Download citation
Download citation
link to html
The title novel heterometallic 3d–4f coord­ination polymer, {[CuEr2(C5HN2O4)2(C2O4)(H2O)6]·3H2O}n, has a three-dim­ensional metal–organic framework composed of two types of metal atoms (one CuII and two ErIII) and two types of bridging anionic ligands [3,5-dicarboxyl­ato­pyrazol­ate(3−) (ptc3−) and oxalate]. The CuII atom is four-coord­inated in a square geometry. The ErIII atoms are both eight-coordinated, but the geometries at the two atoms appear different, viz. triangular dodeca­hedral and bicapped trigonal prismatic. One of the oxalate anions is located on a twofold axis and the other lies about an inversion centre. Both oxalate anions act as bis-bidentate ligands bridging the latter type of Er atoms in parallel zigzag chains. The pdc3− anions act as quin­quedentate ligands not only chelating the CuII and the triangular dodeca­hedral ErIII centres in a bis­-bidentate bridg­ing mode, but also connecting to ErIII centres of both types in a monodentate bridging mode. Thus, a three-dim­ensional metal–organic framework is generated, and hydrogen bonds link the metal–organic framework with the uncoordinated water mol­ecules. This study describes the first example of a three-dimensional 3d–4f coordination polymer based on pyrazole-3,5-dicarboxylate and oxalate, and therefore demonstrates further the usefulness of pyrazoledicarboxylate as a versatile multidentate ligand for constructing heterometallic 3d–4f coordination polymers with interesting architectures.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270108017630/hj3077sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270108017630/hj3077Isup2.hkl
Contains datablock I

CCDC reference: 683108

Comment top

Much attention has been focused on the construction of heterometallic 3d–4f complexes since 1985 (Bencini et al., 1985), not only because of their potential applications in magnetism (Mereacre et al., 2007), luminescence (Sun et al., 2006) and gas storage (Wang et al., 2007) but also owing to their fascinating structures (Andruh, 2007; Yabe et al., 2007; Ren et al., 2008). With the purpose of the design and synthesis of 3d–4f coordination polymers with interesting architectures and topologies, a variety of multifunctional bridging ligands have been extensively employed, such as 2,2':6',2"-terpyridine (Figuerola et al., 2006), pyridine-2,4,6-tricarboxylic acid (Gao et al., 2006), iminodiacetate (Manna et al., 2007) and amino acids (Zhang et al., 2004). In view of the potential coordination sites afforded by the carboxylate O and pyrazole N atoms of 3,5-pyrazoledicarboxylic acid (H3pdc), the fully deprotonated pdc3- ligand can act as a mono-, bi- or multidentate ligand to link metal centres, generating coordination polymers, as is reported in the literature (Xia et al., 2007; King et al., 2004). However, no three-dimensional heterometallic 3d–4f coordination polymers based on pyrazole-3,5-dicarboxylate have been reported before. In this paper, we describe the synthesis of a novel 3d–4f coordination polymer, namely, [Cu(pdc)2Er2(C2O4)(H2O)6.3H2O]n, (I), by the reaction of H3pdc with Er2O3 and CuO via a hydrothermal method; the compound has been characterized by IR, elemental analysis and X-ray single-crystal analysis.

Since no oxalate was directly introduced into the starting reaction mixture, we suppose that the oxalate ligand was synthesized in situ through an oxidation–hydrolysis reaction from pyrazole-3,5-dicarboxylic acid (see scheme below). Similar situations also occurred in other systems (Cheng et al., 2007; Li et al., 2006).

X-ray crystal structure analysis reveals that the title complex crystallizes in the centrosymmetric space group C2/c with two crystallographically independent oxalate ligands on twofold axes. A perspective view of the molecular structure of the title complex is depicted in Fig. 1, and selected bond lengths and angles are listed in Table 1.

As illustrated in Fig. 1, the title complex consists of two types of metal atoms (one CuII and two ErIII atoms) and two types of bridged ligands (ptc3- and oxalate anions). The CuII atom assumes a square geometry, coordinated to two ptc3- anions through carboxyl O and pyrazole N atoms in a bis-chelating fashion (O1, N1 and O5, N3). The Cu–O(N) bond lengths [1.887 (8)–1.964 (6) Å] and the angles around CuII atom [82.6 (3)–97.3 (4)°] are in good agreement with those in some related CuIIcomplexes (King et al., 2004) and Cu–Ln complexes (Liang et al., 2001; Costes et al., 2004; Wu et al., 2005). It is interesting to find two crystallographically independent eight-coordinated ErIII atoms (Er1 and Er2) in the title complex, and the geometries at Er1 and Er2 appear different when analysed using the usual considerations of Haigh (1995). Atom Er1 assumes a triangular–dodecahedral geometry, coordinated by three aqua ligands and three pdc3- anions, that is, by one carboxyl O atom from a ptc3- anion in a monodentate fashion (O4i) and two pairs of carboxyl O and pyrazole N atoms from two different ptc3- ligands in a bis-chelating fashion (O3, N2, O7 and N4). The Er1–O(N) bond lengths range from 2.295 (7) to 2.492 (8) Å, comparable to those observed in other ErIII complexes (Xia et al., 2007; Lu et al., 2002). In contrast, atom Er2 assumes a bicapped trigonal–prismatic geometry, coordinated to three aqua ligands, one carboxyl O atom from a pdc3- ligand and four O atoms from two different oxalate ligands in a bis-chelating fashion. The oxalate anions are both located on twofold axes, acting as bis-bidentate ligands to bridge Er2 atoms in a zigzag chain, as is observed in other ErIII complexes (Li et al., 2006; Lu et al., 2002). It is noted that the oxalate–Er2 chains lie parallel to one another. The bond lengths around atom Er2 [2.222 (7)–2.438 (7) Å] are in the normal range for ErIII atoms (Feng & Mao, 2007; Song & Mao, 2005; Subhan et al., 2002). As quinquedentate ligands, the pdc3- anions link three different metal atoms, on the one hand chelating the CuII and ErIII centres in a bis-bidentate bridging mode to form a nearly coplanar building block, [CuEr1(pdc)2]-, and on the other hand connecting to another different ErIII center (Er1 or Er2) in a monodentate bridging mode. In this way, the parallel oxalate–Er2 chains are connected by pairs of [CuEr1(pdc)2]- blocks. Thus, a three-dimensional metal–organic framework is generated through the bridging ligands (Fig. 2).

Furthermore, the solvent water molecules are located in cavities of the metal–organic framework, allowing them to participate in various O—H···O hydrogen bonds with the coordinated water molecules and carboxylate O atoms. Finally, the three-dimensional metal–organic framework is linked with the uncoordinated water molecules by hydrogen bonds, which are all in the normal range and are given in Table 2. It is noted that the potential free volume accessible for water molecules determined by PLATON calculations (Spek, 2003) is about 2.1%. According to Kitagawa et al. (2004), the pore size in the polymer is about 4.7 Å (<5 Å), falling into the ultramicropore range. Therefore, the polymeric structure is considered to be poor for gas storage.

Related literature top

For related literature, see: Andruh (2007); Bencini et al. (1985); Cheng et al. (2007); Costes et al. (2004); Feng & Mao (2007); Figuerola et al. (2006); Gao et al. (2006); Haigh (1995); King et al. (2004); Kitagawa et al. (2004); Li et al. (2006); Liang et al. (2001); Lu et al. (2002); Manna et al. (2007); Mereacre et al. (2007); Ren et al. (2008); Song & Mao (2005); Spek (2003); Subhan et al. (2002); Sun et al. (2006); Wang et al. (2007); Wu et al. (2005); Xia et al. (2007); Yabe et al. (2007); Zhang et al. (2004).

Experimental top

All chemicals were of analytical grade and were used without further purification. The hydrothermal reaction was performed in a 25 ml Teflon-lined stainless steel autoclave under autogenous pressure. A mixture solution of H3pdc (0.070 g,0.4 mmol), Er2O3 (0.038 g, 0.1 mmol), CuO (0.016 g, 0.2 mmol) and water (3 ml) was placed in a 25 ml Teflon-lined autoclave and heated at 413 K for 5 d. After the sample was cooled slowly at a rate of 10 K h-1 to room temperature, purple–red crystals of the title complex were obtained and air-dried by filtration (ca 15% yield based on Er). Analysis calculated for C12H20CuEr2N4O21: C 15.10, H 2.11, N 5.87%; found: C 15.14, H 2.02, N 5.85%. IR (KBr discs, νmax, cm-1): 3449 (vs), 1629 (vs), 1571 (s), 1525 (m),1511 (m), 1403 (m), 1339 (vs), 1283 (s), 1064 (m), 1018 (m), 858 (w), 806 (m), 776 (w), 613 (w), 493 (w), 436 (w).

Refinement top

All H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms [C—H = 0.93 Å, O—H = 0.92–0.95 Å and Uiso(H) = 1.2Ueq(C,O)].

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SMART (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The CuII and ErIII coordination environments. Displacement ellipsoids are drawn at the 30% probability. H atoms have been omitted for clarity. [Symmetry codes: (i) -x + 3/2, y - 1/2, -z + 1/2; (ii) -x + 3/2, y + 1/2, -z + 1/2; (iii) -x + 2, y, -z + 1/2; (iv) -x + 2, -y + 2, -z + 1.] Don't match table 2
[Figure 2] Fig. 2. The packing of the title complex, viewed along the b axis, showing a three-dimensional metal–organic framework. Dashed lines indicate hydrogen bonds.
poly[[hexaaquabis[µ3-3,5-dicarboxylatopyrazolato- κ5O3,N2:N1,O5:O5'](µ2-oxalato- κ4O1,O2:O1',O2')copper(II)dierbium(III)] trihydrate] top
Crystal data top
[CuEr2(C5HN2O4)2(C2O4)(H2O)6]·3H2OZ = 8
Mr = 954.38F(000) = 3624
Monoclinic, C2/cDx = 2.606 Mg m3
Hall symbol: -C 2ycMo Kα radiation, λ = 0.71073 Å
a = 37.829 (9) ŵ = 7.81 mm1
b = 6.9457 (16) ÅT = 295 K
c = 22.772 (5) ÅBlock, purple-red
β = 125.607 (4)°0.4 × 0.3 × 0.2 mm
V = 4864.6 (19) Å3
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
4281 independent reflections
Radiation source: fine-focus sealed tube3070 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.074
ϕ and ω scansθmax = 25.0°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 4344
Tmin = 0.07, Tmax = 0.21k = 78
11670 measured reflectionsl = 2619
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.080H-atom parameters constrained
S = 0.86 w = 1/[σ2(Fo2) + (0.01P)2]
where P = (Fo2 + 2Fc2)/3
4281 reflections(Δ/σ)max = 0.001
310 parametersΔρmax = 1.54 e Å3
0 restraintsΔρmin = 0.89 e Å3
Crystal data top
[CuEr2(C5HN2O4)2(C2O4)(H2O)6]·3H2OV = 4864.6 (19) Å3
Mr = 954.38Z = 8
Monoclinic, C2/cMo Kα radiation
a = 37.829 (9) ŵ = 7.81 mm1
b = 6.9457 (16) ÅT = 295 K
c = 22.772 (5) Å0.4 × 0.3 × 0.2 mm
β = 125.607 (4)°
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
4281 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
3070 reflections with I > 2σ(I)
Tmin = 0.07, Tmax = 0.21Rint = 0.074
11670 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0460 restraints
wR(F2) = 0.080H-atom parameters constrained
S = 0.86Δρmax = 1.54 e Å3
4281 reflectionsΔρmin = 0.89 e Å3
310 parameters
Special details top

Experimental. The elemental analysis was carried out on a Perkin–Elmer 240?C. Infrared spectra were recorded from KBr discs in the range of 4000400?cm-1 on a VECTOR-22 spectrometer.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.75392 (4)0.99618 (19)0.00235 (7)0.0223 (3)
Er10.807097 (16)1.03018 (7)0.23411 (3)0.02228 (15)
Er21.003527 (15)0.76470 (7)0.38941 (3)0.01919 (14)
C10.6683 (3)1.1134 (14)0.0793 (6)0.018 (2)
C20.6866 (3)1.1376 (16)0.0026 (6)0.0235 (13)
C30.6713 (3)1.2018 (14)0.0364 (6)0.022 (3)
H30.64371.24640.01950.027*
C40.7078 (3)1.1832 (15)0.1070 (5)0.021 (3)
C50.7157 (4)1.2328 (17)0.1785 (6)0.027 (3)
N10.7288 (3)1.0917 (12)0.0431 (4)0.0235 (13)
N20.7422 (3)1.1173 (12)0.1114 (4)0.0235 (13)
O10.6961 (2)1.0535 (10)0.0904 (3)0.0224 (18)
O20.6304 (2)1.1490 (11)0.1273 (4)0.032 (2)
O30.7505 (2)1.1632 (11)0.2324 (4)0.035 (2)
O40.6889 (2)1.3355 (11)0.1785 (4)0.030 (2)
C60.8205 (3)0.8548 (15)0.0056 (6)0.0215 (18)
C70.8382 (3)0.8709 (14)0.0706 (6)0.0215 (18)
C80.8769 (4)0.8305 (15)0.1366 (6)0.032 (3)
H80.90220.78020.14490.039*
C90.8691 (3)0.8802 (15)0.1867 (6)0.023 (3)
C100.8952 (3)0.8658 (15)0.2658 (6)0.023 (3)
N30.8102 (3)0.9429 (12)0.0832 (4)0.023 (2)
N40.8285 (3)0.9498 (12)0.1537 (5)0.024 (2)
O50.7792 (2)0.8912 (10)0.0494 (4)0.0279 (19)
O60.8425 (2)0.8092 (10)0.0271 (4)0.0287 (19)
O70.8764 (2)0.9096 (11)0.2951 (4)0.030 (2)
O80.9339 (2)0.8076 (10)0.2994 (4)0.0276 (19)
C111.00000.892 (2)0.25000.0266 (8)
C121.00000.668 (2)0.25000.0266 (8)
C130.9952 (4)1.0891 (14)0.4771 (6)0.0266 (8)
O90.7736 (2)0.7417 (11)0.1827 (4)0.036 (2)
H9A0.76320.68560.20660.043*
H9B0.74950.76460.13560.043*
O100.8408 (2)1.2042 (10)0.3435 (4)0.036 (2)
H10A0.83681.16010.37810.043*
H10B0.86951.24800.36570.043*
O110.8260 (2)1.3370 (11)0.2208 (4)0.042 (2)
H11A0.80641.37760.17340.050*
H11B0.85501.33040.23640.050*
O121.0016 (2)0.9713 (10)0.3011 (4)0.0266 (8)
O131.0062 (2)0.5922 (9)0.3046 (4)0.0266 (8)
O140.9925 (2)1.0680 (9)0.4205 (4)0.0266 (8)
O151.0096 (2)0.7572 (10)0.4989 (4)0.0266 (8)
O160.9640 (2)0.4938 (10)0.3838 (4)0.0316 (19)
H16A0.98090.43090.42870.038*
H16B0.95810.41130.34620.038*
O171.0567 (2)0.5282 (11)0.4596 (4)0.037 (2)
H17A1.07140.55860.50880.044*
H17B1.07720.52660.44880.044*
O181.0706 (2)0.9117 (10)0.4474 (4)0.040 (2)
H18A1.08980.90230.49820.048*
H18B1.08640.87430.42940.048*
O190.9306 (3)0.2694 (12)0.2718 (4)0.065 (3)
H19A0.91230.32550.22570.077*
H19B0.95120.20340.26930.077*
O200.8911 (3)0.5464 (13)0.3839 (6)0.081 (4)
H20A0.90240.65150.37430.097*
H20B0.86680.58470.38280.097*
O211.0688 (2)1.2537 (10)0.3914 (4)0.0312 (19)
H21A1.08661.30210.37900.037*
H21B1.04001.23200.35050.037*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0202 (7)0.0318 (8)0.0155 (7)0.0033 (7)0.0108 (6)0.0003 (7)
Er10.0190 (3)0.0342 (3)0.0140 (3)0.0012 (3)0.0098 (2)0.0018 (2)
Er20.0205 (3)0.0224 (3)0.0154 (3)0.0021 (2)0.0109 (2)0.0003 (2)
C10.023 (6)0.018 (6)0.020 (7)0.006 (5)0.017 (6)0.009 (5)
C20.018 (3)0.038 (4)0.015 (3)0.000 (3)0.010 (3)0.003 (3)
C30.016 (6)0.028 (7)0.025 (7)0.009 (5)0.013 (6)0.002 (5)
C40.013 (6)0.037 (7)0.014 (6)0.000 (5)0.007 (5)0.005 (5)
C50.030 (7)0.038 (8)0.022 (7)0.001 (6)0.020 (6)0.003 (6)
N10.018 (3)0.038 (4)0.015 (3)0.000 (3)0.010 (3)0.003 (3)
N20.018 (3)0.038 (4)0.015 (3)0.000 (3)0.010 (3)0.003 (3)
O10.020 (4)0.031 (5)0.016 (4)0.009 (3)0.011 (4)0.007 (3)
O20.023 (5)0.050 (5)0.020 (5)0.015 (4)0.010 (4)0.008 (4)
O30.029 (5)0.062 (6)0.015 (4)0.013 (4)0.012 (4)0.003 (4)
O40.024 (4)0.052 (6)0.013 (4)0.014 (4)0.010 (4)0.002 (4)
C60.024 (5)0.019 (4)0.018 (5)0.001 (4)0.010 (4)0.003 (4)
C70.024 (5)0.019 (4)0.018 (5)0.001 (4)0.010 (4)0.003 (4)
C80.035 (8)0.034 (8)0.030 (8)0.005 (6)0.020 (7)0.000 (6)
C90.017 (6)0.024 (7)0.030 (7)0.008 (5)0.015 (6)0.002 (5)
C100.024 (7)0.028 (7)0.021 (7)0.009 (5)0.014 (6)0.003 (5)
N30.019 (5)0.035 (6)0.015 (5)0.006 (4)0.010 (5)0.005 (4)
N40.025 (5)0.027 (6)0.023 (6)0.009 (4)0.015 (5)0.012 (4)
O50.020 (4)0.049 (5)0.012 (4)0.001 (4)0.008 (4)0.006 (4)
O60.024 (4)0.042 (5)0.023 (5)0.001 (4)0.016 (4)0.009 (4)
O70.021 (4)0.050 (6)0.021 (5)0.005 (4)0.014 (4)0.010 (4)
O80.020 (4)0.031 (5)0.030 (5)0.007 (4)0.013 (4)0.004 (4)
C110.0407 (19)0.022 (2)0.023 (2)0.0000.0221 (18)0.000
C120.0407 (19)0.022 (2)0.023 (2)0.0000.0221 (18)0.000
C130.0407 (19)0.022 (2)0.023 (2)0.0000.0221 (18)0.000
O90.042 (5)0.048 (5)0.022 (5)0.011 (4)0.021 (4)0.004 (4)
O100.033 (5)0.055 (6)0.024 (5)0.014 (4)0.019 (4)0.002 (4)
O110.046 (5)0.056 (6)0.025 (5)0.008 (4)0.022 (5)0.002 (4)
O120.0407 (19)0.022 (2)0.023 (2)0.0000.0221 (18)0.000
O130.0407 (19)0.022 (2)0.023 (2)0.0000.0221 (18)0.000
O140.0407 (19)0.022 (2)0.023 (2)0.0000.0221 (18)0.000
O150.0407 (19)0.022 (2)0.023 (2)0.0000.0221 (18)0.000
O160.036 (5)0.032 (5)0.018 (4)0.000 (4)0.010 (4)0.011 (4)
O170.037 (5)0.050 (6)0.021 (5)0.014 (4)0.016 (4)0.005 (4)
O180.022 (4)0.050 (6)0.040 (6)0.004 (4)0.013 (5)0.001 (4)
O190.070 (7)0.061 (7)0.027 (5)0.022 (6)0.008 (5)0.001 (5)
O200.065 (7)0.068 (7)0.140 (11)0.021 (6)0.077 (8)0.041 (7)
O210.023 (4)0.035 (5)0.040 (5)0.006 (4)0.022 (4)0.010 (4)
Geometric parameters (Å, º) top
Cu1—N11.887 (8)C6—C71.456 (14)
Cu1—N31.907 (8)C7—N31.343 (12)
Cu1—O51.945 (7)C7—C81.385 (14)
Cu1—O11.964 (6)C8—C91.379 (14)
Cu1—Er14.5260 (18)C8—H80.9297
Cu1—Er28.558 (2)C9—N41.347 (12)
Er1—O92.295 (7)C9—C101.470 (14)
Er1—O72.295 (7)C10—O81.260 (11)
Er1—O32.310 (7)C10—O71.262 (11)
Er1—O112.323 (7)N3—N41.330 (11)
Er1—O4i2.338 (7)C11—O121.254 (9)
Er1—O102.366 (7)C11—O12iii1.254 (9)
Er1—N42.459 (8)C11—C121.557 (19)
Er1—N22.492 (8)C12—O131.240 (8)
Er1—Er26.3657 (16)C12—O13iii1.240 (8)
Er2—O82.222 (7)C13—O141.242 (11)
Er2—O182.308 (7)C13—O15iv1.258 (11)
Er2—O132.325 (7)C13—C13iv1.518 (19)
Er2—O142.336 (7)O9—H9A0.9219
Er2—O172.356 (7)O9—H9B0.9328
Er2—O162.360 (7)O10—H10A0.9333
Er2—O152.368 (6)O10—H10B0.9413
Er2—O122.438 (7)O11—H11A0.9281
C1—O21.221 (11)O11—H11B0.9366
C1—O11.285 (10)O15—C13iv1.258 (11)
C1—C21.465 (14)O16—H16A0.9400
C2—N11.342 (12)O16—H16B0.9425
C2—C31.385 (12)O17—H17A0.9406
C3—C41.387 (13)O17—H17B0.9430
C3—H30.9301O18—H18A0.9427
C4—N21.328 (11)O18—H18B0.9363
C4—C51.514 (13)O19—H19A0.9419
C5—O41.240 (11)O19—H19B0.9322
C5—O31.261 (12)O20—H20A0.9349
N1—N21.337 (11)O20—H20B0.9414
O4—Er1ii2.338 (7)O21—H21A0.9319
C6—O61.227 (11)O21—H21B0.9458
C6—O51.299 (12)
N1—Cu1—N397.3 (4)N1—C2—C1114.9 (9)
N1—Cu1—O5178.5 (3)C3—C2—C1135.8 (10)
N3—Cu1—O582.8 (3)C2—C3—C4102.1 (8)
N1—Cu1—O182.6 (3)C2—C3—H3129.0
N3—Cu1—O1179.5 (3)C4—C3—H3129.0
O5—Cu1—O197.2 (3)N2—C4—C3113.0 (9)
N1—Cu1—Er149.1 (3)N2—C4—C5115.1 (9)
N3—Cu1—Er148.4 (2)C3—C4—C5131.8 (9)
O5—Cu1—Er1130.9 (2)O4—C5—O3127.8 (10)
O1—Cu1—Er1131.58 (19)O4—C5—C4118.7 (10)
O9—Er1—O795.0 (3)O3—C5—C4113.6 (10)
O9—Er1—O396.3 (3)N2—N1—C2110.3 (8)
O7—Er1—O3151.3 (2)N2—N1—Cu1135.5 (7)
O9—Er1—O11148.8 (3)C2—N1—Cu1114.2 (7)
O7—Er1—O1194.8 (3)C4—N2—N1105.4 (8)
O3—Er1—O1189.0 (3)C4—N2—Er1116.8 (7)
O9—Er1—O4i70.8 (2)N1—N2—Er1137.0 (6)
O7—Er1—O4i77.8 (2)C1—O1—Cu1114.6 (6)
O3—Er1—O4i81.1 (3)C5—O3—Er1127.0 (7)
O11—Er1—O4i140.3 (3)C5—O4—Er1ii133.2 (7)
O9—Er1—O10141.4 (2)O6—C6—O5122.4 (10)
O7—Er1—O1079.9 (3)O6—C6—C7123.3 (10)
O3—Er1—O1074.9 (2)O5—C6—C7114.3 (10)
O11—Er1—O1069.6 (2)N3—C7—C8108.1 (10)
O4i—Er1—O1070.8 (2)N3—C7—C6114.3 (9)
O9—Er1—N475.3 (3)C8—C7—C6137.6 (11)
O7—Er1—N467.2 (3)C9—C8—C7104.3 (10)
O3—Er1—N4141.4 (3)C9—C8—H8128.1
O11—Er1—N481.4 (3)C7—C8—H8127.6
O4i—Er1—N4128.1 (3)N4—C9—C8110.6 (10)
O10—Er1—N4133.7 (3)N4—C9—C10116.3 (10)
O9—Er1—N275.5 (3)C8—C9—C10133.1 (10)
O7—Er1—N2143.1 (3)O8—C10—O7124.8 (10)
O3—Er1—N265.5 (3)O8—C10—C9118.7 (10)
O11—Er1—N278.9 (3)O7—C10—C9116.6 (10)
O4i—Er1—N2128.9 (3)N4—N3—C7110.5 (8)
O10—Er1—N2129.2 (3)N4—N3—Cu1135.5 (7)
N4—Er1—N275.9 (3)C7—N3—Cu1113.9 (7)
O9—Er1—Cu167.49 (17)N3—N4—C9106.4 (8)
O7—Er1—Cu1105.10 (18)N3—N4—Er1138.0 (6)
O3—Er1—Cu1103.59 (18)C9—N4—Er1115.4 (7)
O11—Er1—Cu181.36 (18)C6—O5—Cu1114.1 (7)
O4i—Er1—Cu1138.30 (18)C10—O7—Er1124.4 (7)
O10—Er1—Cu1150.87 (17)C10—O8—Er2159.5 (7)
N4—Er1—Cu138.1 (2)O12—C11—O12iii128.1 (14)
N2—Er1—Cu138.12 (19)O12—C11—C12115.9 (7)
O8—Er2—O18141.8 (3)O12iii—C11—C12115.9 (7)
O8—Er2—O1384.5 (2)O13—C12—O13iii129.7 (14)
O18—Er2—O1397.9 (3)O13—C12—C11115.2 (7)
O8—Er2—O1480.4 (2)O13iii—C12—C11115.2 (7)
O18—Er2—O1476.0 (2)O14—C13—O15iv127.2 (9)
O13—Er2—O14144.9 (2)O14—C13—C13iv117.2 (12)
O8—Er2—O17143.5 (3)O15iv—C13—C13iv115.6 (11)
O18—Er2—O1772.6 (3)Er1—O9—H9A111.5
O13—Er2—O1776.8 (2)Er1—O9—H9B108.5
O14—Er2—O17130.9 (3)H9A—O9—H9B106.5
O8—Er2—O1671.6 (2)Er1—O10—H10A117.9
O18—Er2—O16146.6 (2)Er1—O10—H10B118.5
O13—Er2—O1682.9 (2)H10A—O10—H10B110.7
O14—Er2—O16121.1 (2)Er1—O11—H11A109.4
O17—Er2—O1675.2 (2)Er1—O11—H11B106.7
O8—Er2—O15108.1 (2)H11A—O11—H11B115.0
O18—Er2—O1590.4 (3)C11—O12—Er2118.0 (8)
O13—Er2—O15147.1 (2)C12—O13—Er2122.6 (8)
O14—Er2—O1568.0 (2)C13—O14—Er2120.0 (6)
O17—Er2—O1575.5 (2)C13iv—O15—Er2119.1 (6)
O16—Er2—O1573.1 (2)Er2—O16—H16A107.6
O8—Er2—O1273.2 (2)Er2—O16—H16B109.9
O18—Er2—O1272.9 (3)H16A—O16—H16B110.9
O13—Er2—O1267.2 (2)Er2—O17—H17A109.4
O14—Er2—O1278.2 (2)Er2—O17—H17B109.8
O17—Er2—O12125.0 (2)H17A—O17—H17B107.9
O16—Er2—O12135.3 (2)Er2—O18—H18A118.4
O15—Er2—O12145.1 (2)Er2—O18—H18B113.3
O2—C1—O1124.0 (10)H18A—O18—H18B106.7
O2—C1—C2122.4 (9)H19A—O19—H19B103.7
O1—C1—C2113.5 (9)H20A—O20—H20B110.2
N1—C2—C3109.3 (9)H21A—O21—H21B112.3
Symmetry codes: (i) x+3/2, y1/2, z+1/2; (ii) x+3/2, y+1/2, z+1/2; (iii) x+2, y, z+1/2; (iv) x+2, y+2, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O9—H9A···O3i0.921.752.630 (9)159
O9—H9B···O5v0.931.932.646 (10)132
O10—H10A···O6vi0.932.052.910 (9)152
O10—H10B···O20vii0.942.182.842 (11)127
O11—H11A···O1viii0.931.902.683 (9)141
O11—H11B···O19vii0.942.523.447 (11)173
O16—H16A···O15ix0.941.972.839 (9)154
O16—H16B···O190.941.702.604 (11)161
O17—H17A···O20ix0.942.122.945 (12)146
O19—H19A···O2v0.941.862.762 (11)161
O19—H19B···O12x0.932.273.141 (11)155
O20—H20A···O70.932.323.075 (11)138
O20—H20B···O4i0.942.453.194 (11)136
O21—H21A···O2xi0.931.782.687 (9)165
O21—H21B···O120.952.182.906 (9)133
Symmetry codes: (i) x+3/2, y1/2, z+1/2; (v) x+3/2, y+3/2, z; (vi) x, y+2, z+1/2; (vii) x, y+1, z; (viii) x+3/2, y+5/2, z; (ix) x+2, y+1, z+1; (x) x, y1, z; (xi) x+1/2, y+5/2, z+1/2.

Experimental details

Crystal data
Chemical formula[CuEr2(C5HN2O4)2(C2O4)(H2O)6]·3H2O
Mr954.38
Crystal system, space groupMonoclinic, C2/c
Temperature (K)295
a, b, c (Å)37.829 (9), 6.9457 (16), 22.772 (5)
β (°) 125.607 (4)
V3)4864.6 (19)
Z8
Radiation typeMo Kα
µ (mm1)7.81
Crystal size (mm)0.4 × 0.3 × 0.2
Data collection
DiffractometerBruker SMART APEX CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2000)
Tmin, Tmax0.07, 0.21
No. of measured, independent and
observed [I > 2σ(I)] reflections
11670, 4281, 3070
Rint0.074
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.080, 0.86
No. of reflections4281
No. of parameters310
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.54, 0.89

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected geometric parameters (Å, º) top
Cu1—N11.887 (8)Er1—N42.459 (8)
Cu1—N31.907 (8)Er1—N22.492 (8)
Cu1—O51.945 (7)Er1—Er26.3657 (16)
Cu1—O11.964 (6)Er2—O82.222 (7)
Cu1—Er14.5260 (18)Er2—O182.308 (7)
Cu1—Er28.558 (2)Er2—O132.325 (7)
Er1—O92.295 (7)Er2—O142.336 (7)
Er1—O72.295 (7)Er2—O172.356 (7)
Er1—O32.310 (7)Er2—O162.360 (7)
Er1—O112.323 (7)Er2—O152.368 (6)
Er1—O4i2.338 (7)Er2—O122.438 (7)
Er1—O102.366 (7)
N1—Cu1—N397.3 (4)O9—Er1—Cu167.49 (17)
N3—Cu1—O582.8 (3)O7—Er1—Cu1105.10 (18)
N1—Cu1—O182.6 (3)O3—Er1—Cu1103.59 (18)
O5—Cu1—O197.2 (3)O11—Er1—Cu181.36 (18)
N1—Cu1—Er149.1 (3)O4i—Er1—Cu1138.30 (18)
N3—Cu1—Er148.4 (2)O10—Er1—Cu1150.87 (17)
O5—Cu1—Er1130.9 (2)N4—Er1—Cu138.1 (2)
O1—Cu1—Er1131.58 (19)N2—Er1—Cu138.12 (19)
O9—Er1—O795.0 (3)O8—Er2—O18141.8 (3)
O9—Er1—O396.3 (3)O8—Er2—O1384.5 (2)
O7—Er1—O3151.3 (2)O18—Er2—O1397.9 (3)
O9—Er1—O11148.8 (3)O8—Er2—O1480.4 (2)
O7—Er1—O1194.8 (3)O18—Er2—O1476.0 (2)
O3—Er1—O1189.0 (3)O13—Er2—O14144.9 (2)
O9—Er1—O4i70.8 (2)O8—Er2—O17143.5 (3)
O7—Er1—O4i77.8 (2)O18—Er2—O1772.6 (3)
O3—Er1—O4i81.1 (3)O13—Er2—O1776.8 (2)
O11—Er1—O4i140.3 (3)O14—Er2—O17130.9 (3)
O9—Er1—O10141.4 (2)O8—Er2—O1671.6 (2)
O7—Er1—O1079.9 (3)O18—Er2—O16146.6 (2)
O3—Er1—O1074.9 (2)O13—Er2—O1682.9 (2)
O11—Er1—O1069.6 (2)O14—Er2—O16121.1 (2)
O4i—Er1—O1070.8 (2)O17—Er2—O1675.2 (2)
O9—Er1—N475.3 (3)O8—Er2—O15108.1 (2)
O7—Er1—N467.2 (3)O18—Er2—O1590.4 (3)
O3—Er1—N4141.4 (3)O13—Er2—O15147.1 (2)
O11—Er1—N481.4 (3)O14—Er2—O1568.0 (2)
O4i—Er1—N4128.1 (3)O17—Er2—O1575.5 (2)
O10—Er1—N4133.7 (3)O16—Er2—O1573.1 (2)
O9—Er1—N275.5 (3)O8—Er2—O1273.2 (2)
O7—Er1—N2143.1 (3)O18—Er2—O1272.9 (3)
O3—Er1—N265.5 (3)O13—Er2—O1267.2 (2)
O11—Er1—N278.9 (3)O14—Er2—O1278.2 (2)
O4i—Er1—N2128.9 (3)O17—Er2—O12125.0 (2)
O10—Er1—N2129.2 (3)O16—Er2—O12135.3 (2)
N4—Er1—N275.9 (3)O15—Er2—O12145.1 (2)
Symmetry code: (i) x+3/2, y1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O9—H9A···O3i0.921.752.630 (9)158.5
O9—H9B···O5ii0.931.932.646 (10)132.0
O10—H10A···O6iii0.932.052.910 (9)151.9
O10—H10B···O20iv0.942.182.842 (11)126.7
O11—H11A···O1v0.931.902.683 (9)141.0
O11—H11B···O19iv0.942.523.447 (11)172.6
O16—H16A···O15vi0.941.972.839 (9)153.7
O16—H16B···O190.941.702.604 (11)160.9
O17—H17A···O20vi0.942.122.945 (12)146.4
O19—H19A···O2ii0.941.862.762 (11)160.7
O19—H19B···O12vii0.932.273.141 (11)155.0
O20—H20A···O70.932.323.075 (11)138.0
O20—H20B···O4i0.942.453.194 (11)136.0
O21—H21A···O2viii0.931.782.687 (9)165.1
O21—H21B···O120.952.182.906 (9)132.8
Symmetry codes: (i) x+3/2, y1/2, z+1/2; (ii) x+3/2, y+3/2, z; (iii) x, y+2, z+1/2; (iv) x, y+1, z; (v) x+3/2, y+5/2, z; (vi) x+2, y+1, z+1; (vii) x, y1, z; (viii) x+1/2, y+5/2, z+1/2.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds