Download citation
Download citation
link to html
In the mol­ecule of the title compound, C19H13N3O2S, the pyrimidine ring is not planar and has a flattened-boat conformation; it also has a pseudo-mirror plane running through the bridgehead N atom and the opposite C atom. The dihedral angles between the planar fused benzene (A), thienyl (B), imidazole (D) and substituent phenyl (E) rings are A/B = 1.63 (3)°, A/D = 5.80 (2)°, B/D = 5.49 (3)° and D/E = 39.73 (3)°. In the crystal structure, inter­molecular C—H...O hydrogen bonds and π–π stacking inter­actions may be effective in the stabilization of the structure [adjacent thiophene rings have a centroid–centroid distance of 3.79 (1) Å (symmetry code: 1-x, 2-y, 1-z), while adjacent imidazole and benzene rings have a centroid–centroid distance of 3.48 (1) Å (symmetry codes: {1 \over 2}-x, {1 \over 2}+y, z and {3 \over 2}-x, -{1 \over 2}+y, z)].

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807017576/hk2230sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807017576/hk2230Isup2.hkl
Contains datablock I

CCDC reference: 647685

Key indicators

  • Single-crystal X-ray study
  • T = 292 K
  • Mean [sigma](C-C) = 0.003 Å
  • R factor = 0.050
  • wR factor = 0.115
  • Data-to-parameter ratio = 16.9

checkCIF/PLATON results

No syntax errors found



Alert level C RINTA01_ALERT_3_C The value of Rint is greater than 0.10 Rint given 0.108 PLAT020_ALERT_3_C The value of Rint is greater than 0.10 ......... 0.11 PLAT066_ALERT_1_C Predicted and Reported Transmissions Identical . ? PLAT230_ALERT_2_C Hirshfeld Test Diff for N3 - C10 .. 5.31 su
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 4 ALERT level C = Check and explain 0 ALERT level G = General alerts; check 1 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 1 ALERT type 2 Indicator that the structure model may be wrong or deficient 2 ALERT type 3 Indicator that the structure quality may be low 0 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

Comment top

Thienopyrimidine derivatives are of interest as possible antiviral agents, and because of their other biological properties, including antibacterial, antifungal, antiallergic and antiinflammatory activities (Chambhare et al., 2003). We have recently focused on the synthesis of the fused heterocyclic systems containing thienopyrimidine via aza-Wittig reactions at room temperature (Ding et al., 2004). We herein report the crystal structure of one such thienopyrimidine derivative, the title compound, (I).

In the molecule of (I), (Fig. 1) the bond lengths and angles are within normal ranges (Allen et al., 1987). The ring C (N1/N2/C7—C10) is not planar having a total puckering amplitude, QT of 0.228 (2) Å and a flattened-boat conformation [φ = 54.10 (2)° and θ = 63.62 (3)°] (Cremer & Pople, 1975). Ring C has a pseudo mirror plane running through atoms N2 and C7, as can be deduced from the torsion angles (Table 1). Rings A (C1—C6), B (S1/C1/C6—C8), D (N2/N3/C10—C12) and E (C14—C19) are, of course, planar and the dihedral angles between them are A/B = 1.63 (3)°, A/D = 5.80 (2)°, B/D = 5.49 (3)° and D/E = 39.73 (3)°.

In the crystal structure, the weak intermolecular C—H···O hydrogen bonds (Table 2) cause to the formation of a three dimensional network (Fig. 2), in which they may be effective in the stabilization of the structure. Further stability is provided by offset π-π stacking interactions (Janiak, 2000), involving the rings; B, D and E. The adjacent B rings have a centroid-centroid distance of 3.79 (1) %A [symmetry code: 1 - x, 2 - y, 1 - z], while rings D and E have a centroid-centroid distance of 3.48 (1) %A [symmetry codes: 3/2 - x, y + 1/2, z; 3/2 - x, y - 1/2, z].

Related literature top

For related literature, see: Cao (2007); Chambhare et al. (2003); Ding et al. (2004); Janiak (2000).

For related literature, see: Allen et al. (1987); Cremer & Pople (1975).

Experimental top

The title compound was synthesized according to the literature method (Cao, 2007). Crystals suitable for X-ray analysis were grown from acetone at 277 K.

Refinement top

H atoms were positioned geometrically, with C—H = 0.93, 0.98 and 0.96 Å for aromatic, methylene and methyl H, respectively, and constrained to ride on their parent atoms, with Uiso(H) = xUeq(C), where x = 1.5 for methyl H and x = 1.2 for all other H atoms.

Structure description top

Thienopyrimidine derivatives are of interest as possible antiviral agents, and because of their other biological properties, including antibacterial, antifungal, antiallergic and antiinflammatory activities (Chambhare et al., 2003). We have recently focused on the synthesis of the fused heterocyclic systems containing thienopyrimidine via aza-Wittig reactions at room temperature (Ding et al., 2004). We herein report the crystal structure of one such thienopyrimidine derivative, the title compound, (I).

In the molecule of (I), (Fig. 1) the bond lengths and angles are within normal ranges (Allen et al., 1987). The ring C (N1/N2/C7—C10) is not planar having a total puckering amplitude, QT of 0.228 (2) Å and a flattened-boat conformation [φ = 54.10 (2)° and θ = 63.62 (3)°] (Cremer & Pople, 1975). Ring C has a pseudo mirror plane running through atoms N2 and C7, as can be deduced from the torsion angles (Table 1). Rings A (C1—C6), B (S1/C1/C6—C8), D (N2/N3/C10—C12) and E (C14—C19) are, of course, planar and the dihedral angles between them are A/B = 1.63 (3)°, A/D = 5.80 (2)°, B/D = 5.49 (3)° and D/E = 39.73 (3)°.

In the crystal structure, the weak intermolecular C—H···O hydrogen bonds (Table 2) cause to the formation of a three dimensional network (Fig. 2), in which they may be effective in the stabilization of the structure. Further stability is provided by offset π-π stacking interactions (Janiak, 2000), involving the rings; B, D and E. The adjacent B rings have a centroid-centroid distance of 3.79 (1) %A [symmetry code: 1 - x, 2 - y, 1 - z], while rings D and E have a centroid-centroid distance of 3.48 (1) %A [symmetry codes: 3/2 - x, y + 1/2, z; 3/2 - x, y - 1/2, z].

For related literature, see: Cao (2007); Chambhare et al. (2003); Ding et al. (2004); Janiak (2000).

For related literature, see: Allen et al. (1987); Cremer & Pople (1975).

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXTL (Bruker, 2001).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. A packing diagram for (I). Hydrogen bonds are shown as dashed lines.
3-Methyl-1-phenylbenzothieno[3,2-d]imidazo[1,2-a]pyrimidine-2,5(1H,3H)-dione top
Crystal data top
C19H13N3O2SF(000) = 1440
Mr = 347.38Dx = 1.431 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 3753 reflections
a = 12.6184 (18) Åθ = 2.4–22.8°
b = 11.0787 (16) ŵ = 0.22 mm1
c = 23.074 (3) ÅT = 292 K
V = 3225.7 (8) Å3Block, colorless
Z = 80.20 × 0.20 × 0.10 mm
Data collection top
Bruker SMART 4K CCD area-detector
diffractometer
2529 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.109
Graphite monochromatorθmax = 28.0°, θmin = 1.8°
φ and ω scansh = 1612
19405 measured reflectionsk = 1414
3847 independent reflectionsl = 2927
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.050Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.115H-atom parameters constrained
S = 0.92 w = 1/[σ2(Fo2) + (0.0558P)2]
where P = (Fo2 + 2Fc2)/3
3847 reflections(Δ/σ)max = 0.002
227 parametersΔρmax = 0.30 e Å3
0 restraintsΔρmin = 0.21 e Å3
Crystal data top
C19H13N3O2SV = 3225.7 (8) Å3
Mr = 347.38Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 12.6184 (18) ŵ = 0.22 mm1
b = 11.0787 (16) ÅT = 292 K
c = 23.074 (3) Å0.20 × 0.20 × 0.10 mm
Data collection top
Bruker SMART 4K CCD area-detector
diffractometer
2529 reflections with I > 2σ(I)
19405 measured reflectionsRint = 0.109
3847 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0500 restraints
wR(F2) = 0.115H-atom parameters constrained
S = 0.92Δρmax = 0.30 e Å3
3847 reflectionsΔρmin = 0.21 e Å3
227 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.43864 (12)0.97800 (15)0.59301 (7)0.0371 (4)
C20.37664 (13)0.87999 (17)0.60996 (8)0.0438 (4)
H20.40390.82150.63470.053*
C30.27466 (14)0.87107 (18)0.58957 (8)0.0518 (5)
H30.23300.80550.60030.062*
C40.23303 (15)0.9589 (2)0.55310 (8)0.0549 (5)
H40.16370.95110.54000.066*
C50.29153 (15)1.0568 (2)0.53598 (8)0.0535 (5)
H50.26281.11510.51160.064*
C60.39535 (14)1.06644 (16)0.55618 (7)0.0422 (4)
C70.54732 (13)1.00455 (15)0.60685 (7)0.0362 (4)
C80.58174 (14)1.10884 (15)0.58091 (7)0.0409 (4)
C90.68825 (15)1.15173 (16)0.58730 (8)0.0441 (4)
C100.70455 (13)0.97290 (15)0.64790 (7)0.0371 (4)
C110.87532 (14)0.98872 (18)0.68008 (9)0.0472 (5)
C120.85911 (13)1.08834 (17)0.63630 (8)0.0470 (5)
H120.86821.16720.65490.056*
C130.93537 (16)1.0761 (2)0.58549 (10)0.0740 (7)
H13A0.92550.99900.56730.111*
H13B1.00691.08270.59920.111*
H13C0.92171.13900.55790.111*
C140.76691 (13)0.82173 (14)0.72199 (7)0.0378 (4)
C150.84826 (14)0.73933 (17)0.72829 (9)0.0472 (5)
H150.91040.74790.70700.057*
C160.83663 (16)0.64405 (18)0.76645 (10)0.0560 (5)
H160.89190.58950.77150.067*
C170.74425 (18)0.62940 (18)0.79685 (9)0.0576 (5)
H170.73630.56430.82190.069*
C180.66351 (16)0.71136 (19)0.79017 (9)0.0535 (5)
H180.60080.70130.81080.064*
C190.67441 (13)0.80874 (16)0.75303 (8)0.0432 (4)
H190.61990.86470.74910.052*
N10.60876 (10)0.93359 (12)0.64293 (6)0.0368 (3)
N20.74802 (10)1.07041 (12)0.62043 (6)0.0403 (4)
N30.78190 (10)0.92229 (12)0.68350 (6)0.0393 (4)
O10.72739 (11)1.24438 (12)0.56814 (6)0.0616 (4)
O20.95559 (11)0.96797 (14)0.70621 (7)0.0704 (5)
S10.48557 (4)1.18039 (5)0.53977 (2)0.05129 (17)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0397 (10)0.0392 (10)0.0324 (9)0.0063 (8)0.0013 (7)0.0013 (7)
C20.0434 (10)0.0456 (11)0.0423 (10)0.0043 (8)0.0025 (8)0.0016 (8)
C30.0467 (11)0.0583 (13)0.0504 (12)0.0060 (10)0.0037 (9)0.0042 (10)
C40.0433 (11)0.0738 (15)0.0477 (12)0.0029 (10)0.0129 (9)0.0055 (10)
C50.0558 (13)0.0639 (14)0.0407 (11)0.0191 (11)0.0120 (9)0.0010 (9)
C60.0481 (11)0.0449 (11)0.0337 (10)0.0081 (8)0.0039 (8)0.0015 (8)
C70.0408 (10)0.0349 (10)0.0329 (9)0.0041 (7)0.0004 (7)0.0000 (7)
C80.0478 (11)0.0387 (10)0.0363 (10)0.0037 (8)0.0004 (8)0.0038 (8)
C90.0546 (11)0.0406 (11)0.0369 (10)0.0025 (9)0.0039 (9)0.0036 (8)
C100.0380 (10)0.0369 (10)0.0365 (9)0.0027 (8)0.0029 (8)0.0006 (8)
C110.0369 (10)0.0537 (12)0.0509 (12)0.0030 (9)0.0025 (9)0.0032 (9)
C120.0411 (11)0.0496 (12)0.0502 (12)0.0097 (8)0.0000 (8)0.0008 (9)
C130.0514 (13)0.1027 (19)0.0680 (15)0.0104 (12)0.0124 (11)0.0078 (14)
C140.0374 (10)0.0348 (10)0.0414 (10)0.0019 (8)0.0076 (8)0.0007 (8)
C150.0403 (10)0.0466 (12)0.0546 (12)0.0064 (8)0.0088 (9)0.0059 (9)
C160.0588 (13)0.0429 (12)0.0662 (14)0.0134 (10)0.0237 (11)0.0006 (10)
C170.0705 (14)0.0451 (12)0.0572 (13)0.0027 (11)0.0145 (11)0.0146 (10)
C180.0548 (12)0.0558 (13)0.0501 (12)0.0011 (10)0.0009 (9)0.0097 (10)
C190.0417 (11)0.0431 (11)0.0448 (11)0.0068 (8)0.0035 (8)0.0035 (8)
N10.0325 (8)0.0378 (8)0.0402 (8)0.0024 (6)0.0016 (6)0.0051 (6)
N20.0391 (8)0.0411 (9)0.0406 (8)0.0046 (6)0.0014 (6)0.0048 (7)
N30.0326 (8)0.0422 (9)0.0432 (8)0.0002 (6)0.0050 (6)0.0043 (7)
O10.0727 (10)0.0515 (9)0.0606 (9)0.0163 (7)0.0034 (7)0.0190 (7)
O20.0430 (8)0.0753 (11)0.0928 (12)0.0110 (7)0.0214 (8)0.0140 (9)
S10.0614 (3)0.0464 (3)0.0461 (3)0.0063 (2)0.0065 (2)0.0134 (2)
Geometric parameters (Å, º) top
C1—C21.394 (2)C11—O21.201 (2)
C1—C61.407 (2)C11—N31.392 (2)
C1—C71.439 (2)C11—C121.510 (3)
C2—C31.374 (2)C12—N21.462 (2)
C2—H20.9300C12—C131.523 (3)
C3—C41.390 (3)C12—H120.9800
C3—H30.9300C13—H13A0.9600
C4—C51.370 (3)C13—H13B0.9600
C4—H40.9300C13—H13C0.9600
C5—C61.395 (2)C14—C191.377 (2)
C5—H50.9300C14—C151.381 (2)
C6—S11.7416 (19)C14—N31.437 (2)
C7—C81.372 (2)C15—C161.382 (3)
C7—N11.383 (2)C15—H150.9300
C8—C91.433 (3)C16—C171.370 (3)
C8—S11.7326 (17)C16—H160.9300
C9—O11.222 (2)C17—C181.373 (3)
C9—N21.402 (2)C17—H170.9300
C10—N11.2898 (19)C18—C191.385 (3)
C10—N21.367 (2)C18—H180.9300
C10—N31.394 (2)C19—H190.9300
C2—C1—C6119.59 (15)N2—C12—H12110.0
C2—C1—C7129.19 (16)C11—C12—H12110.0
C6—C1—C7111.21 (15)C13—C12—H12110.0
C3—C2—C1119.05 (17)C12—C13—H13A109.5
C3—C2—H2120.5C12—C13—H13B109.5
C1—C2—H2120.5H13A—C13—H13B109.5
C2—C3—C4120.73 (18)C12—C13—H13C109.5
C2—C3—H3119.6H13A—C13—H13C109.5
C4—C3—H3119.6H13B—C13—H13C109.5
C5—C4—C3121.69 (18)C19—C14—C15120.41 (17)
C5—C4—H4119.2C19—C14—N3120.93 (15)
C3—C4—H4119.2C15—C14—N3118.65 (16)
C4—C5—C6118.05 (18)C14—C15—C16119.52 (19)
C4—C5—H5121.0C14—C15—H15120.2
C6—C5—H5121.0C16—C15—H15120.2
C5—C6—C1120.88 (18)C17—C16—C15120.46 (18)
C5—C6—S1126.64 (15)C17—C16—H16119.8
C1—C6—S1112.47 (13)C15—C16—H16119.8
C8—C7—N1124.34 (16)C16—C17—C18119.70 (18)
C8—C7—C1112.15 (15)C16—C17—H17120.2
N1—C7—C1123.50 (15)C18—C17—H17120.2
C7—C8—C9122.08 (16)C17—C18—C19120.73 (19)
C7—C8—S1113.75 (14)C17—C18—H18119.6
C9—C8—S1124.16 (13)C19—C18—H18119.6
O1—C9—N2121.32 (18)C14—C19—C18119.18 (17)
O1—C9—C8128.33 (17)C14—C19—H19120.4
N2—C9—C8110.34 (15)C18—C19—H19120.4
N1—C10—N2126.98 (15)C10—N1—C7112.77 (14)
N1—C10—N3124.95 (15)C10—N2—C9123.00 (15)
N2—C10—N3108.07 (14)C10—N2—C12112.08 (14)
O2—C11—N3125.77 (18)C9—N2—C12124.40 (14)
O2—C11—C12126.16 (17)C11—N3—C10110.30 (14)
N3—C11—C12108.04 (15)C11—N3—C14123.81 (14)
N2—C12—C11101.42 (14)C10—N3—C14125.73 (14)
N2—C12—C13113.64 (16)C8—S1—C690.41 (9)
C11—C12—C13111.38 (17)
C6—C1—C2—C30.9 (3)C17—C18—C19—C141.0 (3)
C7—C1—C2—C3177.67 (17)N2—C10—N1—C72.4 (2)
C1—C2—C3—C40.7 (3)N3—C10—N1—C7176.89 (15)
C2—C3—C4—C50.3 (3)C8—C7—N1—C102.8 (2)
C3—C4—C5—C60.1 (3)C1—C7—N1—C10178.25 (15)
C4—C5—C6—C10.1 (3)N1—C10—N2—C98.1 (3)
C4—C5—C6—S1178.95 (15)N3—C10—N2—C9171.26 (15)
C2—C1—C6—C50.6 (3)N1—C10—N2—C12179.83 (16)
C7—C1—C6—C5178.24 (15)N3—C10—N2—C120.81 (19)
C2—C1—C6—S1179.58 (13)O1—C9—N2—C10172.59 (16)
C7—C1—C6—S10.77 (18)C8—C9—N2—C107.4 (2)
C2—C1—C7—C8178.66 (17)O1—C9—N2—C121.5 (3)
C6—C1—C7—C80.0 (2)C8—C9—N2—C12178.46 (15)
C2—C1—C7—N12.3 (3)C11—C12—N2—C102.32 (18)
C6—C1—C7—N1179.04 (15)C13—C12—N2—C10117.31 (18)
N1—C7—C8—C92.6 (3)C11—C12—N2—C9169.62 (16)
C1—C7—C8—C9178.41 (15)C13—C12—N2—C970.7 (2)
N1—C7—C8—S1178.25 (13)O2—C11—N3—C10179.24 (19)
C1—C7—C8—S10.78 (19)C12—C11—N3—C102.7 (2)
C7—C8—C9—O1177.43 (18)O2—C11—N3—C143.6 (3)
S1—C8—C9—O13.5 (3)C12—C11—N3—C14178.36 (15)
C7—C8—C9—N22.5 (2)N1—C10—N3—C11178.10 (16)
S1—C8—C9—N2176.57 (13)N2—C10—N3—C111.27 (19)
O2—C11—C12—N2179.01 (19)N1—C10—N3—C142.6 (3)
N3—C11—C12—N22.98 (18)N2—C10—N3—C14176.78 (14)
O2—C11—C12—C1359.8 (3)C19—C14—N3—C11136.45 (18)
N3—C11—C12—C13118.24 (18)C15—C14—N3—C1142.1 (2)
C19—C14—C15—C160.6 (3)C19—C14—N3—C1038.5 (2)
N3—C14—C15—C16178.01 (16)C15—C14—N3—C10142.93 (17)
C14—C15—C16—C171.6 (3)C7—C8—S1—C61.03 (14)
C15—C16—C17—C181.3 (3)C9—C8—S1—C6178.14 (16)
C16—C17—C18—C190.0 (3)C5—C6—S1—C8177.92 (17)
C15—C14—C19—C180.7 (3)C1—C6—S1—C81.01 (14)
N3—C14—C19—C18179.25 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C19—H19···O2i0.932.583.409 (2)148
C16—H16···O2ii0.932.403.328 (2)172
C5—H5···O1iii0.932.453.358 (2)165
Symmetry codes: (i) x1/2, y, z+3/2; (ii) x+2, y1/2, z+3/2; (iii) x1/2, y+5/2, z+1.

Experimental details

Crystal data
Chemical formulaC19H13N3O2S
Mr347.38
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)292
a, b, c (Å)12.6184 (18), 11.0787 (16), 23.074 (3)
V3)3225.7 (8)
Z8
Radiation typeMo Kα
µ (mm1)0.22
Crystal size (mm)0.20 × 0.20 × 0.10
Data collection
DiffractometerBruker SMART 4K CCD area-detector
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
19405, 3847, 2529
Rint0.109
(sin θ/λ)max1)0.661
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.050, 0.115, 0.92
No. of reflections3847
No. of parameters227
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.30, 0.21

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SAINT, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), PLATON (Spek, 2003), SHELXTL (Bruker, 2001).

Selected torsion angles (º) top
N1—C7—C8—C92.6 (3)C8—C7—N1—C102.8 (2)
C7—C8—C9—N22.5 (2)N1—C10—N2—C98.1 (3)
N2—C10—N1—C72.4 (2)C8—C9—N2—C107.4 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C19—H19···O2i0.932.583.409 (2)148.2
C16—H16···O2ii0.932.403.328 (2)172.2
C5—H5···O1iii0.932.453.358 (2)165.1
Symmetry codes: (i) x1/2, y, z+3/2; (ii) x+2, y1/2, z+3/2; (iii) x1/2, y+5/2, z+1.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds