Download citation
Download citation
link to html
Dianin's compound (4-p-hydroxy­phenyl-2,2,4-tri­methyl­chroman) has been resolved by crystallization of the (S)-(-)-camphanic esters (S,S)- and (R,S)-4-(2,2,4-tri­methyl­chroman-4-yl)­phenyl 4,7,7-tri­methyl-3-oxo-2-oxabi­cyclo[2.2.1]heptane-1-carboxyl­ate, both C28H32O5, from 2-methoxy­ethanol, yielding the pure S,S diastereomer. The relative stereochemistry of both diastereomers has been determined by X-ray crystallography, from which the absolute stereochemistry could be deduced from the known configuration of the camphanate moiety. The crystallographic conformations have been analysed, including the 1:1 disorder of the R,S diastereomer.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270104029671/hj1032sup1.cif
Contains datablocks global, I, Ia

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270104029671/hj1032Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270104029671/hj1032Iasup3.hkl
Contains datablock Ia

CCDC references: 263056; 263057

Comment top

Dianin's compound is well known for its ability to form clathrates (Finocchiaro & Failla, 1996). Racemates of the compound are required because the twelve-membered ring formed by the hydrogen bonding of six phenol OH moieties is comprised of three R-enantiomers presenting their hydroxy groups from one face of the ring interspersed by three S-enantiomers doing the same from the opposite face. The ring therefore lies on the plane of symmetry of an S6 point group. Resolution of Dianin's compound and its derivatives allows for the formation of clathrates composed of complementing enantiomers of different species, thus forming quasi-racemic structures (Brienne & Jacques, 1975; Collet & Jacques, 1977). In principle, this can produce a chiral cavity that may show preference for one enantiomer of a guest molecule.

(1S)-Camphanic chloride was chosen as chiral adjuvant (Brienne & Jacques, 1975) because of its propensity to produce diastereomeric esters from alcohols which may be separated either by fractional crystallization or chromatography. The diastereomeric mixture obtained from treating Dianin's compound with (1S)-camphanic chloride was crystallized from ethanol, yielding a crystalline mixture of both diastereomers. This mixture was further crystallized from 2-methoxyethanol, yielding crystals of the resolved (S,S)-camphanate, (I), of Dianin's compound. X-ray crystallography of the resolved compound was necessary to deduce the absolute stereochemistry of the Dianin's compound moiety of the ester, as may be obtained from the known stereochemistry of the camphanate moiety. To complement the crystallography of the resolved compound, a suitable crystal of the (R,S)-isomer, (Ia), was obtained from the crystalline diastereomeric mixture before resolution, indicating that these diastereomers crystallize separately from methanol. \sch

The (S,S)-isomer of the title compound, (I), along with the numbering scheme, is shown in Fig. 1. The structure of the (R,S)-isomer, (Ia), is similar, although exhibiting disorder of the phenyl camphanate moiety, (Ia') and (Ia''), as shown in Fig. 2. The numbering scheme for (Ia) is identical to that of (I), except that the atoms in the two disordered parts are indicated by the suffixes A and B, respectively. Despite the disorder, the rigid bicyclic structure of the camphanate moiety ensures that it is almost identical in (I) and both conformations of (Ia), with comparable bond lengths and angles.

The orientation of the carboxyl group (atoms O2, C19 and O3) relative to the bicyclic structure of the camphanic moiety is, however, different in (I) and the two conformations of (Ia). In (I), the plane through atoms O2, C19 and O3 is only slightly twisted with respect to the plane through atoms O4, C21 and O5 [dihedral angle 17.6 (2)°], with the O4—C20—C19—O2 torsion angle being −177.7 (2)°. One of the conformations in (Ia) [(Ia')] is similarly only slightly twisted [dihedral angle 16.0 (7)° and O4—C20—C19—O2 torsion angle −167.5 (6)], whereas in the other conformation, (Ia''), it is substantially twisted away from the plane through atoms O4, C21 and O5 [dihedral angle 55.9 (3)° and O4—C20—C19—O2 torsion angle −47 (1)°]. The phenyl ring is twisted away from the O2/C19/O3 plane by 75.6 (1)° for (I), and by 54.4 (4) and 55.9 (3)° for conformations (Ia') and (Ia''), respectively. The phenyl ring in turn is twisted away from the plane through atoms C13, C7 and C8 in the trimethylchroman moiety by 61.8 (1)° for (I), and by 55.2 (4) and 57.1 (4)° for (Ia') and (Ia''), respectively, such that for (I) and (Ia'), atoms O1, C7, C8, C13, C16, O2, O3, C19, C20, O4, O5 and C21 are almost coplanar. In the case of (Ia''), these same atoms form an anti-clockwise spiral rather than a plane.

The packing of the stereoisomers is also different. In (I), face-to-edge ππ interactions between neighbouring trimethylchroman moieties in a herringbone pattern lead to broad flat bands of interacting molecules (Fig. 3). In (Ia), the orientations of the 0.50:0.50 disordered molecules require alternation of (Ia') and (Ia''), leading to off-set stepwise stacks (Fig. 4). The reason for the twisting of (Ia'') relative to (Ia') or (I) is clear from Fig. 4; the twisted orientation of the camphanic moiety allows C—H···O interactions between methyl groups and carbonyls on neighbouring molecules.

Experimental top

The benzene clathrate of Dianin's compound (1:6) (Baker et al., 1956) (1.00 g, 3.34 mmol), DMAP Please define (48 mg, 393 µmol) and triethylamine (1.08 g, 10.7 mmol) were dissolved/suspended in dichloromethane (15 ml) and the camphanic chloride (932 mg, 4.30 mmol)was then added. The mixture was stirred at ambient temperature for 30 h and ice (ca 20 ml) was then added to quench the reaction. The aqueous phase was extracted with dichloromethane (15 ml) and the combined organic phases washed with water (25 ml), dried over anhydrous magnesium sulfate, and the solvents removed under reduced pressure. On exposing the residue to a minimum of ethanol, white crystals formed, which were filtered off and washed with cold ethanol and dried under vacuum, yielding 1.367 g (91%). The compound was pure by NMR. The only indication of the presence of diastereomers in both 1H and 13C NMR was the doubling of the signal at δC 127.63 and 127.66 (CDCl3, 75 MHz; Varian VXR 300). In an unoptimized effort at resolving the diastereomers, a quantity (1.15 g, 2.56 mmol) was dissolved in a minimum of 2-methoxyethanol (Brienne & Jacques, 1975) at 333 K and allowed to crystallize on cooling to ambient temperature. Pure (S,S)-4-p-camphanyloxyphenyl-2,2,4-trimethylchroman (276 mg, 615 µmol) was obtained, m.p. 451 K (literature value 450 K; Brienne & Jacques, 1975). Spectroscopic analysis: 1H NMR (300 MHz, CDCl3, CHCl3 used as reference at δ = 7.24, δ, p.p.m.): 0.87 (3H, s), 1.03 (3H, s), 1.08 (3H, s), 1.10 (3H, s), 1.30 (3H, s), 1.66 (3H, s), 1.70 (1H, ddd, J = 13.4, 9.3 and 4.3 Hz), 1.93 (1H, ddd, J = 13.2, 10.8 and 4.5 Hz), 2.05 (1H, d, J = 14.2 Hz), 2.13 (1H, ddd, J = 13.5, 9.5 and 4.7 Hz), 2.32 (1H, d, J = 14.2 Hz), 2.50 (1H, ddd, J = 13.6, 10.7 and 4.3 Hz), 6.86 (1H, d, J = 8.3 Hz), 6.91 (1H, t, J = 7.5 Hz), 6.99 (2H, d, J = 8.8 Hz), 7.14–7.19 (2H, m), 7.21 (2H, d, J = 8.8 Hz); 13C NMR (75 MHz, CDCl3 used as reference at δ = 77.00, δ, p.p.m.): 9.48, 16.62, 27.28, 28.78, 29.76, 30.56, 32.27, 39.04, 50.19, 54.55, 54.78, 74.48, 90.85, 118.32, 120.33, 120.81, 127.63, 128.09, 128.28, 129.50, 148.05, 148.58, 153.81, 166.38 and 178.12.

Refinement top

The positions of the disordered atoms in (Ia) were identified from a difference Fourier map. Atoms from the different disorder groups were refined anisotropically [with appropriate restraints using SIMU and ISOR in SHELXL97 (Sheldrick, 1997)] with common site occupancies; refinement showed the disorder to be exactly 50:50%. H atoms were positioned geometrically and constrained to ride on the atoms they were attached to, with Uiso(H) = 1.2 or 1.5 (for methyl groups) times Ueq(C)

Computing details top

For both compounds, data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: X-SEED.

Figures top
[Figure 1] Fig. 1. The molecular conformation of (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radii.
[Figure 2] Fig. 2. The molecular conformation of (Ia), showing the disorder. The numbering scheme is identical to that for (I), except that the atoms in the two disordered parts are indicated by the suffixes A and B. H atoms have been omitted for clarity.
[Figure 3] Fig. 3. The packing of (I), showing the herringbone pattern of face-to-edge ππ interactions.
[Figure 4] Fig. 4. The packing of (Ia), showing the alternating pattern of (Ia)' and (Ia)'' connected by C—H···O interactions.
(I) (S,S)-4-(2,2,4-trimethylchroman-4-yl)phenyl 4,7,7-trimethyl-3-oxo-2-oxobicyclo[2.2.1]heptane-1-carboxylate top
Crystal data top
C28H32O5Dx = 1.239 Mg m3
Mr = 448.54Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, P212121Cell parameters from 4712 reflections
a = 7.398 (2) Åθ = 2.5–26°
b = 8.413 (2) ŵ = 0.08 mm1
c = 38.628 (11) ÅT = 100 K
V = 2404.3 (12) Å3Prism, colourless
Z = 40.27 × 0.24 × 0.19 mm
F(000) = 960
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
2743 independent reflections
Radiation source: fine-focus sealed tube2258 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.055
ω scansθmax = 26.0°, θmin = 2.5°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2002)
h = 98
Tmin = 0.97, Tmax = 0.98k = 107
13603 measured reflectionsl = 4743
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.039H-atom parameters constrained
wR(F2) = 0.082 w = 1/[σ2(Fo2) + (0.0356P)2 + 0.0289P]
where P = (Fo2 + 2Fc2)/3
S = 1.12(Δ/σ)max = 0.001
2743 reflectionsΔρmax = 0.20 e Å3
304 parametersΔρmin = 0.20 e Å3
0 restraintsAbsolute structure: Flack (1983) with how many Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0 (10)
Crystal data top
C28H32O5V = 2404.3 (12) Å3
Mr = 448.54Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 7.398 (2) ŵ = 0.08 mm1
b = 8.413 (2) ÅT = 100 K
c = 38.628 (11) Å0.27 × 0.24 × 0.19 mm
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
2743 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2002)
2258 reflections with I > 2σ(I)
Tmin = 0.97, Tmax = 0.98Rint = 0.055
13603 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.039H-atom parameters constrained
wR(F2) = 0.082Δρmax = 0.20 e Å3
S = 1.12Δρmin = 0.20 e Å3
2743 reflectionsAbsolute structure: Flack (1983) with how many Friedel pairs
304 parametersAbsolute structure parameter: 0 (10)
0 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.7461 (2)0.0724 (2)0.54149 (4)0.0314 (4)
O20.7800 (2)0.1499 (2)0.73014 (4)0.0245 (4)
O30.6943 (2)0.4046 (2)0.73977 (4)0.0280 (4)
O40.8157 (2)0.39592 (18)0.80588 (4)0.0195 (4)
O50.8294 (2)0.4380 (2)0.86334 (4)0.0255 (4)
C10.8362 (3)0.0690 (3)0.54357 (6)0.0235 (6)
C20.9931 (4)0.0783 (4)0.52341 (6)0.0320 (7)
H251.03240.01050.51120.038*
C31.0890 (4)0.2172 (4)0.52148 (6)0.0332 (7)
H271.19250.22230.50790.040*
C41.0330 (3)0.3501 (3)0.53965 (6)0.0302 (6)
H321.09720.44490.53820.036*
C50.8793 (3)0.3389 (3)0.55998 (6)0.0261 (6)
H290.84170.42820.57220.031*
C60.7788 (3)0.2001 (3)0.56290 (6)0.0195 (6)
C70.6093 (3)0.1908 (3)0.58540 (6)0.0194 (5)
C80.4951 (3)0.3425 (3)0.58104 (6)0.0253 (6)
H26A0.47930.36450.55680.038*
H26B0.55580.43030.59190.038*
H26C0.37910.32740.59170.038*
C90.4954 (3)0.0511 (3)0.57215 (6)0.0215 (6)
H28A0.40140.02940.58900.026*
H28B0.43640.08360.55090.026*
C100.5978 (3)0.1027 (3)0.56523 (6)0.0258 (6)
C110.6760 (4)0.1793 (3)0.59765 (7)0.0348 (7)
H30A0.77030.11310.60680.052*
H30B0.72470.28180.59190.052*
H30C0.58240.19130.61470.052*
C120.4780 (4)0.2198 (3)0.54623 (7)0.0382 (7)
H33A0.54590.31410.54100.057*
H33B0.43570.17260.52510.057*
H33C0.37660.24700.56050.057*
C130.6576 (3)0.1758 (3)0.62422 (6)0.0179 (5)
C140.8353 (3)0.1798 (3)0.63627 (6)0.0202 (5)
H150.92990.18800.62050.024*
C150.8730 (3)0.1719 (3)0.67134 (6)0.0208 (5)
H160.99210.17380.67900.025*
C160.7344 (3)0.1612 (3)0.69456 (6)0.0206 (5)
C170.5573 (3)0.1521 (3)0.68394 (6)0.0246 (6)
H220.46440.14030.70000.030*
C180.5202 (3)0.1609 (3)0.64872 (6)0.0234 (6)
H120.40070.15670.64130.028*
C190.7613 (3)0.2839 (3)0.74965 (6)0.0203 (5)
C200.8431 (3)0.2538 (3)0.78465 (6)0.0179 (5)
C210.8393 (3)0.3476 (3)0.83958 (6)0.0203 (5)
C220.8803 (3)0.1715 (3)0.83888 (6)0.0204 (5)
C230.8562 (3)0.0898 (3)0.87344 (6)0.0267 (6)
H1A0.73210.09700.88050.040*
H1B0.93150.14040.89040.040*
H1C0.88990.02000.87140.040*
C241.0734 (3)0.1642 (3)0.82325 (6)0.0216 (6)
H13A1.15530.23370.83570.026*
H13B1.12060.05660.82390.026*
C251.0473 (3)0.2214 (3)0.78539 (6)0.0207 (6)
H21A1.11630.31710.78070.025*
H21B1.08100.13970.76890.025*
C260.7596 (3)0.1213 (3)0.80769 (6)0.0189 (5)
C270.5563 (3)0.1452 (3)0.81403 (6)0.0237 (6)
H20A0.51520.07060.83110.036*
H20B0.49150.12850.79280.036*
H20C0.53510.25150.82210.036*
C280.7910 (3)0.0487 (3)0.79516 (6)0.0230 (6)
H17A0.76550.12160.81360.035*
H17B0.91450.06060.78800.035*
H17C0.71260.07060.77590.035*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0431 (11)0.0225 (10)0.0285 (10)0.0013 (9)0.0088 (9)0.0054 (8)
O20.0379 (10)0.0196 (9)0.0159 (8)0.0049 (8)0.0035 (8)0.0026 (7)
O30.0398 (11)0.0211 (10)0.0232 (9)0.0058 (9)0.0072 (8)0.0006 (8)
O40.0242 (9)0.0175 (9)0.0167 (8)0.0006 (8)0.0013 (7)0.0024 (7)
O50.0269 (9)0.0280 (10)0.0217 (9)0.0013 (9)0.0003 (8)0.0101 (8)
C10.0311 (14)0.0251 (15)0.0144 (12)0.0045 (13)0.0048 (11)0.0011 (11)
C20.0342 (16)0.0424 (18)0.0193 (13)0.0083 (15)0.0020 (12)0.0021 (13)
C30.0249 (15)0.055 (2)0.0192 (14)0.0014 (14)0.0008 (12)0.0097 (13)
C40.0289 (14)0.0354 (17)0.0263 (15)0.0097 (13)0.0061 (12)0.0096 (13)
C50.0275 (13)0.0282 (15)0.0226 (13)0.0020 (13)0.0012 (11)0.0044 (12)
C60.0219 (12)0.0235 (14)0.0131 (12)0.0031 (11)0.0035 (10)0.0006 (10)
C70.0224 (12)0.0183 (13)0.0174 (12)0.0004 (11)0.0020 (10)0.0001 (10)
C80.0288 (13)0.0259 (14)0.0213 (13)0.0039 (13)0.0011 (11)0.0002 (11)
C90.0237 (13)0.0254 (15)0.0152 (12)0.0030 (12)0.0027 (11)0.0012 (10)
C100.0382 (15)0.0199 (14)0.0192 (13)0.0033 (12)0.0016 (12)0.0019 (11)
C110.0539 (18)0.0213 (15)0.0293 (14)0.0020 (15)0.0082 (14)0.0022 (12)
C120.0601 (19)0.0258 (16)0.0286 (15)0.0107 (15)0.0091 (15)0.0025 (12)
C130.0234 (12)0.0133 (12)0.0169 (12)0.0002 (11)0.0011 (10)0.0017 (10)
C140.0232 (12)0.0180 (13)0.0194 (12)0.0002 (11)0.0018 (11)0.0002 (11)
C150.0222 (13)0.0184 (13)0.0218 (13)0.0012 (12)0.0043 (10)0.0016 (10)
C160.0319 (14)0.0156 (12)0.0142 (12)0.0022 (12)0.0037 (11)0.0018 (10)
C170.0296 (14)0.0234 (15)0.0209 (13)0.0032 (12)0.0025 (11)0.0005 (11)
C180.0217 (13)0.0241 (14)0.0243 (14)0.0008 (12)0.0023 (11)0.0024 (11)
C190.0208 (12)0.0189 (13)0.0213 (13)0.0001 (11)0.0034 (11)0.0014 (10)
C200.0222 (12)0.0157 (13)0.0157 (12)0.0017 (11)0.0006 (11)0.0034 (10)
C210.0138 (11)0.0288 (14)0.0184 (13)0.0024 (12)0.0007 (10)0.0008 (11)
C220.0207 (12)0.0245 (14)0.0159 (12)0.0005 (11)0.0005 (10)0.0018 (11)
C230.0301 (14)0.0306 (15)0.0194 (13)0.0008 (13)0.0018 (11)0.0023 (11)
C240.0183 (12)0.0266 (14)0.0200 (13)0.0027 (12)0.0000 (10)0.0014 (11)
C250.0211 (13)0.0228 (14)0.0181 (13)0.0013 (11)0.0017 (10)0.0002 (10)
C260.0188 (12)0.0225 (14)0.0154 (12)0.0022 (10)0.0002 (10)0.0003 (10)
C270.0196 (12)0.0247 (15)0.0268 (14)0.0009 (11)0.0009 (11)0.0047 (11)
C280.0294 (14)0.0201 (13)0.0196 (13)0.0011 (11)0.0004 (11)0.0000 (10)
Geometric parameters (Å, º) top
O1—C11.366 (3)C12—H33C0.9600
O1—C101.453 (3)C13—C181.395 (3)
O2—C191.363 (3)C13—C141.396 (3)
O2—C161.419 (3)C14—C151.384 (3)
O3—C191.193 (3)C14—H150.9300
O4—C211.375 (3)C15—C161.366 (3)
O4—C201.464 (3)C15—H160.9300
O5—C211.194 (3)C16—C171.375 (3)
C1—C21.400 (4)C17—C181.390 (3)
C1—C61.398 (3)C17—H220.9300
C2—C31.369 (4)C18—H120.9300
C2—H250.9300C19—C201.503 (3)
C3—C41.383 (4)C20—C251.535 (3)
C3—H270.9300C20—C261.554 (3)
C4—C51.385 (3)C21—C221.513 (4)
C4—H320.9300C22—C231.512 (3)
C5—C61.388 (3)C22—C241.553 (3)
C5—H290.9300C22—C261.557 (3)
C6—C71.528 (3)C23—H1A0.9600
C7—C91.534 (3)C23—H1B0.9600
C7—C81.540 (3)C23—H1C0.9600
C7—C131.547 (3)C24—C251.552 (3)
C8—H26A0.9600C24—H13A0.9700
C8—H26B0.9600C24—H13B0.9700
C8—H26C0.9600C25—H21A0.9700
C9—C101.523 (4)C25—H21B0.9700
C9—H28A0.9700C26—C281.528 (3)
C9—H28B0.9700C26—C271.538 (3)
C10—C121.514 (4)C27—H20A0.9600
C10—C111.523 (3)C27—H20B0.9600
C11—H30A0.9600C27—H20C0.9600
C11—H30B0.9600C28—H17A0.9600
C11—H30C0.9600C28—H17B0.9600
C12—H33A0.9600C28—H17C0.9600
C12—H33B0.9600
C1—O1—C10118.97 (18)C14—C15—H16120.2
C19—O2—C16117.12 (18)C15—C16—C17121.6 (2)
C21—O4—C20105.76 (17)C15—C16—O2117.5 (2)
O1—C1—C2114.9 (2)C17—C16—O2120.8 (2)
O1—C1—C6124.8 (2)C16—C17—C18118.5 (2)
C2—C1—C6120.3 (2)C16—C17—H22120.7
C3—C2—C1120.5 (3)C18—C17—H22120.7
C3—C2—H25119.7C17—C18—C13121.7 (2)
C1—C2—H25119.7C17—C18—H12119.2
C2—C3—C4120.4 (2)C13—C18—H12119.2
C2—C3—H27119.8O3—C19—O2124.7 (2)
C4—C3—H27119.8O3—C19—C20126.8 (2)
C3—C4—C5118.6 (3)O2—C19—C20108.50 (19)
C3—C4—H32120.7O4—C20—C19108.12 (18)
C5—C4—H32120.7O4—C20—C25105.71 (19)
C4—C5—C6122.9 (3)C19—C20—C25116.3 (2)
C4—C5—H29118.6O4—C20—C26102.11 (17)
C6—C5—H29118.6C19—C20—C26118.4 (2)
C5—C6—C1117.2 (2)C25—C20—C26104.66 (19)
C5—C6—C7121.9 (2)O5—C21—O4122.1 (2)
C1—C6—C7120.8 (2)O5—C21—C22130.5 (2)
C6—C7—C9107.49 (19)O4—C21—C22107.33 (19)
C6—C7—C8110.21 (19)C23—C22—C21113.9 (2)
C9—C7—C8107.30 (18)C23—C22—C24115.7 (2)
C6—C7—C13111.47 (18)C21—C22—C24103.3 (2)
C9—C7—C13112.83 (19)C23—C22—C26119.5 (2)
C8—C7—C13107.48 (18)C21—C22—C2699.45 (19)
C7—C8—H26A109.5C24—C22—C26102.48 (18)
C7—C8—H26B109.5C22—C23—H1A109.5
H26A—C8—H26B109.5C22—C23—H1B109.5
C7—C8—H26C109.5H1A—C23—H1B109.5
H26A—C8—H26C109.5C22—C23—H1C109.5
H26B—C8—H26C109.5H1A—C23—H1C109.5
C10—C9—C7115.89 (19)H1B—C23—H1C109.5
C10—C9—H28A108.3C25—C24—C22103.85 (18)
C7—C9—H28A108.3C25—C24—H13A111.0
C10—C9—H28B108.3C22—C24—H13A111.0
C7—C9—H28B108.3C25—C24—H13B111.0
H28A—C9—H28B107.4C22—C24—H13B111.0
O1—C10—C12104.5 (2)H13A—C24—H13B109.0
O1—C10—C11107.8 (2)C20—C25—C24101.26 (18)
C12—C10—C11110.2 (2)C20—C25—H21A111.5
O1—C10—C9109.7 (2)C24—C25—H21A111.5
C12—C10—C9110.3 (2)C20—C25—H21B111.5
C11—C10—C9113.8 (2)C24—C25—H21B111.5
C10—C11—H30A109.5H21A—C25—H21B109.3
C10—C11—H30B109.5C28—C26—C27108.8 (2)
H30A—C11—H30B109.5C28—C26—C20115.44 (19)
C10—C11—H30C109.5C27—C26—C20112.7 (2)
H30A—C11—H30C109.5C28—C26—C22114.3 (2)
H30B—C11—H30C109.5C27—C26—C22113.7 (2)
C10—C12—H33A109.5C20—C26—C2291.20 (18)
C10—C12—H33B109.5C26—C27—H20A109.5
H33A—C12—H33B109.5C26—C27—H20B109.5
C10—C12—H33C109.5H20A—C27—H20B109.5
H33A—C12—H33C109.5C26—C27—H20C109.5
H33B—C12—H33C109.5H20A—C27—H20C109.5
C18—C13—C14117.6 (2)H20B—C27—H20C109.5
C18—C13—C7119.8 (2)C26—C28—H17A109.5
C14—C13—C7122.6 (2)C26—C28—H17B109.5
C15—C14—C13121.0 (2)H17A—C28—H17B109.5
C15—C14—H15119.5C26—C28—H17C109.5
C13—C14—H15119.5H17A—C28—H17C109.5
C16—C15—C14119.7 (2)H17B—C28—H17C109.5
C16—C15—H16120.2
O4—C20—C19—O2177.68 (17)C13—C7—C6—C577.6 (3)
C20—C19—O2—C16171.26 (19)C13—C7—C9—C1077.2 (3)
C14—C13—C7—C63.3 (3)
(Ia) (R,S)-4-(2,2,4-trimethylchroman-4-yl)phenyl 4,7,7-trimethyl-3-oxo-2-oxobicyclo[2.2.1]heptane-1-carboxylate top
Crystal data top
C28H32O5Dx = 1.263 Mg m3
Mr = 448.54Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, P212121Cell parameters from 5449 reflections
a = 7.0710 (5) Åθ = 2.5–28°
b = 6.8500 (4) ŵ = 0.09 mm1
c = 48.717 (4) ÅT = 100 K
V = 2359.7 (3) Å3Prism, colourless
Z = 40.22 × 0.21 × 0.17 mm
F(000) = 960
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
2734 independent reflections
Radiation source: fine-focus sealed tube2282 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.064
ω scansθmax = 26.0°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2002)
h = 87
Tmin = 0.98, Tmax = 0.99k = 87
13513 measured reflectionsl = 5660
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.067H-atom parameters constrained
wR(F2) = 0.131 w = 1/[σ2(Fo2) + (0.0295P)2 + 0.4167P]
where P = (Fo2 + 2Fc2)/3
S = 1.19(Δ/σ)max = 0.023
2734 reflectionsΔρmax = 0.20 e Å3
489 parametersΔρmin = 0.15 e Å3
324 restraintsAbsolute structure: Flack (1983), with how many Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0 (10)
Crystal data top
C28H32O5V = 2359.7 (3) Å3
Mr = 448.54Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 7.0710 (5) ŵ = 0.09 mm1
b = 6.8500 (4) ÅT = 100 K
c = 48.717 (4) Å0.22 × 0.21 × 0.17 mm
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
2734 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2002)
2282 reflections with I > 2σ(I)
Tmin = 0.98, Tmax = 0.99Rint = 0.064
13513 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.067H-atom parameters constrained
wR(F2) = 0.131Δρmax = 0.20 e Å3
S = 1.19Δρmin = 0.15 e Å3
2734 reflectionsAbsolute structure: Flack (1983), with how many Friedel pairs
489 parametersAbsolute structure parameter: 0 (10)
324 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O10.2037 (4)0.9058 (4)0.22151 (5)0.0365 (7)
O2A0.4971 (8)0.3496 (7)0.09074 (10)0.0274 (12)0.499 (2)
O3A0.4242 (7)0.4910 (7)0.05025 (10)0.0343 (13)0.499 (2)
O4A0.5944 (7)0.2045 (7)0.02180 (9)0.0295 (12)0.499 (2)
O5A0.7556 (8)0.0368 (8)0.01025 (10)0.0443 (15)0.499 (2)
O2B0.6073 (8)0.3151 (7)0.09938 (12)0.0315 (13)0.501 (2)
O3B0.8611 (7)0.4875 (7)0.08615 (11)0.0418 (14)0.501 (2)
O4B0.808 (2)0.009 (3)0.0883 (4)0.038 (4)0.501 (2)
O5B0.8106 (7)0.3348 (6)0.07809 (10)0.0321 (12)0.501 (2)
C10.3467 (5)1.0097 (5)0.20951 (7)0.0294 (8)
C20.4712 (6)1.1012 (5)0.22744 (8)0.0358 (9)
H20.45431.08670.24630.043*
C30.6179 (6)1.2119 (5)0.21794 (8)0.0380 (10)
H30.69951.27290.23020.046*
C40.6443 (6)1.2329 (5)0.19001 (8)0.0374 (9)
H40.74501.30610.18330.045*
C50.5196 (6)1.1441 (5)0.17219 (8)0.0365 (10)
H50.53631.16090.15340.044*
C60.3699 (5)1.0302 (4)0.18141 (7)0.0268 (8)
C70.2296 (6)0.9401 (5)0.16103 (7)0.0368 (10)
C80.1578 (8)1.1024 (6)0.14153 (9)0.0599 (15)
H11A0.12541.21610.15210.090*
H11B0.04811.05690.13190.090*
H11C0.25531.13490.12860.090*
C90.0592 (6)0.8626 (5)0.17724 (8)0.0398 (10)
H9A0.02650.97060.18060.048*
H9B0.00700.76890.16580.048*
C100.1031 (5)0.7661 (5)0.20458 (7)0.0320 (9)
C110.2215 (7)0.5821 (5)0.20246 (8)0.0462 (11)
H12A0.34520.61450.19570.069*
H12B0.16190.49230.19000.069*
H12C0.23220.52290.22030.069*
C120.0781 (6)0.7256 (7)0.22024 (9)0.0500 (11)
H7A0.04790.67780.23820.075*
H7B0.15110.62940.21060.075*
H7C0.15010.84390.22180.075*
C13A0.2858 (13)0.7889 (18)0.1430 (3)0.021 (2)0.499 (2)
C14A0.1719 (12)0.7071 (13)0.12248 (19)0.0252 (17)0.499 (2)
H250.04680.74730.12080.030*0.499 (2)
C15A0.2426 (13)0.5663 (11)0.10452 (16)0.0273 (16)0.499 (2)
H240.16520.51300.09100.033*0.499 (2)
C16A0.4272 (15)0.5069 (15)0.1070 (2)0.024 (2)0.499 (2)
C17A0.5417 (12)0.5793 (13)0.12682 (18)0.0241 (16)0.499 (2)
H220.66520.53430.12870.029*0.499 (2)
C18A0.4709 (15)0.7231 (15)0.14455 (19)0.019 (2)0.499 (2)
H210.55060.77600.15780.023*0.499 (2)
C19A0.4878 (10)0.3604 (10)0.06311 (14)0.0234 (15)0.499 (2)
C20A0.5669 (11)0.1716 (13)0.05113 (15)0.0224 (17)0.499 (2)
C21A0.7046 (10)0.0531 (9)0.01326 (14)0.0254 (15)0.499 (2)
C22A0.7498 (12)0.0733 (12)0.03762 (17)0.0225 (16)0.499 (2)
C23A0.9171 (10)0.2070 (11)0.03356 (15)0.0313 (18)0.499 (2)
H36A1.02150.13360.02630.047*0.499 (2)
H36B0.88390.30880.02090.047*0.499 (2)
H36C0.95230.26350.05080.047*0.499 (2)
C24A0.5573 (10)0.1740 (10)0.04406 (14)0.0273 (15)0.499 (2)
H41A0.50720.23930.02800.033*0.499 (2)
H41B0.57040.26810.05880.033*0.499 (2)
C25A0.4314 (13)0.0036 (12)0.05265 (18)0.0282 (19)0.499 (2)
H33A0.38330.02150.07110.034*0.499 (2)
H33B0.32580.01220.04010.034*0.499 (2)
C26A0.7585 (11)0.0886 (11)0.0603 (2)0.0227 (15)0.499 (2)
C27A0.9196 (11)0.2236 (13)0.0573 (2)0.042 (2)0.499 (2)
H37A1.03530.15530.06110.063*0.499 (2)
H37B0.90580.33010.07000.063*0.499 (2)
H37C0.92280.27320.03890.063*0.499 (2)
C28A0.765 (3)0.006 (3)0.0887 (5)0.029 (4)0.499 (2)
H31A0.87350.08960.08990.043*0.499 (2)
H31B0.65220.08150.09150.043*0.499 (2)
H31C0.77300.09370.10250.043*0.499 (2)
C13B0.3552 (15)0.7706 (16)0.1437 (2)0.0156 (19)0.501 (2)
C14B0.5421 (13)0.7091 (16)0.1495 (2)0.023 (2)0.501 (2)
H150.60820.76810.16370.027*0.501 (2)
C15B0.6284 (12)0.5640 (12)0.13444 (16)0.0280 (17)0.501 (2)
H160.75210.52700.13830.034*0.501 (2)
C16B0.5303 (14)0.4750 (12)0.11382 (18)0.0285 (16)0.501 (2)
C17B0.3500 (16)0.5289 (16)0.1071 (2)0.027 (2)0.501 (2)
H180.28730.46850.09270.032*0.501 (2)
C18B0.2603 (12)0.6767 (13)0.12240 (18)0.0253 (17)0.501 (2)
H190.13660.71200.11820.030*0.501 (2)
C19B0.7709 (10)0.3366 (10)0.08623 (13)0.0219 (15)0.501 (2)
C20B0.8297 (12)0.1562 (11)0.07056 (15)0.0202 (15)0.501 (2)
C21B0.8111 (9)0.1708 (10)0.06967 (14)0.0232 (15)0.501 (2)
C22B0.8324 (12)0.0899 (12)0.04133 (16)0.0188 (15)0.501 (2)
C23B0.7777 (10)0.2321 (10)0.01850 (15)0.0317 (17)0.501 (2)
H45A0.85460.34730.01980.048*0.501 (2)
H45B0.79720.17120.00100.048*0.501 (2)
H45C0.64690.26720.02040.048*0.501 (2)
C24B1.0378 (9)0.0161 (10)0.04071 (14)0.0251 (14)0.501 (2)
H28A1.07270.02750.02250.030*0.501 (2)
H28B1.12490.11750.04650.030*0.501 (2)
C25B1.0374 (10)0.1568 (11)0.06133 (16)0.0228 (14)0.501 (2)
H13A1.12250.13320.07660.027*0.501 (2)
H13B1.07120.27870.05250.027*0.501 (2)
C26B0.7133 (10)0.1025 (10)0.04439 (16)0.0200 (15)0.501 (2)
C27B0.5033 (12)0.0701 (16)0.04965 (17)0.030 (2)0.501 (2)
H39A0.44250.19360.05260.045*0.501 (2)
H39B0.48760.01060.06560.045*0.501 (2)
H39C0.44750.00680.03400.045*0.501 (2)
C28B0.7365 (12)0.2463 (11)0.02115 (15)0.0327 (17)0.501 (2)
H26A0.69640.18690.00430.049*0.501 (2)
H26B0.86700.28360.01970.049*0.501 (2)
H26C0.66080.35990.02470.049*0.501 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0437 (16)0.0394 (14)0.0264 (14)0.0017 (14)0.0001 (12)0.0041 (12)
O2A0.033 (3)0.027 (3)0.022 (3)0.008 (3)0.002 (2)0.004 (2)
O3A0.037 (3)0.032 (3)0.034 (3)0.012 (3)0.002 (2)0.003 (2)
O4A0.033 (3)0.034 (3)0.022 (3)0.010 (3)0.004 (2)0.002 (2)
O5A0.059 (4)0.049 (3)0.025 (3)0.013 (3)0.013 (3)0.002 (2)
O2B0.029 (3)0.022 (3)0.043 (3)0.006 (3)0.011 (3)0.015 (2)
O3B0.041 (3)0.026 (3)0.059 (4)0.011 (3)0.025 (3)0.010 (3)
O4B0.035 (6)0.047 (6)0.032 (6)0.002 (5)0.003 (4)0.001 (5)
O5B0.034 (3)0.023 (3)0.039 (3)0.001 (2)0.010 (2)0.003 (2)
C10.039 (2)0.0233 (17)0.0263 (19)0.0082 (18)0.0047 (16)0.0065 (15)
C20.045 (2)0.035 (2)0.027 (2)0.009 (2)0.0045 (18)0.0066 (17)
C30.046 (2)0.029 (2)0.039 (2)0.004 (2)0.0141 (19)0.0130 (17)
C40.039 (2)0.0296 (19)0.043 (2)0.0002 (19)0.0012 (19)0.0029 (17)
C50.057 (3)0.0229 (18)0.030 (2)0.008 (2)0.0001 (19)0.0022 (16)
C60.041 (2)0.0136 (16)0.0263 (18)0.0043 (17)0.0037 (16)0.0021 (14)
C70.062 (3)0.0196 (18)0.029 (2)0.004 (2)0.0135 (19)0.0012 (15)
C80.098 (4)0.033 (2)0.049 (3)0.011 (3)0.040 (3)0.008 (2)
C90.050 (3)0.026 (2)0.043 (2)0.001 (2)0.016 (2)0.0072 (18)
C100.040 (2)0.0255 (19)0.031 (2)0.0019 (18)0.0029 (17)0.0049 (16)
C110.064 (3)0.031 (2)0.044 (2)0.008 (2)0.009 (2)0.0098 (18)
C120.051 (3)0.048 (3)0.051 (3)0.001 (2)0.007 (2)0.007 (2)
C13A0.017 (4)0.019 (4)0.026 (4)0.000 (4)0.004 (4)0.005 (3)
C14A0.016 (3)0.030 (4)0.029 (3)0.006 (3)0.001 (3)0.001 (3)
C15A0.026 (4)0.027 (3)0.028 (3)0.002 (3)0.003 (3)0.006 (3)
C16A0.022 (5)0.021 (4)0.027 (3)0.002 (4)0.001 (4)0.003 (3)
C17A0.017 (3)0.025 (3)0.031 (4)0.006 (3)0.004 (3)0.004 (3)
C18A0.017 (4)0.018 (4)0.023 (4)0.003 (4)0.003 (4)0.004 (3)
C19A0.024 (4)0.022 (3)0.024 (4)0.002 (3)0.000 (3)0.005 (3)
C20A0.008 (4)0.039 (5)0.020 (4)0.004 (4)0.000 (3)0.008 (4)
C21A0.024 (3)0.028 (3)0.024 (3)0.000 (3)0.001 (3)0.002 (3)
C22A0.019 (3)0.024 (3)0.024 (3)0.001 (3)0.003 (3)0.005 (3)
C23A0.031 (4)0.031 (4)0.032 (4)0.007 (4)0.004 (3)0.003 (3)
C24A0.031 (3)0.026 (3)0.025 (3)0.009 (3)0.002 (3)0.010 (3)
C25A0.033 (5)0.024 (4)0.028 (4)0.007 (4)0.004 (3)0.008 (3)
C26A0.012 (3)0.022 (3)0.034 (4)0.000 (3)0.012 (3)0.009 (3)
C27A0.007 (4)0.041 (5)0.077 (6)0.006 (4)0.006 (4)0.029 (5)
C28A0.051 (10)0.016 (6)0.019 (7)0.006 (6)0.025 (7)0.001 (5)
C13B0.014 (5)0.013 (3)0.020 (3)0.009 (4)0.002 (4)0.003 (3)
C14B0.023 (4)0.023 (3)0.022 (4)0.008 (4)0.001 (3)0.002 (3)
C15B0.024 (4)0.032 (4)0.028 (4)0.003 (3)0.000 (3)0.003 (3)
C16B0.031 (4)0.024 (4)0.031 (4)0.008 (4)0.006 (3)0.001 (3)
C17B0.024 (5)0.026 (4)0.030 (4)0.004 (4)0.002 (4)0.006 (3)
C18B0.019 (4)0.026 (3)0.031 (4)0.002 (3)0.002 (4)0.002 (3)
C19B0.024 (4)0.025 (4)0.017 (3)0.005 (3)0.004 (3)0.002 (3)
C20B0.009 (4)0.029 (4)0.022 (4)0.006 (3)0.003 (3)0.000 (3)
C21B0.013 (3)0.024 (3)0.033 (3)0.004 (3)0.001 (3)0.011 (3)
C22B0.015 (3)0.020 (3)0.022 (3)0.003 (3)0.000 (3)0.006 (3)
C23B0.029 (4)0.034 (4)0.033 (4)0.008 (3)0.002 (3)0.012 (3)
C24B0.020 (3)0.029 (3)0.027 (3)0.002 (3)0.000 (2)0.009 (3)
C25B0.012 (3)0.030 (3)0.027 (3)0.002 (3)0.001 (3)0.005 (3)
C26B0.011 (3)0.026 (3)0.023 (3)0.006 (3)0.003 (3)0.004 (3)
C27B0.017 (5)0.045 (7)0.029 (5)0.008 (4)0.000 (4)0.003 (5)
C28B0.028 (4)0.037 (4)0.033 (4)0.005 (4)0.003 (3)0.009 (3)
Geometric parameters (Å, º) top
O1—C11.368 (4)C20A—C25A1.537 (11)
O1—C101.450 (4)C20A—C26A1.536 (11)
O2A—C19A1.350 (8)C21A—C22A1.503 (10)
O2A—C16A1.424 (11)C22A—C23A1.509 (10)
O3A—C19A1.181 (8)C22A—C24A1.557 (11)
O4A—C21A1.362 (8)C22A—C26A1.568 (12)
O4A—C20A1.460 (9)C23A—H36A0.9600
O5A—C21A1.206 (8)C23A—H36B0.9600
O2B—C19B1.331 (8)C23A—H36C0.9600
O2B—C16B1.411 (10)C24A—C25A1.527 (11)
O3B—C19B1.215 (8)C24A—H41A0.9700
O3B—O5Bi1.328 (7)C24A—H41B0.9700
O4B—C20B1.43 (2)C25A—H33A0.9700
O4B—C21B1.429 (18)C25A—H33B0.9700
O5B—C21B1.196 (8)C26A—C27A1.475 (11)
O5B—O3Bii1.328 (7)C26A—C28A1.53 (3)
C1—C61.386 (5)C27A—H37A0.9600
C1—C21.389 (5)C27A—H37B0.9600
C2—C31.366 (5)C27A—H37C0.9600
C2—H20.9300C28A—H31A0.9600
C3—C41.381 (5)C28A—H31B0.9600
C3—H30.9300C28A—H31C0.9600
C4—C51.379 (5)C13B—C18B1.394 (13)
C4—H40.9300C13B—C14B1.415 (11)
C5—C61.390 (5)C14B—C15B1.378 (12)
C5—H50.9300C14B—H150.9300
C6—C71.533 (5)C15B—C16B1.364 (12)
C7—C13A1.417 (13)C15B—H160.9300
C7—C91.535 (6)C16B—C17B1.367 (12)
C7—C81.548 (5)C17B—C18B1.407 (14)
C7—C13B1.688 (11)C17B—H180.9300
C8—H11A0.9600C18B—H190.9300
C8—H11B0.9600C19B—C20B1.511 (10)
C8—H11C0.9600C20B—C25B1.536 (10)
C9—C101.519 (5)C20B—C26B1.561 (10)
C9—H9A0.9700C21B—C22B1.495 (10)
C9—H9B0.9700C22B—C23B1.529 (10)
C10—C121.517 (5)C22B—C24B1.538 (10)
C10—C111.517 (5)C22B—C26B1.571 (11)
C11—H12A0.9600C23B—H45A0.9600
C11—H12B0.9600C23B—H45B0.9600
C11—H12C0.9600C23B—H45C0.9600
C12—H7A0.9600C24B—C25B1.553 (10)
C12—H7B0.9600C24B—H28A0.9700
C12—H7C0.9600C24B—H28B0.9700
C13A—C18A1.386 (11)C25B—H13A0.9700
C13A—C14A1.399 (14)C25B—H13B0.9700
C14A—C15A1.395 (11)C26B—C28B1.509 (10)
C14A—H250.9300C26B—C27B1.523 (10)
C15A—C16A1.372 (11)C27B—H39A0.9600
C15A—H240.9300C27B—H39B0.9600
C16A—C17A1.356 (14)C27B—H39C0.9600
C17A—C18A1.403 (13)C28B—H26A0.9600
C17A—H220.9300C28B—H26B0.9600
C18A—H210.9300C28B—H26C0.9600
C19A—C20A1.525 (11)
C1—O1—C10117.6 (3)C21A—C22A—C24A103.2 (6)
C19A—O2A—C16A119.6 (7)C23A—C22A—C24A116.3 (6)
C21A—O4A—C20A104.9 (5)C21A—C22A—C26A99.1 (7)
C19B—O2B—C16B119.3 (6)C23A—C22A—C26A119.4 (7)
C19B—O3B—O5Bi129.8 (6)C24A—C22A—C26A101.8 (6)
C20B—O4B—C21B103.3 (12)C22A—C23A—H36A109.5
C21B—O5B—O3Bii164.1 (6)C22A—C23A—H36B109.5
O1—C1—C6124.2 (3)H36A—C23A—H36B109.5
O1—C1—C2115.7 (3)C22A—C23A—H36C109.5
C6—C1—C2120.0 (4)H36A—C23A—H36C109.5
C3—C2—C1121.3 (4)H36B—C23A—H36C109.5
C3—C2—H2119.4C25A—C24A—C22A103.1 (6)
C1—C2—H2119.4C25A—C24A—H41A111.1
C2—C3—C4119.6 (4)C22A—C24A—H41A111.1
C2—C3—H3120.2C25A—C24A—H41B111.1
C4—C3—H3120.2C22A—C24A—H41B111.1
C5—C4—C3119.2 (4)H41A—C24A—H41B109.1
C5—C4—H4120.4C24A—C25A—C20A102.7 (7)
C3—C4—H4120.4C24A—C25A—H33A111.2
C4—C5—C6122.1 (4)C20A—C25A—H33A111.2
C4—C5—H5119.0C24A—C25A—H33B111.2
C6—C5—H5119.0C20A—C25A—H33B111.2
C1—C6—C5117.8 (3)H33A—C25A—H33B109.1
C1—C6—C7121.5 (3)C27A—C26A—C28A109.5 (11)
C5—C6—C7120.6 (3)C27A—C26A—C20A114.8 (7)
C13A—C7—C6121.0 (5)C28A—C26A—C20A116.6 (11)
C13A—C7—C9106.7 (5)C27A—C26A—C22A113.8 (7)
C6—C7—C9108.3 (3)C28A—C26A—C22A109.9 (10)
C13A—C7—C8103.6 (6)C20A—C26A—C22A91.2 (7)
C6—C7—C8108.7 (3)C26A—C27A—H37A109.5
C9—C7—C8107.9 (4)C26A—C27A—H37B109.5
C13A—C7—C13B16.0 (6)H37A—C27A—H37B109.5
C6—C7—C13B105.0 (5)C26A—C27A—H37C109.5
C9—C7—C13B115.6 (5)H37A—C27A—H37C109.5
C8—C7—C13B111.1 (5)H37B—C27A—H37C109.5
C7—C8—H11A109.5C26A—C28A—H31A109.5
C7—C8—H11B109.5C26A—C28A—H31B109.5
H11A—C8—H11B109.5H31A—C28A—H31B109.5
C7—C8—H11C109.5C26A—C28A—H31C109.5
H11A—C8—H11C109.5H31A—C28A—H31C109.5
H11B—C8—H11C109.5H31B—C28A—H31C109.5
C10—C9—C7116.2 (3)C18B—C13B—C14B117.4 (9)
C10—C9—H9A108.2C18B—C13B—C7115.9 (7)
C7—C9—H9A108.2C14B—C13B—C7126.7 (8)
C10—C9—H9B108.2C15B—C14B—C13B121.5 (9)
C7—C9—H9B108.2C15B—C14B—H15119.2
H9A—C9—H9B107.4C13B—C14B—H15119.2
O1—C10—C12104.4 (3)C16B—C15B—C14B119.3 (8)
O1—C10—C11108.5 (3)C16B—C15B—H16120.4
C12—C10—C11110.4 (3)C14B—C15B—H16120.4
O1—C10—C9108.2 (3)C15B—C16B—C17B121.9 (9)
C12—C10—C9110.4 (3)C15B—C16B—O2B121.2 (8)
C11—C10—C9114.5 (3)C17B—C16B—O2B116.8 (9)
C10—C11—H12A109.5C16B—C17B—C18B119.3 (10)
C10—C11—H12B109.5C16B—C17B—H18120.4
H12A—C11—H12B109.5C18B—C17B—H18120.4
C10—C11—H12C109.5C13B—C18B—C17B120.6 (8)
H12A—C11—H12C109.5C13B—C18B—H19119.7
H12B—C11—H12C109.5C17B—C18B—H19119.7
C10—C12—H7A109.5O3B—C19B—O2B123.5 (6)
C10—C12—H7B109.5O3B—C19B—C20B123.4 (6)
H7A—C12—H7B109.5O2B—C19B—C20B113.1 (6)
C10—C12—H7C109.5O4B—C20B—C19B108.3 (9)
H7A—C12—H7C109.5O4B—C20B—C25B106.2 (8)
H7B—C12—H7C109.5C19B—C20B—C25B114.1 (7)
C18A—C13A—C14A117.0 (10)O4B—C20B—C26B104.4 (9)
C18A—C13A—C7117.9 (9)C19B—C20B—C26B117.4 (6)
C14A—C13A—C7125.1 (8)C25B—C20B—C26B105.4 (6)
C15A—C14A—C13A121.2 (8)O5B—C21B—O4B120.6 (10)
C15A—C14A—H25119.4O5B—C21B—C22B131.7 (6)
C13A—C14A—H25119.4O4B—C21B—C22B107.5 (9)
C16A—C15A—C14A119.4 (8)C21B—C22B—C23B114.2 (6)
C16A—C15A—H24120.3C21B—C22B—C24B103.6 (6)
C14A—C15A—H24120.3C23B—C22B—C24B115.7 (7)
C17A—C16A—C15A121.4 (9)C21B—C22B—C26B99.8 (6)
C17A—C16A—O2A117.7 (9)C23B—C22B—C26B117.9 (7)
C15A—C16A—O2A120.4 (9)C24B—C22B—C26B103.4 (6)
C16A—C17A—C18A118.9 (8)C22B—C24B—C25B103.7 (5)
C16A—C17A—H22120.5C22B—C24B—H28A111.0
C18A—C17A—H22120.5C25B—C24B—H28A111.0
C13A—C18A—C17A122.0 (9)C22B—C24B—H28B111.0
C13A—C18A—H21119.0C25B—C24B—H28B111.0
C17A—C18A—H21119.0H28A—C24B—H28B109.0
O3A—C19A—O2A126.1 (7)C20B—C25B—C24B100.9 (6)
O3A—C19A—C20A125.4 (6)C20B—C25B—H13A111.6
O2A—C19A—C20A108.5 (6)C24B—C25B—H13A111.6
O4A—C20A—C19A107.0 (6)C20B—C25B—H13B111.6
O4A—C20A—C25A104.5 (7)C24B—C25B—H13B111.6
C19A—C20A—C25A114.5 (7)H13A—C25B—H13B109.4
O4A—C20A—C26A103.0 (6)C28B—C26B—C27B109.1 (7)
C19A—C20A—C26A121.7 (7)C28B—C26B—C20B113.7 (6)
C25A—C20A—C26A104.3 (7)C27B—C26B—C20B114.3 (6)
O5A—C21A—O4A122.1 (6)C28B—C26B—C22B114.7 (6)
O5A—C21A—C22A129.2 (7)C27B—C26B—C22B114.6 (7)
O4A—C21A—C22A108.6 (6)C20B—C26B—C22B89.5 (6)
C21A—C22A—C23A114.4 (7)
O4A—C20A—C19A—O2A167.5 (6)O4B—C20B—C19B—O2B47.3 (11)
C20A—C19A—O2A—C16A178.5 (7)C20B—C19B—O2B—C16B177.0 (7)
C14A—C13A—C7—C6175.5 (8)C14B—C13B—C7—C67.4 (11)
C13A—C7—C6—C568.8 (7)C13B—C7—C6—C568.2 (5)
C13A—C7—C9—C1092.9 (6)C13B—C7—C9—C1078.6 (5)
Symmetry codes: (i) x, y+1, z; (ii) x, y1, z.

Experimental details

(I)(Ia)
Crystal data
Chemical formulaC28H32O5C28H32O5
Mr448.54448.54
Crystal system, space groupOrthorhombic, P212121Orthorhombic, P212121
Temperature (K)100100
a, b, c (Å)7.398 (2), 8.413 (2), 38.628 (11)7.0710 (5), 6.8500 (4), 48.717 (4)
V3)2404.3 (12)2359.7 (3)
Z44
Radiation typeMo KαMo Kα
µ (mm1)0.080.09
Crystal size (mm)0.27 × 0.24 × 0.190.22 × 0.21 × 0.17
Data collection
DiffractometerBruker SMART APEX CCD area-detector
diffractometer
Bruker SMART APEX CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2002)
Multi-scan
(SADABS; Sheldrick, 2002)
Tmin, Tmax0.97, 0.980.98, 0.99
No. of measured, independent and
observed [I > 2σ(I)] reflections
13603, 2743, 2258 13513, 2734, 2282
Rint0.0550.064
(sin θ/λ)max1)0.6170.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.082, 1.12 0.067, 0.131, 1.19
No. of reflections27432734
No. of parameters304489
No. of restraints0324
H-atom treatmentH-atom parameters constrainedH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.20, 0.200.20, 0.15
Absolute structureFlack (1983) with how many Friedel pairsFlack (1983), with how many Friedel pairs
Absolute structure parameter0 (10)0 (10)

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2002), SAINT, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), X-SEED (Barbour, 2001), X-SEED.

 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds