 208
Mr = 107.11Dx = 2.229 Mg m3
Orthorhombic, PnmaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2nCell parameters from 1198 reflections
a = 6.429 (4) Åθ = 4.4–28.3°
b = 5.417 (3) ŵ = 1.51 mm1
c = 9.164 (5) ÅT = 273 K
V = 319.1 (3) Å3Block, colourless
Z = 40.27 × 0.10 × 0.06 mm
Data collection top
Bruker APEXII area-detector
diffractometer
372 independent reflections
Radiation source: fine-focus sealed tube304 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.018
φ and ω scansθmax = 27.0°, θmin = 3.9°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 78
Tmin = 0.686, Tmax = 0.915k = 66
2043 measured reflectionsl = 1111
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullPrimary atom site location: structure-invariant direct methods
R[F2 > 2σ(F2)] = 0.039Secondary atom site location: difference Fourier map
wR(F2) = 0.163 w = 1/[σ2(Fo2) + (0.128P)2 + 0.1109P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max < 0.001
372 reflectionsΔρmax = 0.37 e Å3
28 parametersΔρmin = 0.55 e Å3
Crystal data top
KNOF2V = 319.1 (3) Å3
Mr = 107.11Z = 4
Orthorhombic, PnmaMo Kα radiation
a = 6.429 (4) ŵ = 1.51 mm1
b = 5.417 (3) ÅT = 273 K
c = 9.164 (5) Å0.27 × 0.10 × 0.06 mm
Data collection top
Bruker APEXII area-detector
diffractometer
372 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
304 reflections with I > 2σ(I)
Tmin = 0.686, Tmax = 0.915Rint = 0.018
2043 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.03928 parameters
wR(F2) = 0.1630 restraints
S = 1.06Δρmax = 0.37 e Å3
372 reflectionsΔρmin = 0.55 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
K10.75494 (11)0.75000.58346 (8)0.0285 (5)
O10.4098 (5)0.75000.3901 (3)0.0392 (8)
N10.4145 (5)0.75000.2554 (3)0.0244 (8)
F10.4144 (3)0.9496 (4)0.1866 (2)0.0554 (8)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
K10.0334 (8)0.0254 (8)0.0267 (7)0.0000.0009 (3)0.000
O10.051 (2)0.0380 (19)0.0285 (14)0.0000.0061 (13)0.000
N10.0198 (17)0.0232 (16)0.0303 (16)0.0000.0008 (12)0.000
F10.0757 (17)0.0402 (13)0.0502 (13)0.0044 (10)0.0045 (11)0.0050 (8)
Geometric parameters (Å, º) top
K1—O12.840 (3)K1—N1ii3.272 (2)
O1—N11.235 (4)K1—N1iv3.272 (2)
N1—F11.251 (3)O1—K1iv2.9185 (18)
K1—F1i2.839 (2)O1—K1ii2.9185 (18)
K1—F1ii2.876 (2)N1—F1viii1.251 (3)
K1—F1iii2.889 (2)N1—K1ix3.270 (4)
K1—O1iv2.9185 (18)N1—K1ii3.272 (2)
K1—F1v2.839 (2)N1—K1iv3.272 (2)
K1—F1vi2.876 (2)F1—K1x2.839 (2)
K1—F1vii2.889 (2)F1—K1ii2.876 (2)
K1—O1ii2.9185 (18)F1—K1ix2.889 (2)
K1—N1vii3.270 (4)
F1i—K1—O1142.45 (5)O1—K1—N1ii91.24 (7)
O1—K1—F1ii99.29 (8)F1ii—K1—N1ii22.32 (7)
F1i—K1—F1v69.95 (10)F1vi—K1—N1ii90.68 (8)
F1v—K1—O1142.45 (5)F1iii—K1—N1ii144.56 (7)
F1i—K1—F1ii73.45 (6)F1vii—K1—N1ii101.25 (7)
F1v—K1—F1ii111.33 (6)O1iv—K1—N1ii127.59 (8)
F1i—K1—F1vi111.33 (6)O1ii—K1—N1ii22.07 (8)
F1v—K1—F1vi73.45 (6)N1vii—K1—N1ii122.21 (6)
O1—K1—F1vi99.29 (8)F1i—K1—N1iv124.99 (8)
F1ii—K1—F1vi68.92 (10)F1v—K1—N1iv67.94 (7)
F1i—K1—F1iii103.54 (5)O1—K1—N1iv91.24 (7)
F1v—K1—F1iii78.76 (7)F1ii—K1—N1iv90.68 (8)
O1—K1—F1iii75.08 (8)F1vi—K1—N1iv22.32 (7)
F1ii—K1—F1iii166.82 (9)F1iii—K1—N1iv101.25 (7)
F1vi—K1—F1iii123.38 (4)F1vii—K1—N1iv144.56 (7)
F1i—K1—F1vii78.76 (7)O1iv—K1—N1iv22.07 (8)
F1v—K1—F1vii103.54 (5)O1ii—K1—N1iv127.59 (8)
O1—K1—F1vii75.08 (8)N1vii—K1—N1iv122.21 (6)
F1ii—K1—F1vii123.38 (4)N1ii—K1—N1iv111.77 (10)
F1vi—K1—F1vii166.82 (9)N1—O1—K1127.2 (2)
F1iii—K1—F1vii43.96 (10)N1—O1—K1iv95.27 (9)
F1i—K1—O1iv140.90 (7)K1—O1—K1iv103.40 (6)
F1v—K1—O1iv73.27 (8)N1—O1—K1ii95.27 (9)
O1—K1—O1iv76.60 (6)K1—O1—K1ii103.40 (6)
F1ii—K1—O1iv109.08 (8)K1iv—O1—K1ii136.28 (12)
F1vi—K1—O1iv43.67 (8)O1—N1—F1viii120.23 (17)
F1iii—K1—O1iv81.53 (8)O1—N1—F1120.23 (17)
F1vii—K1—O1iv123.18 (7)F1viii—N1—F1119.5 (3)
F1i—K1—O1ii73.27 (8)O1—N1—K1ix160.3 (2)
F1v—K1—O1ii140.90 (7)F1viii—N1—K1ix61.43 (17)
O1—K1—O1ii76.60 (6)F1—N1—K1ix61.43 (17)
F1ii—K1—O1ii43.67 (8)O1—N1—K1ii62.66 (9)
F1vi—K1—O1ii109.08 (8)F1viii—N1—K1ii160.5 (2)
F1iii—K1—O1ii123.18 (7)F1—N1—K1ii60.79 (13)
F1vii—K1—O1ii81.53 (8)K1ix—N1—K1ii108.92 (7)
O1iv—K1—O1ii136.28 (12)O1—N1—K1iv62.66 (9)
F1i—K1—N1vii94.67 (7)F1viii—N1—K1iv60.79 (13)
F1v—K1—N1vii94.67 (7)F1—N1—K1iv160.5 (2)
O1—K1—N1vii69.66 (9)K1ix—N1—K1iv108.92 (7)
F1ii—K1—N1vii144.52 (5)K1ii—N1—K1iv111.77 (10)
F1vi—K1—N1vii144.52 (5)N1—F1—K1x131.51 (18)
F1iii—K1—N1vii22.36 (5)N1—F1—K1ii96.89 (17)
F1vii—K1—N1vii22.36 (5)K1x—F1—K1ii101.71 (7)
O1iv—K1—N1vii101.11 (6)N1—F1—K1ix96.21 (18)
O1ii—K1—N1vii101.11 (6)K1x—F1—K1ix101.24 (7)
F1i—K1—N1ii67.94 (7)K1ii—F1—K1ix134.83 (8)
F1v—K1—N1ii124.99 (8)
Symmetry codes: (i) x+3/2, y+2, z+1/2; (ii) x+1, y+2, z+1; (iii) x+1/2, y+3/2, z+1/2; (iv) x+1, y+1, z+1; (v) x+3/2, y1/2, z+1/2; (vi) x+1, y1/2, z+1; (vii) x+1/2, y, z+1/2; (viii) x, y+3/2, z; (ix) x1/2, y, z+1/2; (x) x+3/2, y+2, z1/2.

Experimental details

Crystal data
Chemical formulaKNOF2
Mr107.11
Crystal system, space groupOrthorhombic, Pnma
Temperature (K)273
a, b, c (Å)6.429 (4), 5.417 (3), 9.164 (5)
V3)319.1 (3)
Z4
Radiation typeMo Kα
µ (mm1)1.51
Crystal size (mm)0.27 × 0.10 × 0.06
Data collection
DiffractometerBruker APEXII area-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.686, 0.915
No. of measured, independent and
observed [I > 2σ(I)] reflections
2043, 372, 304
Rint0.018
(sin θ/λ)max1)0.638
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.163, 1.06
No. of reflections372
No. of parameters28
Δρmax, Δρmin (e Å3)0.37, 0.55

Computer programs: APEX2 (Bruker, YEAR?), SAINT (Siemens, 1996), SAINT, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXTL (Siemens, 1996), SHELXTL.

Selected geometric parameters (Å, º) top
K1—O12.840 (3)K1—F1ii2.876 (2)
O1—N11.235 (4)K1—F1iii2.889 (2)
N1—F11.251 (3)K1—O1iv2.9185 (18)
K1—F1i2.839 (2)
F1i—K1—O1142.45 (5)O1—K1—F1ii99.29 (8)
Symmetry codes: (i) x+3/2, y+2, z+1/2; (ii) x+1, y+2, z+1; (iii) x+1/2, y+3/2, z+1/2; (iv) x+1, y+1, z+1.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds