Download citation
Download citation
link to html
The structures of 4-dimethyl­amino-β-nitro­styrene (DANS), C10H12N2O2, and 4-dimethyl­amino-β-ethyl-β-nitro­styrene (DAENS), C12H16N2O2, have been solved at T = 100 K. The structure solution for DANS was complicated by the presence of a static disorder, characterized by a misorientation of 17% of the mol­ecules. The mol­ecule of DANS is almost planar, indicating significant conjugation, with a push–pull effect through the styrene skeleton extending up to the terminal substituents and enhancing the dipole moment. As a consequence of this conjugation, the hexa­gonal ring displays a quinoidal character; the lengths of the C—N [1.3595 (15) Å] and C—C [1.448 (2) Å] bonds adjacent to the benzene ring are shorter than single bonds. The mol­ecules are stacked in dimers with anti­parallel dipoles. In contrast, the mol­ecule of DAENS is not planar. The ethyl substituent pushes the nitro­propene group out of the benzene plane, with a torsion angle of −21.9 (3). Nevertheless, the mol­ecule remains conjugated, with a shortening of the same bonds as in DANS.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270106025819/hj3016sup1.cif
Contains datablocks global, I, II

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270106025819/hj3016Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270106025819/hj3016IIsup3.hkl
Contains datablock II

CCDC references: 621286; 621287

Comment top

A large number of conjugated organic compounds have been studied experimentally and theoretically in order to establish the structure–property relationships inducing large nonlinear optical (NLO) properties. Among these, β-nitrostyrene derivatives have been very attractive (Oudar, 1977; Zyss, 1979, Dulcic et al., 1981; Cheng, Tam, Marder et al., 1991 or Cheng, Tam, Stevenson et al., 1991?; Keshari et al., 1993). Such work has tried to determine the role and importance of the number of conjugated double bonds, the electronic biasing strengths of various donor and acceptor groups, charge-transfer enhancement, and the pattern and polarity of multiple substituents. The results of these studies reveal that very large second-order nonlinearities can be obtained with relatively long conjugated molecules containing strongly interacting donor–acceptor groups. For compound (I), 4-dimethylamino-β-nitrostyrene, the NLO properties found for dilute solutions are very close to those for 4-dimethylamino-4'-nitrostilbene, usually quoted as an example of a conjugated molecule which exhibits very large nonlinearities (Chemla & Zyss, 1987; Cheng, Tam, Marder et al., 1991 or Cheng, Tam, Stevenson et al., 1991?). However, a strong steric effect of the methyl substituent was observed in a series of β-methyl-β-nitrostyrene derivatives (Cho et al., 1996). In particular, the distortion from planarity caused by steric repulsion is able to reduce the optical nonlinearities to nearly zero.

We present here the structure of (I) in order to establish the influence of charge transfer upon the molecular geometry, which affects the strength of the NLO properties. In parallel, in order to analyse the importance of steric effects upon conjugation, we also report the structure of (II), 4-dimethylamino-β-ethyl-β-nitrostyrene (Pianka, 1963). For both compounds, data collection at 100 K has allowed an increase up to an acceptable level of the ratio of the number of independent observable reflections to the number of least-squares parameters, compared with the data collection at 293 K. Furthermore, for (I) it appears that the structure is disordered. The static disorder consists of a 180° rotation of 17% of the molecules around their long axis and is similar to that found in trans-stilbene and trans-azobenzene (Brown, 1966a or b?; Bouwstra et al., 1983; Finder et al., 1974). In this paper, we report the molecular geometry and crystal packing of (I), obviously only with regard to the molecule with the most probable orientation, for which atomic displacement parameters have been refined anisotropically.

The molecular structure of (I) is shown in Fig. 1, while selected geometric parameters are given in Table 1. The molecule is almost planar, indicating a high degree of conjugation, with a strong push–pull effect between the nitro and dimethylamine groups through the styrene skeleton. Excluding the dimethylamine group (atom N1 has slightly pyramidal bonds), the highest mean square deviation from calculated mean plane is 0.014 (2) Å. The dihedral angle between the mean planes of these two parts of the molecule is 1.4 (2)°. The sum of the bond angles around N1 is 359.2 (3)°, close to 360°, revealing the delocalization of the lone pair toward the N1—C1 bond, which is too short [1.3595 (15) Å] for a single N—C bond. Conjugation through the styrene induces the quinoidal character of the hexagonal ring: the C21—C31 [1.390 (2) Å] and C51—C61 [1.373 (2) Å] bond lengths, roughly parallel to the molecular dipole, are significantly shorter than C1—C21 [1.418 (2) Å], C1—C61 [1.423 (2) Å], C31—C41 [1.4045 (17) Å] and C41—C51 [1.4057 (19) Å]. For the same reason, the C41—C71 bond [1.448 (2) Å] is shorter than a single bond.

A perspective view of (II) is shown in Fig. 2 and selected geometric parameters are given in Table 3. Several differences from the conformation of (I) are found. The most striking feature is the C5—C4—C7—C8 torsion angle of -21.9 (3)°, which pushes the nitro and ethyl substituent groups out of the benzene ring plane. The main consequence of this torsion is to decrease the conjugation between the C7C8 double bond and the dimethylaminobenzene moiety, and hence explains the hypsochromic effect for (II), which is yellow, not red like (I). Nevertheless, a noticeable conjugation remains, evidenced by the shortening of several bonds [C2—C3 = 1.383 (2), C5—C6 = 1.391 (3), N1—C1 = 1.369 (2) and C4—C7 = 1.450 (2) Å]. The conjugation also explains why the N atom of the dimethylamine moiety has lost all pyramidal character [the sum of the bond angles around the N1 atom is 359.02 (5)°].

The aforementioned steric hindrance of the ethyl group on the molecular planarity of (II) must be compared with that of the methyl group in β-methyl-β-nitrostyrene compounds substituted by donors of various strengths on the benzene ring. The value of the torsion angle between the phenyl and nitropropene groups in 4-dimethylamino-β-methyl-β-nitrostyrene, with the same donor as in (II), is only 1.6 (8)° (Brito et al., 1991), while it is 27.1° in the 4-methoxy analogue (Boys et al., 1993) and 23.7° in the 4-hydroxy-3-methoxy (Zabel et al., 1980) analogue. These values illustrate how molecular conjugation, or in other words the planarity of the molecule, is counter-balanced between steric effects and the strength of donors.

In the crystal structure, molecules of (I) are stacked as dimers, interacting in an antiferroelectric manner, and consequently no second-order NLO effect is observed in the solid state. The distance between the mean planes of the dimer is 3.276 (2) Å, while the smallest distance between atoms C1 and N21 is 3.322 (2) Å. The dimers are organized in chains along the c axis (Fig. 3) via C—H···O interactions between donor and acceptor groups (Table 2). Each chain of dimers is symmetrically surrounded by four other chains, within which the molecular planes are almost perpendicular to the molecular plane of the central chain.

The packing of molecules of (II) in the crystal structure is realised by interactions between O atoms and methyl groups (see Table 4 and Fig. 4). The asymmetric interactions of the O atoms with the methyl groups of the dimethylamine moeity explain the difference between torsion angles C2—C1—N1—C9 = 10.4 (3)° and C6—C1—N1—C10 = -1.4 (3)°. Unfortunately in this non-centrosymmetric structure, the non-planarity of the molecules does not allow an efficient NLO effect.

Experimental top

The synthesis of both materials consists of the condensation of 4-dimethylaminobenzaldehyde (DABA) with a nitroolefine. To obtain (I), a mixture of DABA (0.01 mol) with nitromethane (0.03 mol) was used at 373 K, with a few drops of butylamine. For (II), the synthesis begins with the condensation of DABA with butylamine to obtain the 4-dimethylaminobenzylidene butylamine. After separation, this butylamine reacts with nitromethane in the presence of acetic acid to give the nitrostyrene. Single crystals of (I) were grown by slow evaporation of solution in toluene. Single crystals of (II) were obtained from a saturated solution in ethanol prepared at room temparature and slowly evaporated in a refrigerator [m.p. 390 K for (I) and 361 K for (II)].

Refinement top

The structure of (I) was first refined without consideration of any static disorder, giving a final R = 0.067 and Δρmax = 1.19 e Å-3. Fourier difference maps clearly reveal two peaks on both sides of the ethylenic C71C81 double bond and approximately equidistant from it. These two peaks were interpreted as C atoms of the ethylenic double bond belonging to a second misoriented molecule of (I). The occupancy ratio was initially set to 0.85:0.15 for both disordered molecules and was refined at each refinement step. Geometric soft restraints were simultaneously applied on distances and angles of the disordered moieties, according to values found from density functional theory quantum chemistry calculations. For the final cycles of refinement, only the most probable molecule was refined anisotropically, and an equivalent isotropic displacement parameter was assigned for the atoms of the misoriented molecule. All H atoms were located geometrically and treated as riding, with C—H = 1.00 Å, and refined isotropically using equivalence constraints.

Computing details top

Data collection: SMART (Bruker, 2001) for (I); COLLECT (Nonius, 2000) for (II). Cell refinement: SMART for (I); DIRAX (Duisenberg et al., 2000) for (II). Data reduction: SAINT (Bruker, 2001) for (I); EVALCCD (Duisenberg et al., 2003) for (II). For both compounds, program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: CRYSTALS (Watkin et al., 2001); molecular graphics: CAMERON (Watkin et al., 1996); software used to prepare material for publication: CRYSTALS.

Figures top
[Figure 1] Fig. 1. A composite view of the disordered molecule of (I) at 100 K, showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are represented by circles of arbitrary radii. The labels of the H atoms have been omitted for the sake of clarity.
[Figure 2] Fig. 2. A view of the molecular unit of (II) at 100 K, showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are represented by circles of arbitrary radii.
[Figure 3] Fig. 3. A crystal packing diagram of part of (I) at 100 K, along the [321] direction, showing the formation of a chain of dimers surrounded by half a chain of two neighbours. C—H···O contacts are represented by dotted lines. For the sake of clarity, the molecule with 17% of the disorder and H atoms not involved in hydrogen bonding have been omitted.
[Figure 4] Fig. 4. A crystal packing diagram of (II) at 100 K, along [100] slightly rotated around the c axis, showing asymmetric C—H···O hydrogen bond interactions (dotted lines). For the sake of clarity, H atoms not involved in the hydrogen bonds shown have been omitted.
(I) 4-dimethyamino-β-nitrostyrene top
Crystal data top
C10H12N2O2Dx = 1.368 Mg m3
Mr = 192.22Melting point: 390 K
OrthorhombicPbcaMo Kα radiation, λ = 0.71073 Å
a = 10.1460 (2) ÅCell parameters from 5978 reflections
b = 7.3091 (2) Åθ = 2.6–27.5°
c = 25.1662 (7) ŵ = 0.10 mm1
V = 1866.28 (8) Å3T = 100 K
Z = 8Plate, dark red
F(000) = 816.020.26 × 0.18 × 0.16 mm
Data collection top
Bruker APEXII
diffractometer
2137 independent reflections
Radiation source: X-ray tube1488 reflections with I > 2σ(I)
Horizontally mounted graphite crystal monochromatorRint = 0.032
CCD rotation images, thick slices scansθmax = 27.5°, θmin = 2.6°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2002)
h = 139
Tmin = 0.975, Tmax = 0.985k = 99
20691 measured reflectionsl = 3230
Refinement top
Refinement on F60 restraints
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.033 Prince (1982) modified Chebychev polynomial with five parameters (Watkin, 1994): 1.34 1.99 1.39 0.636 0.244
wR(F2) = 0.037(Δ/σ)max = 0.001
S = 1.17Δρmax = 0.22 e Å3
1488 reflectionsΔρmin = 0.21 e Å3
161 parameters
Crystal data top
C10H12N2O2V = 1866.28 (8) Å3
Mr = 192.22Z = 8
OrthorhombicPbcaMo Kα radiation
a = 10.1460 (2) ŵ = 0.10 mm1
b = 7.3091 (2) ÅT = 100 K
c = 25.1662 (7) Å0.26 × 0.18 × 0.16 mm
Data collection top
Bruker APEXII
diffractometer
2137 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2002)
1488 reflections with I > 2σ(I)
Tmin = 0.975, Tmax = 0.985Rint = 0.032
20691 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.03360 restraints
wR(F2) = 0.037H-atom parameters constrained
S = 1.17Δρmax = 0.22 e Å3
1488 reflectionsΔρmin = 0.21 e Å3
161 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O110.30077 (12)0.52197 (19)0.33507 (6)0.03440.830 (3)
O120.3140 (7)0.5475 (9)0.3566 (3)0.0208 (9)*0.170 (3)
O210.46427 (19)0.7099 (3)0.34689 (6)0.03350.830 (3)
O220.4803 (10)0.7212 (14)0.3351 (3)0.0208 (9)*0.170 (3)
N10.39672 (10)0.73485 (14)0.67920 (4)0.0208
N210.37398 (16)0.6127 (2)0.36439 (5)0.02240.830 (3)
N220.4071 (8)0.6536 (13)0.3677 (3)0.0208 (9)*0.170 (3)
C10.40288 (10)0.71801 (15)0.62546 (5)0.0176
C90.49764 (12)0.83659 (19)0.70776 (5)0.0251
C100.30262 (13)0.62660 (19)0.70947 (5)0.0290
C210.4998 (3)0.8158 (4)0.59644 (7)0.01700.830 (3)
C220.4936 (15)0.796 (3)0.5895 (4)0.0208 (9)*0.170 (3)
C310.50576 (15)0.8036 (2)0.54137 (6)0.01690.830 (3)
C320.4733 (9)0.7724 (14)0.5363 (3)0.0208 (9)*0.170 (3)
C410.41664 (14)0.6977 (2)0.51173 (5)0.01640.830 (3)
C420.3747 (8)0.6570 (12)0.5184 (2)0.0208 (9)*0.170 (3)
C510.32284 (15)0.5975 (2)0.54076 (6)0.01810.830 (3)
C520.2905 (8)0.5712 (12)0.5539 (3)0.0208 (9)*0.170 (3)
C610.31540 (19)0.6071 (3)0.59517 (6)0.01900.830 (3)
C620.3010 (12)0.600 (2)0.6069 (3)0.0208 (9)*0.170 (3)
C710.42780 (13)0.69515 (19)0.45437 (6)0.01850.830 (3)
C720.3606 (7)0.6261 (9)0.4620 (2)0.0208 (9)*0.170 (3)
C810.35170 (14)0.6022 (2)0.42047 (5)0.02090.830 (3)
C820.4317 (6)0.7008 (9)0.4228 (3)0.0208 (9)*0.170 (3)
H910.47750.83440.74670.0336 (13)*
H920.49880.96610.69490.0336 (13)*
H930.58570.77930.70140.0336 (13)*
H1010.31170.65580.74810.0336 (13)*
H1020.32040.49350.70370.0336 (13)*
H1030.21110.65620.69740.0336 (13)*
H2110.56640.89320.61520.0336 (13)*0.830 (3)
H2210.56760.87400.60300.0336 (13)*0.170 (3)
H3110.57460.87360.52150.0336 (13)*0.830 (3)
H3210.53370.83410.51040.0336 (13)*0.170 (3)
H5110.25960.51610.52150.0336 (13)*0.830 (3)
H5210.22230.48430.54030.0336 (13)*0.170 (3)
H6110.24670.53560.61470.0336 (13)*0.830 (3)
H6210.23810.54170.63240.0336 (13)*0.170 (3)
H7100.50000.77170.43890.0336 (13)*0.830 (3)
H7200.28600.53790.45770.0336 (13)*0.170 (3)
H8100.27840.52430.43450.0341 (13)*0.830 (3)
H8200.50170.79210.43160.0341 (13)*0.170 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O110.0339 (6)0.0466 (8)0.0226 (6)0.0082 (6)0.0108 (5)0.0140 (6)
O210.0434 (9)0.0364 (7)0.0208 (8)0.0020 (7)0.0042 (7)0.0038 (7)
N10.0201 (5)0.0233 (5)0.0190 (5)0.0020 (4)0.0023 (4)0.0010 (4)
N210.0250 (9)0.0241 (9)0.0180 (6)0.0082 (7)0.0032 (5)0.0010 (5)
C10.0167 (5)0.0149 (5)0.0211 (5)0.0042 (4)0.0023 (4)0.0004 (4)
C90.0262 (6)0.0323 (7)0.0167 (6)0.0011 (5)0.0023 (4)0.0019 (5)
C100.0277 (6)0.0286 (6)0.0307 (7)0.0006 (6)0.0085 (5)0.0090 (6)
C210.0193 (7)0.0159 (10)0.0159 (8)0.0002 (6)0.0023 (7)0.0027 (7)
C310.0176 (8)0.0167 (8)0.0163 (7)0.0006 (5)0.0038 (5)0.0014 (5)
C410.0176 (7)0.0144 (7)0.0173 (7)0.0035 (5)0.0037 (5)0.0016 (5)
C510.0164 (7)0.0159 (7)0.0219 (8)0.0005 (6)0.0047 (6)0.0020 (6)
C610.0160 (8)0.0165 (7)0.0245 (9)0.0002 (6)0.0015 (7)0.0007 (8)
C710.0195 (7)0.0174 (6)0.0187 (8)0.0040 (5)0.0012 (5)0.0006 (5)
C810.0206 (7)0.0242 (7)0.0178 (7)0.0057 (6)0.0017 (5)0.0012 (5)
Geometric parameters (Å, º) top
O11—N211.2394 (19)C22—H2211.000
O12—N221.254 (7)C31—C411.4045 (17)
O21—N211.240 (2)C31—H3111.000
O22—N221.213 (7)C32—C421.383 (8)
N1—C11.3595 (15)C32—H3211.000
N1—C91.4554 (15)C41—C511.4057 (19)
N1—C101.4554 (15)C41—C711.448 (2)
N21—C811.4313 (19)C42—C521.386 (7)
N22—C821.449 (8)C42—C721.446 (7)
C1—C211.418 (2)C51—C611.373 (2)
C1—C221.413 (8)C51—H5111.000
C1—C611.423 (2)C52—C621.353 (8)
C1—C621.425 (8)C52—H5211.000
C9—H911.000C61—H6111.000
C9—H921.000C62—H6211.000
C9—H931.000C71—C811.336 (2)
C10—H1011.000C71—H7101.000
C10—H1021.000C72—C821.338 (7)
C10—H1031.000C72—H7201.000
C21—C311.390 (2)C81—H8101.000
C21—H2111.000C82—H8201.000
C22—C321.367 (9)
C1—N1—C9120.35 (10)C22—C32—C42120.4 (5)
C1—N1—C10120.11 (10)C22—C32—H321119.118
C9—N1—C10118.73 (10)C42—C32—H321120.437
O21—N21—O11122.53 (15)C31—C41—C51116.55 (12)
O21—N21—C81119.86 (16)C31—C41—C71119.10 (13)
O11—N21—C81117.61 (16)C51—C41—C71124.35 (13)
O12—N22—O22124.1 (7)C32—C42—C52120.8 (5)
O12—N22—C82119.4 (6)C32—C42—C72119.1 (5)
O22—N22—C82116.5 (6)C52—C42—C72120.1 (6)
N1—C1—C21119.90 (11)C41—C51—C61121.93 (13)
N1—C1—C61123.75 (11)C41—C51—H511119.521
C21—C1—C61116.34 (12)C61—C51—H511118.547
N1—C9—H91109.359C42—C52—C62121.1 (5)
N1—C9—H92109.436C42—C52—H521119.452
H91—C9—H92109.476C62—C52—H521119.447
N1—C9—H93109.603C1—C61—C51121.91 (13)
H91—C9—H93109.477C1—C61—H611118.025
H92—C9—H93109.476C51—C61—H611120.059
N1—C10—H101109.432C1—C62—H621120.637
N1—C10—H102109.509C52—C62—H621121.063
H101—C10—H102109.476C41—C71—C81126.72 (14)
N1—C10—H103109.459C41—C71—H710115.910
H101—C10—H103109.475C81—C71—H710117.371
H102—C10—H103109.476C42—C72—C82127.4 (5)
C1—C21—C31120.75 (13)C42—C72—H720106.341
C1—C21—H211120.733C82—C72—H720126.283
C31—C21—H211118.502N21—C81—C71120.71 (14)
C1—C22—C32118.5 (6)N21—C81—H810119.680
C1—C22—H221120.062C71—C81—H810119.605
C32—C22—H221121.316N22—C82—C72121.0 (4)
C21—C31—C41122.46 (13)N22—C82—H820119.649
C21—C31—H311119.781C72—C82—H820119.384
C41—C31—H311117.752
C51—C41—C71—C811.148C71—C81—N21—O210.427
C31—C41—C71—C81179.887C21—C1—N1—C96.750
C41—C71—C81—N21179.863C61—C1—N1—C104.305
C71—C81—N21—O11179.363
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C9—H91···O21i1.002.553.534 (2)169
C9—H93···O11ii1.002.783.419 (2)122
C10—H101···O11iii1.002.793.503 (2)129
Symmetry codes: (i) x, y+3/2, z+1/2; (ii) x+1/2, y+3/2, z+1; (iii) x+1/2, y+1, z+1/2.
(II) 4-dimethyamino-β-ethyl-β-nitrostyrene top
Crystal data top
C12H16N2O2Dx = 1.255 Mg m3
Mr = 220.27Melting point: 385 K
OrthorhombicP212121Mo Kα radiation, λ = 0.71073 Å
a = 5.9641 (1) ÅCell parameters from 5243 reflections
b = 8.4492 (1) Åθ = 2.9–35.0°
c = 23.1400 (4) ŵ = 0.09 mm1
V = 1166.07 (3) Å3T = 100 K
Z = 4Plate, yellow
F(000) = 472.000.45 × 0.34 × 0.28 mm
Data collection top
Nonius KappaCCD area-detector
diffractometer
5077 independent reflections
Radiation source: X-ray tube2017 reflections with I > 3σ(I)
Horizontally mounted graphite crystal monochromatorRint = 0.04
CCD scansθmax = 35.0°, θmin = 3.5°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2002)
h = 59
Tmin = 0.962, Tmax = 0.976k = 1312
14807 measured reflectionsl = 3237
Refinement top
Refinement on FH-atom parameters constrained
Least-squares matrix: full Prince (1982) modified Chebychev polynomial with three parameters (Watkin, 1994): 3.54 -1.10 3.21
R[F2 > 2σ(F2)] = 0.038(Δ/σ)max = 0.001
wR(F2) = 0.039Δρmax = 0.28 e Å3
S = 1.14Δρmin = 0.22 e Å3
2017 reflectionsAbsolute structure: Flack (1983), with 3060 Friedel pairs
148 parametersAbsolute structure parameter: 0.7 (14)
0 restraints
Crystal data top
C12H16N2O2V = 1166.07 (3) Å3
Mr = 220.27Z = 4
OrthorhombicP212121Mo Kα radiation
a = 5.9641 (1) ŵ = 0.09 mm1
b = 8.4492 (1) ÅT = 100 K
c = 23.1400 (4) Å0.45 × 0.34 × 0.28 mm
Data collection top
Nonius KappaCCD area-detector
diffractometer
5077 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2002)
2017 reflections with I > 3σ(I)
Tmin = 0.962, Tmax = 0.976Rint = 0.04
14807 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.038H-atom parameters constrained
wR(F2) = 0.039Δρmax = 0.28 e Å3
S = 1.14Δρmin = 0.22 e Å3
2017 reflectionsAbsolute structure: Flack (1983), with 3060 Friedel pairs
148 parametersAbsolute structure parameter: 0.7 (14)
0 restraints
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.3599 (3)0.32618 (17)0.74674 (6)0.0325
O20.5309 (3)0.44741 (16)0.81591 (6)0.0338
N10.3426 (3)0.15522 (17)1.09331 (7)0.0223
N20.4204 (3)0.33512 (18)0.79755 (7)0.0217
C10.3607 (3)0.06704 (19)1.04390 (8)0.0179
C20.5465 (3)0.03552 (19)1.03515 (8)0.0196
C30.5630 (3)0.1231 (2)0.98484 (8)0.0185
C40.4058 (3)0.11429 (19)0.94029 (7)0.0168
C50.2202 (3)0.01411 (19)0.94958 (8)0.0182
C60.1980 (3)0.0745 (2)0.99990 (7)0.0194
C70.4393 (3)0.21535 (19)0.89041 (8)0.0177
C80.3523 (3)0.20757 (19)0.83686 (8)0.0194
C90.4905 (3)0.1280 (2)1.14227 (8)0.0251
C100.1492 (3)0.2571 (2)1.10196 (9)0.0277
C110.1994 (3)0.08604 (19)0.81058 (8)0.0207
C120.0449 (3)0.1401 (2)0.80929 (9)0.0296
H210.66480.04491.06560.021 (2)*
H310.69400.19580.98020.021 (2)*
H510.10120.00690.91920.021 (2)*
H610.06430.14451.00490.021 (2)*
H710.54470.30570.89680.021 (2)*
H910.45170.20301.17420.0401 (19)*
H920.47230.01671.15620.0401 (19)*
H930.64940.14551.13010.0401 (19)*
H1010.16310.31211.14010.0401 (19)*
H1020.00920.19201.10150.0401 (19)*
H1030.14250.33761.07030.0401 (19)*
H1110.20960.01360.83380.0401 (19)*
H1120.24980.06480.77010.0401 (19)*
H1210.13930.05540.79140.0401 (19)*
H1220.09780.16090.84960.0401 (19)*
H1230.05770.23920.78590.0401 (19)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0423 (9)0.0309 (7)0.0245 (7)0.0051 (6)0.0048 (6)0.0038 (6)
O20.0408 (8)0.0281 (7)0.0324 (8)0.0149 (6)0.0015 (6)0.0018 (6)
N10.0219 (7)0.0261 (7)0.0190 (8)0.0076 (6)0.0008 (6)0.0015 (6)
N20.0202 (7)0.0224 (7)0.0226 (8)0.0014 (6)0.0030 (6)0.0002 (6)
C10.0172 (8)0.0163 (7)0.0201 (9)0.0002 (6)0.0019 (6)0.0052 (6)
C20.0157 (8)0.0233 (8)0.0197 (9)0.0031 (6)0.0025 (6)0.0051 (6)
C30.0143 (7)0.0183 (7)0.0230 (9)0.0024 (6)0.0029 (6)0.0036 (6)
C40.0154 (7)0.0167 (6)0.0183 (9)0.0006 (6)0.0048 (6)0.0044 (6)
C50.0157 (7)0.0198 (7)0.0190 (9)0.0023 (6)0.0006 (6)0.0042 (6)
C60.0169 (7)0.0193 (7)0.0219 (9)0.0048 (6)0.0024 (6)0.0046 (6)
C70.0128 (7)0.0168 (7)0.0236 (9)0.0003 (6)0.0024 (6)0.0037 (6)
C80.0158 (7)0.0170 (7)0.0255 (10)0.0033 (6)0.0050 (7)0.0025 (6)
C90.0254 (9)0.0313 (9)0.0187 (9)0.0023 (8)0.0022 (7)0.0008 (7)
C100.0276 (9)0.0280 (9)0.0273 (11)0.0117 (8)0.0015 (8)0.0027 (7)
C110.0204 (8)0.0213 (7)0.0206 (9)0.0005 (6)0.0008 (7)0.0055 (6)
C120.0196 (8)0.0359 (10)0.0334 (11)0.0010 (7)0.0033 (8)0.0066 (8)
Geometric parameters (Å, º) top
O1—N21.232 (2)C6—H611.000
O2—N21.231 (2)C7—C81.345 (3)
N1—C11.369 (2)C7—H711.000
N1—C91.454 (2)C8—C111.502 (2)
N1—C101.453 (2)C9—H911.000
N2—C81.468 (2)C9—H921.000
C1—C21.421 (2)C9—H931.000
C1—C61.408 (2)C10—H1011.000
C2—C31.383 (2)C10—H1021.000
C2—H211.000C10—H1031.000
C3—C41.395 (2)C11—C121.527 (3)
C3—H311.000C11—H1111.000
C4—C51.410 (2)C11—H1121.000
C4—C71.450 (2)C12—H1211.000
C5—C61.391 (3)C12—H1221.000
C5—H511.000C12—H1231.000
C1—N1—C9121.12 (15)N2—C8—C7115.37 (16)
C1—N1—C10120.01 (15)N2—C8—C11114.77 (16)
C9—N1—C10117.89 (15)C7—C8—C11129.85 (16)
O1—N2—O2122.23 (16)N1—C9—H91109.552
O1—N2—C8117.74 (15)N1—C9—H92109.511
O2—N2—C8120.01 (15)H91—C9—H92109.476
N1—C1—C2120.82 (15)N1—C9—H93109.336
N1—C1—C6121.69 (15)H91—C9—H93109.476
C2—C1—C6117.50 (15)H92—C9—H93109.476
C1—C2—C3120.11 (16)N1—C10—H101109.339
C1—C2—H21119.900N1—C10—H102109.584
C3—C2—H21119.988H101—C10—H102109.476
C2—C3—C4123.06 (15)N1—C10—H103109.476
C2—C3—H31118.385H101—C10—H103109.476
C4—C3—H31118.552H102—C10—H103109.476
C3—C4—C5116.54 (16)C8—C11—C12112.52 (14)
C3—C4—C7117.66 (15)C8—C11—H111108.722
C5—C4—C7125.68 (16)C12—C11—H111108.685
C4—C5—C6121.70 (16)C8—C11—H112108.623
C4—C5—H51119.126C12—C11—H112108.790
C6—C5—H51119.171H111—C11—H112109.466
C1—C6—C5121.05 (15)C11—C12—H121109.328
C1—C6—H61119.551C11—C12—H122109.590
C5—C6—H61119.396H121—C12—H122109.476
C4—C7—C8130.66 (16)C11—C12—H123109.482
C4—C7—H71114.692H121—C12—H123109.475
C8—C7—H71114.643H122—C12—H123109.476
C5—C4—C7—C821.9 (3)C7—C8—N2—O27.0 (3)
C3—C4—C7—C8162.26 (19)C2—C1—N1—C910.4 (3)
C4—C7—C8—N2178.23 (17)C6—C1—N1—C101.4 (3)
C7—C8—N2—O1174.21 (17)C4—C7—C8—C113.3 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C10—H101···O1i1.002.4723.401 (2)153.78
C12—H121···O1ii1.002.5023.499 (2)174.75
C9—H92···O2iii1.002.7733.283 (2)112.12
C10—H102···O2iii1.002.8173.310 (2)111.01
C11—H112···O2iv1.002.5803.539 (2)160.74
Symmetry codes: (i) x+1/2, y, z+1/2; (ii) x, y1/2, z+3/2; (iii) x1/2, y+1/2, z+2; (iv) x+1, y1/2, z+3/2.

Experimental details

(I)(II)
Crystal data
Chemical formulaC10H12N2O2C12H16N2O2
Mr192.22220.27
Crystal system, space groupOrthorhombicPbcaOrthorhombicP212121
Temperature (K)100100
a, b, c (Å)10.1460 (2), 7.3091 (2), 25.1662 (7)5.9641 (1), 8.4492 (1), 23.1400 (4)
V3)1866.28 (8)1166.07 (3)
Z84
Radiation typeMo KαMo Kα
µ (mm1)0.100.09
Crystal size (mm)0.26 × 0.18 × 0.160.45 × 0.34 × 0.28
Data collection
DiffractometerBruker APEXII
diffractometer
Nonius KappaCCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2002)
Multi-scan
(SADABS; Sheldrick, 2002)
Tmin, Tmax0.975, 0.9850.962, 0.976
No. of measured, independent and
observed reflections
20691, 2137, 1488 [I > 2σ(I)]14807, 5077, 2017 [I > 3σ(I)]
Rint0.0320.04
(sin θ/λ)max1)0.6490.808
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.037, 1.17 0.038, 0.039, 1.14
No. of reflections14882017
No. of parameters161148
No. of restraints600
H-atom treatmentH-atom parameters constrainedH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.22, 0.210.28, 0.22
Absolute structure?Flack (1983), with 3060 Friedel pairs
Absolute structure parameter?0.7 (14)

Computer programs: SMART (Bruker, 2001), COLLECT (Nonius, 2000), SMART, DIRAX (Duisenberg et al., 2000), SAINT (Bruker, 2001), EVALCCD (Duisenberg et al., 2003), SIR92 (Altomare et al., 1994), CRYSTALS (Watkin et al., 2001), CAMERON (Watkin et al., 1996), CRYSTALS.

Selected geometric parameters (Å, º) for (I) top
O11—N211.2394 (19)C1—C611.423 (2)
O21—N211.240 (2)C21—C311.390 (2)
N1—C11.3595 (15)C31—C411.4045 (17)
N1—C91.4554 (15)C41—C511.4057 (19)
N1—C101.4554 (15)C41—C711.448 (2)
N21—C811.4313 (19)C51—C611.373 (2)
C1—C211.418 (2)C71—C811.336 (2)
C1—N1—C9120.35 (10)C1—C21—C31120.75 (13)
C1—N1—C10120.11 (10)C21—C31—C41122.46 (13)
C9—N1—C10118.73 (10)C31—C41—C51116.55 (12)
O21—N21—O11122.53 (15)C31—C41—C71119.10 (13)
O21—N21—C81119.86 (16)C51—C41—C71124.35 (13)
O11—N21—C81117.61 (16)C41—C51—C61121.93 (13)
N1—C1—C21119.90 (11)C1—C61—C51121.91 (13)
N1—C1—C61123.75 (11)C41—C71—C81126.72 (14)
C21—C1—C61116.34 (12)N21—C81—C71120.71 (14)
C51—C41—C71—C811.148C71—C81—N21—O210.427
C31—C41—C71—C81179.887C21—C1—N1—C96.750
C41—C71—C81—N21179.863C61—C1—N1—C104.305
C71—C81—N21—O11179.363
Hydrogen-bond geometry (Å, º) for (I) top
D—H···AD—HH···AD···AD—H···A
C9—H91···O21i1.002.5473.534 (2)169.19
C9—H93···O11ii1.002.7773.419 (2)122.24
C10—H101···O11iii1.002.7893.503 (2)128.75
Symmetry codes: (i) x, y+3/2, z+1/2; (ii) x+1/2, y+3/2, z+1; (iii) x+1/2, y+1, z+1/2.
Selected geometric parameters (Å, º) for (II) top
O1—N21.232 (2)C2—C31.383 (2)
O2—N21.231 (2)C3—C41.395 (2)
N1—C11.369 (2)C4—C51.410 (2)
N1—C91.454 (2)C4—C71.450 (2)
N1—C101.453 (2)C5—C61.391 (3)
N2—C81.468 (2)C7—C81.345 (3)
C1—C21.421 (2)C8—C111.502 (2)
C1—C61.408 (2)C11—C121.527 (3)
C1—N1—C9121.12 (15)C3—C4—C5116.54 (16)
C1—N1—C10120.01 (15)C3—C4—C7117.66 (15)
C9—N1—C10117.89 (15)C5—C4—C7125.68 (16)
O1—N2—O2122.23 (16)C4—C5—C6121.70 (16)
O1—N2—C8117.74 (15)C1—C6—C5121.05 (15)
O2—N2—C8120.01 (15)C4—C7—C8130.66 (16)
N1—C1—C2120.82 (15)N2—C8—C7115.37 (16)
N1—C1—C6121.69 (15)N2—C8—C11114.77 (16)
C2—C1—C6117.50 (15)C7—C8—C11129.85 (16)
C1—C2—C3120.11 (16)C8—C11—C12112.52 (14)
C2—C3—C4123.06 (15)
C5—C4—C7—C821.9 (3)C7—C8—N2—O27.0 (3)
C3—C4—C7—C8162.26 (19)C2—C1—N1—C910.4 (3)
C4—C7—C8—N2178.23 (17)C6—C1—N1—C101.4 (3)
C7—C8—N2—O1174.21 (17)C4—C7—C8—C113.3 (3)
Hydrogen-bond geometry (Å, º) for (II) top
D—H···AD—HH···AD···AD—H···A
C10—H101···O1i1.002.4723.401 (2)153.78
C12—H121···O1ii1.002.5023.499 (2)174.75
C9—H92···O2iii1.002.7733.283 (2)112.12
C10—H102···O2iii1.002.8173.310 (2)111.01
C11—H112···O2iv1.002.5803.539 (2)160.74
Symmetry codes: (i) x+1/2, y, z+1/2; (ii) x, y1/2, z+3/2; (iii) x1/2, y+1/2, z+2; (iv) x+1, y1/2, z+3/2.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds