Download citation
Download citation
link to html
The title copper(I) complex, [CuCl(C11H14N2O3S)2], was synthesized by the redox reaction of cupric chloride with the corresponding thio­urea derivative as reducing agent. The CuI coordination environment is trigonal planar, involving two S atoms and one Cl atom. The presence of intramolecular hydrogen bonds leads to the formation of a cis conformation and promotes the stability of the complex.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270104028215/hj1031sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270104028215/hj1031Isup2.hkl
Contains datablock I

CCDC reference: 252515

Comment top

Complexes of thiourea derivatives have been reported in several papers (Guillon et al., 1996, 1998), and these compounds have been popularly used in organic synthesis, such as in the metal-catalyzed asymmetric reduction of carbonyl compounds and carbonylative cyclization of o-hydroxylarylacetylenes (Touchard et al., 1997; Nan et al., 2000). Of all the thiourea derivatives, the N-substituted-N'-acylthiourea compounds have received the most attention, because the existence of acyl and thiocarbonyl groups in these complexes enhances the coordination ability of the ligands, which readily form supramolecular structures via hydrogen bonds. In our previous work (Zhang et al., 2003a, 2003b), a series of complexes with thiourea derivatives were synthesized and characterized, and the coordination behavior of thiourea derivatives was discussed. The preparation of the title complex, (I), and its crystal structure are reported here.

In many cases of synthesis of copper complexes, irreversible CuII/CuI systems have been observed (Guillon et al., 1996, 1998), and there are many reports of the reduction of CuII in the presence of thione derivatives (Jeannin et al., 1979; Raper, 1985; Karagiannidis et al., 1990). For the synthesis of complex (I), the cuprous complex was obtained by the redox reaction of cupric ions with the thiourea ligand. The reducing agent in this reaction is the thiourea ligand, N-(p-methoxyphenyl)-N'-(ethoxycarbonyl)thiourea, according to previous publications (Jeannin et al. 1979). This reaction is similar to those reported by Shen et al. (1997) and Zhang et al. (2003b).

In the molecular structure of (I), the two acylthiourea molecules adopt a cis conformation relative to the central CuI ion (Fig. 1) because of the existence of intramolecular hydrogen bonds between the Cl atom and H atoms bonded to atoms N2 and N4 (Table 2). The CuI ion in complex (I) has trigonal geometry, composed of two S atoms from two thiourea ligands and one Cl ion (Table 1). These atoms lie on a least-squares plane, the mean deviation from the plane being 0.0034 Å.

The existence of intramolecular hydrogen bonds in carbonylthiourea evidently influences its coordination properties and promotes the stability of the complex it forms. In cis-bis(N-Benzoyl-N'-propylthiourea)dichloroplatinum(II) (Bourne & Koch, 1993), the two ligand molecules bind to the PtII ion via the S atoms only, the carbonyl O atoms being locked into position by hydrogen bonds similar to those in the free ligand. The same observation was reported for a CuI complex by Shen et al. (1997) and Zhang et al. (2003b). By comparison, in N,N-disubstituted carbonylthiourea complexes, the carbonyl O atom commonly participates in coordination with the central metal ion, for example in the PtII and CuII complexes (Koch et al., 1994; Richter et al., 1980). This behavior is due to the absence of a thioamide H atom in the N,N-disubstituted carbonylthiourea, which means that no hydrogen bonds can form. This hypothesis is confirmed in complex (I), in which there are four intramolecular hydrogen bonds in the molecule (Table 2). Acyl atoms O2 and O5 form hydrogen bonds with the H atoms on atoms N1 and N3. Since they are locked into a planar six-membered ring formed by these hydrogen bonds, the acyl O atoms in the ligands cannot take part in the coordination with the CuI ion in the same way as the S atoms.

Experimental top

The N-(p-methoxyphenyl)-N'-(ethoxycarbonyl)thiourea ligand was synthesized according to the method reported by Zhang et al. (2003b). To an ethanol (30 ml) solution of the ligand (2 mmol) was added an ethanol solution (volume?) of cupric chloride (1 mmol). After stirring the solution at room temperature for 2 h, the mixture was filtered to obtain a white solid, which was then dried in air (yield 34%). Single crystals of (I) were obtained, after one week, by slow evaporation of a chloroform solution. Analysis calculated for C22H28ClCuN4O6S2: C 43.45, H 4.61, N 9.22%; found: C 43.00, H 4.05, N 8.89%. IR (KBr disc): 3115 (versus), 1724 (versus), 1558 (s), 1530 (s), 1513 (versus), 1253 (versus), 1186 (s), 1040 (s), 834 (w), 769 (w), 684 (w), 521 (w). 1H NMR (Benzene-d6): 0.92 (3H, CH3), 3.19 (3H, ArOCH3), 5.00 (2H, CH2), 7.16 (4H, Ar—H), 11.46 (1H, NH), 11.88 (1H, NH).

Refinement top

H atoms bonded to N atoms were found by difference Fourier methods and refined isotropically. H atoms bonded to C atoms were included in calculated positions (C—H = 0.93–0.97 Å) using a riding model.

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SMART; data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXT (Bruker, 1998)L; software used to prepare material for publication: SHELXTL.

Figures top
[Figure 1]
[Figure 2]
Figure 1 View of the title compound showing the atomic labeling. Displacement ellipsoids are drawn at the 50% probability level. Intramolecular hydrogen bonds are indicated by dashed lines.
Chlorobis[N-(ethoxycarbonyl)-N'-(p-methoxyphenyl)thiourea-κS]copper(I) top
Crystal data top
[CuCl(C11H14N2O3S)2]Dx = 1.453 Mg m3
Mr = 607.59Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, Pna21Cell parameters from 949 reflections
a = 13.648 (3) Åθ = 2.5–23.4°
b = 13.254 (3) ŵ = 1.08 mm1
c = 15.358 (6) ÅT = 293 K
V = 2778.1 (13) Å3Block, colorless
Z = 40.26 × 0.24 × 0.18 mm
F(000) = 1256
Data collection top
Bruker SMART CCD area-detector
diffractometer
5690 independent reflections
Radiation source: fine-focus sealed tube3568 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.046
ϕ and ω scansθmax = 26.6°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Bruker, 1998)
h = 1716
Tmin = 0.654, Tmax = 0.824k = 1610
15513 measured reflectionsl = 1918
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.039H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.095 w = 1/[σ2(Fo2) + (0.0408P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.001
5690 reflectionsΔρmax = 0.29 e Å3
342 parametersΔρmin = 0.47 e Å3
5 restraintsAbsolute structure: Flack (1983), 2678 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.438 (16)
Crystal data top
[CuCl(C11H14N2O3S)2]V = 2778.1 (13) Å3
Mr = 607.59Z = 4
Orthorhombic, Pna21Mo Kα radiation
a = 13.648 (3) ŵ = 1.08 mm1
b = 13.254 (3) ÅT = 293 K
c = 15.358 (6) Å0.26 × 0.24 × 0.18 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
5690 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1998)
3568 reflections with I > 2σ(I)
Tmin = 0.654, Tmax = 0.824Rint = 0.046
15513 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.039H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.095Δρmax = 0.29 e Å3
S = 1.04Δρmin = 0.47 e Å3
5690 reflectionsAbsolute structure: Flack (1983), 2678 Friedel pairs
342 parametersAbsolute structure parameter: 0.438 (16)
5 restraints
Special details top

Experimental. The infrared spectrum was recorded on a Nicolet NEXUS 670 F T—IR spectrophotometer using KBr discs. 1H NMR spectra were recorded on an Advance 300 Bruker spectrometer with Benzene-d6 as solvent.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.13153 (3)0.13893 (3)0.04286 (6)0.05104 (15)
Cl10.12961 (8)0.30854 (6)0.04538 (18)0.0680 (3)
S10.25076 (8)0.05389 (8)0.10676 (9)0.0509 (3)
S20.01256 (8)0.05482 (8)0.02238 (9)0.0583 (4)
O10.5380 (2)0.2942 (3)0.2340 (2)0.0639 (10)
O20.4578 (2)0.2951 (3)0.2146 (3)0.0674 (10)
O30.3396 (3)0.3981 (3)0.1651 (3)0.0615 (11)
O40.2819 (2)0.2938 (3)0.1406 (3)0.0654 (11)
O50.2006 (2)0.2941 (3)0.1222 (3)0.0640 (10)
O60.0826 (3)0.3974 (3)0.0729 (3)0.0568 (10)
N10.4173 (3)0.1013 (3)0.1835 (3)0.0537 (11)
H10.460 (3)0.146 (3)0.201 (3)0.064*
N20.3204 (3)0.2353 (3)0.1454 (4)0.0483 (12)
H20.269 (2)0.253 (3)0.116 (3)0.058*
N30.1602 (3)0.1002 (4)0.0869 (3)0.0554 (12)
H30.205 (3)0.145 (3)0.098 (3)0.067*
N40.0631 (3)0.2356 (3)0.0516 (3)0.0465 (11)
H40.0071 (19)0.255 (3)0.030 (3)0.056*
C10.6196 (4)0.3328 (6)0.1880 (5)0.088 (2)
H1A0.60570.33270.12670.132*
H1B0.63260.40050.20680.132*
H1C0.67590.29130.19920.132*
C20.5097 (3)0.1970 (4)0.2168 (4)0.0494 (14)
C30.4284 (3)0.1624 (4)0.2605 (3)0.0549 (13)
H3A0.39490.20530.29800.066*
C40.3966 (3)0.0664 (4)0.2494 (3)0.0551 (12)
H4A0.34180.04380.27950.066*
C50.4456 (3)0.0019 (4)0.1935 (3)0.0456 (12)
C60.5263 (4)0.0353 (4)0.1507 (3)0.0588 (13)
H60.56000.00820.11380.071*
C70.5589 (3)0.1333 (4)0.1612 (4)0.0593 (14)
H70.61370.15590.13090.071*
C80.3356 (4)0.1332 (4)0.1487 (3)0.0439 (12)
C90.3818 (4)0.3096 (4)0.1793 (3)0.0550 (12)
C100.3926 (4)0.4870 (4)0.1952 (4)0.0729 (16)
H10A0.40410.48290.25740.087*
H10B0.45530.49210.16590.087*
C110.3320 (5)0.5746 (4)0.1750 (6)0.118 (3)
H11A0.32410.57980.11310.177*
H11B0.36320.63440.19670.177*
H11C0.26900.56700.20200.177*
C120.3559 (5)0.3367 (6)0.0884 (5)0.094 (2)
H12A0.33710.33260.02830.141*
H12B0.36480.40610.10430.141*
H12C0.41610.30060.09710.141*
C130.2540 (3)0.1967 (4)0.1233 (4)0.0469 (13)
C140.3016 (3)0.1339 (4)0.0655 (4)0.0593 (13)
H140.35620.15720.03520.071*
C150.2687 (3)0.0367 (4)0.0523 (3)0.0563 (13)
H150.30030.00520.01260.068*
C160.1893 (3)0.0023 (4)0.0979 (3)0.0445 (12)
C170.1411 (3)0.0645 (3)0.1552 (3)0.0480 (11)
H170.08650.04120.18520.058*
C180.1741 (3)0.1620 (3)0.1682 (3)0.0509 (12)
H180.14200.20410.20740.061*
C190.0764 (3)0.1341 (4)0.0563 (3)0.0455 (12)
C200.1239 (3)0.3094 (4)0.0861 (3)0.0486 (12)
C210.1336 (4)0.4854 (4)0.1089 (4)0.0656 (14)
H21A0.19920.49010.08500.079*
H21B0.13840.47990.17170.079*
C220.0756 (5)0.5749 (4)0.0846 (5)0.091 (2)
H22A0.07950.58520.02290.137*
H22B0.10110.63310.11420.137*
H22C0.00850.56490.10110.137*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0421 (3)0.0469 (2)0.0641 (3)0.0012 (3)0.0088 (3)0.0012 (5)
Cl10.0542 (6)0.0410 (5)0.1089 (9)0.0010 (5)0.0220 (7)0.0001 (14)
S10.0452 (6)0.0429 (6)0.0645 (8)0.0017 (5)0.0121 (6)0.0003 (6)
S20.0469 (7)0.0412 (6)0.0867 (10)0.0069 (5)0.0218 (7)0.0072 (7)
O10.066 (2)0.054 (3)0.071 (3)0.0085 (18)0.009 (2)0.009 (2)
O20.049 (2)0.061 (3)0.092 (3)0.0015 (18)0.022 (2)0.010 (2)
O30.056 (2)0.041 (3)0.087 (3)0.007 (2)0.020 (2)0.002 (2)
O40.073 (2)0.054 (3)0.069 (3)0.016 (2)0.002 (2)0.002 (2)
O50.045 (2)0.056 (2)0.091 (3)0.0059 (17)0.019 (2)0.017 (2)
O60.052 (2)0.041 (2)0.077 (3)0.0091 (18)0.003 (2)0.0073 (19)
N10.041 (3)0.048 (3)0.072 (3)0.001 (2)0.015 (2)0.004 (2)
N20.040 (2)0.045 (3)0.060 (3)0.004 (2)0.011 (2)0.003 (2)
N30.041 (3)0.047 (3)0.079 (4)0.009 (2)0.013 (2)0.004 (2)
N40.043 (2)0.037 (2)0.060 (3)0.0061 (19)0.013 (2)0.000 (2)
C10.101 (5)0.073 (5)0.090 (5)0.034 (4)0.027 (4)0.011 (4)
C20.044 (3)0.053 (4)0.051 (3)0.001 (2)0.006 (3)0.002 (3)
C30.050 (3)0.058 (3)0.057 (3)0.000 (2)0.006 (2)0.011 (2)
C40.041 (3)0.067 (3)0.057 (3)0.006 (3)0.008 (2)0.001 (3)
C50.034 (3)0.050 (3)0.053 (3)0.006 (2)0.003 (2)0.003 (2)
C60.058 (3)0.055 (3)0.064 (3)0.006 (3)0.006 (3)0.014 (2)
C70.047 (3)0.066 (4)0.065 (4)0.010 (3)0.013 (3)0.006 (3)
C80.036 (2)0.049 (3)0.047 (3)0.001 (2)0.003 (2)0.001 (3)
C90.049 (3)0.059 (3)0.057 (3)0.004 (3)0.000 (3)0.004 (3)
C100.067 (4)0.057 (3)0.094 (4)0.021 (3)0.018 (3)0.009 (3)
C110.084 (4)0.059 (4)0.211 (9)0.002 (3)0.051 (5)0.034 (5)
C120.114 (5)0.069 (5)0.099 (6)0.047 (4)0.017 (4)0.010 (4)
C130.041 (3)0.046 (3)0.054 (3)0.004 (2)0.005 (2)0.002 (3)
C140.051 (3)0.061 (3)0.066 (3)0.009 (3)0.014 (3)0.002 (3)
C150.046 (3)0.064 (3)0.059 (3)0.003 (2)0.009 (2)0.007 (3)
C160.034 (3)0.043 (3)0.057 (3)0.000 (2)0.009 (2)0.005 (2)
C170.041 (3)0.051 (3)0.052 (3)0.002 (2)0.003 (2)0.008 (2)
C180.046 (3)0.056 (3)0.051 (3)0.001 (2)0.002 (2)0.002 (2)
C190.044 (3)0.043 (3)0.049 (3)0.001 (2)0.003 (2)0.006 (2)
C200.049 (3)0.042 (3)0.056 (3)0.006 (3)0.009 (3)0.005 (2)
C210.069 (4)0.051 (3)0.076 (4)0.011 (3)0.001 (3)0.015 (3)
C220.098 (5)0.048 (3)0.127 (6)0.009 (3)0.017 (4)0.016 (4)
Geometric parameters (Å, º) top
Cu1—S12.2095 (13)C3—H3A0.9300
Cu1—S22.2098 (13)C4—C51.385 (6)
Cu1—Cl12.2484 (10)C4—H4A0.9300
S1—C81.691 (5)C5—C61.357 (6)
S2—C191.689 (5)C6—C71.382 (6)
O1—C21.370 (6)C6—H60.9300
O1—C11.415 (6)C7—H70.9300
O2—C91.186 (5)C10—C111.458 (8)
O3—C91.325 (7)C10—H10A0.9700
O3—C101.458 (6)C10—H10B0.9700
O4—C131.367 (6)C11—H11A0.9600
O4—C121.409 (6)C11—H11B0.9600
O5—C201.202 (5)C11—H11C0.9600
O6—C201.311 (6)C12—H12A0.9600
O6—C211.465 (6)C12—H12B0.9600
N1—C81.307 (6)C12—H12C0.9600
N1—C51.429 (6)C13—C181.369 (6)
N1—H10.865 (10)C13—C141.380 (7)
N2—C81.370 (6)C14—C151.380 (6)
N2—C91.394 (7)C14—H140.9300
N2—H20.864 (10)C15—C161.369 (6)
N3—C191.315 (7)C15—H150.9300
N3—C161.425 (7)C16—C171.375 (7)
N3—H30.870 (10)C17—C181.383 (6)
N4—C191.359 (6)C17—H170.9300
N4—C201.387 (6)C18—H180.9300
N4—H40.870 (10)C21—C221.474 (7)
C1—H1A0.9600C21—H21A0.9700
C1—H1B0.9600C21—H21B0.9700
C1—H1C0.9600C22—H22A0.9600
C2—C31.376 (6)C22—H22B0.9600
C2—C71.377 (7)C22—H22C0.9600
C3—C41.354 (6)
S1—Cu1—S2119.03 (4)O3—C10—H10A110.3
S1—Cu1—Cl1120.72 (5)C11—C10—H10B110.3
S2—Cu1—Cl1120.24 (5)O3—C10—H10B110.3
C8—S1—Cu1110.89 (18)H10A—C10—H10B108.5
C19—S2—Cu1110.77 (17)C10—C11—H11A109.5
C2—O1—C1117.7 (4)C10—C11—H11B109.5
C9—O3—C10116.6 (4)H11A—C11—H11B109.5
C13—O4—C12118.0 (4)C10—C11—H11C109.5
C20—O6—C21116.5 (4)H11A—C11—H11C109.5
C8—N1—C5125.7 (4)H11B—C11—H11C109.5
C8—N1—H1119 (3)O4—C12—H12A109.5
C5—N1—H1116 (3)O4—C12—H12B109.5
C8—N2—C9126.3 (4)H12A—C12—H12B109.5
C8—N2—H2114 (3)O4—C12—H12C109.5
C9—N2—H2119 (3)H12A—C12—H12C109.5
C19—N3—C16127.6 (4)H12B—C12—H12C109.5
C19—N3—H3117 (3)O4—C13—C18116.1 (4)
C16—N3—H3115 (3)O4—C13—C14124.1 (4)
C19—N4—C20126.7 (4)C18—C13—C14119.8 (4)
C19—N4—H4115 (3)C15—C14—C13120.3 (4)
C20—N4—H4118 (3)C15—C14—H14119.8
O1—C1—H1A109.5C13—C14—H14119.8
O1—C1—H1B109.5C16—C15—C14119.6 (5)
H1A—C1—H1B109.5C16—C15—H15120.2
O1—C1—H1C109.5C14—C15—H15120.2
H1A—C1—H1C109.5C15—C16—C17120.4 (5)
H1B—C1—H1C109.5C15—C16—N3118.5 (5)
O1—C2—C3116.5 (4)C17—C16—N3121.0 (4)
O1—C2—C7124.0 (4)C16—C17—C18119.8 (4)
C3—C2—C7119.5 (5)C16—C17—H17120.1
C4—C3—C2120.7 (5)C18—C17—H17120.1
C4—C3—H3A119.7C13—C18—C17120.0 (4)
C2—C3—H3A119.7C13—C18—H18120.0
C3—C4—C5120.3 (4)C17—C18—H18120.0
C3—C4—H4A119.9N3—C19—N4118.2 (4)
C5—C4—H4A119.9N3—C19—S2121.5 (4)
C6—C5—C4119.3 (4)N4—C19—S2120.2 (3)
C6—C5—N1118.7 (4)O5—C20—O6126.5 (5)
C4—C5—N1121.9 (4)O5—C20—N4125.3 (5)
C5—C6—C7120.8 (5)O6—C20—N4108.2 (4)
C5—C6—H6119.6O6—C21—C22106.9 (4)
C7—C6—H6119.6O6—C21—H21A110.3
C2—C7—C6119.4 (4)C22—C21—H21A110.3
C2—C7—H7120.3O6—C21—H21B110.3
C6—C7—H7120.3C22—C21—H21B110.3
N1—C8—N2117.6 (5)H21A—C21—H21B108.6
N1—C8—S1122.7 (4)C21—C22—H22A109.5
N2—C8—S1119.7 (4)C21—C22—H22B109.5
O2—C9—O3126.8 (5)H22A—C22—H22B109.5
O2—C9—N2125.7 (5)C21—C22—H22C109.5
O3—C9—N2107.6 (5)H22A—C22—H22C109.5
C11—C10—O3107.1 (4)H22B—C22—H22C109.5
C11—C10—H10A110.3
S2—Cu1—S1—C8177.77 (19)C8—N2—C9—O3178.0 (5)
Cl1—Cu1—S1—C83.0 (2)C9—O3—C10—C11178.6 (6)
S1—Cu1—S2—C19173.52 (19)C12—O4—C13—C18172.3 (5)
Cl1—Cu1—S2—C195.7 (2)C12—O4—C13—C148.5 (8)
C1—O1—C2—C3178.1 (5)O4—C13—C14—C15179.6 (5)
C1—O1—C2—C73.7 (7)C18—C13—C14—C150.5 (8)
O1—C2—C3—C4178.1 (4)C13—C14—C15—C161.0 (8)
C7—C2—C3—C40.1 (8)C14—C15—C16—C171.3 (8)
C2—C3—C4—C50.3 (7)C14—C15—C16—N3176.4 (4)
C3—C4—C5—C60.8 (7)C19—N3—C16—C15118.1 (6)
C3—C4—C5—N1176.7 (4)C19—N3—C16—C1764.2 (7)
C8—N1—C5—C6116.8 (6)C15—C16—C17—C181.2 (7)
C8—N1—C5—C467.3 (7)N3—C16—C17—C18176.5 (4)
C4—C5—C6—C71.1 (8)O4—C13—C18—C17179.5 (4)
N1—C5—C6—C7177.2 (5)C14—C13—C18—C170.3 (7)
O1—C2—C7—C6177.7 (5)C16—C17—C18—C130.7 (7)
C3—C2—C7—C60.5 (8)C16—N3—C19—N4179.6 (5)
C5—C6—C7—C21.0 (8)C16—N3—C19—S21.1 (8)
C5—N1—C8—N2179.4 (5)C20—N4—C19—N38.9 (8)
C5—N1—C8—S12.0 (8)C20—N4—C19—S2171.8 (4)
C9—N2—C8—N13.3 (8)Cu1—S2—C19—N3171.2 (4)
C9—N2—C8—S1178.0 (4)Cu1—S2—C19—N48.0 (5)
Cu1—S1—C8—N1174.2 (4)C21—O6—C20—O52.5 (8)
Cu1—S1—C8—N24.5 (5)C21—O6—C20—N4177.0 (4)
C10—O3—C9—O20.7 (8)C19—N4—C20—O53.7 (9)
C10—O3—C9—N2179.6 (5)C19—N4—C20—O6175.8 (5)
C8—N2—C9—O21.7 (9)C20—O6—C21—C22178.8 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O20.87 (4)1.99 (4)2.670 (6)134 (4)
N2—H2···Cl10.87 (3)2.31 (3)3.175 (5)176 (2)
N3—H3···O50.87 (4)2.01 (4)2.682 (6)133 (4)
N4—H4···Cl10.87 (3)2.31 (3)3.174 (4)172 (4)

Experimental details

Crystal data
Chemical formula[CuCl(C11H14N2O3S)2]
Mr607.59
Crystal system, space groupOrthorhombic, Pna21
Temperature (K)293
a, b, c (Å)13.648 (3), 13.254 (3), 15.358 (6)
V3)2778.1 (13)
Z4
Radiation typeMo Kα
µ (mm1)1.08
Crystal size (mm)0.26 × 0.24 × 0.18
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 1998)
Tmin, Tmax0.654, 0.824
No. of measured, independent and
observed [I > 2σ(I)] reflections
15513, 5690, 3568
Rint0.046
(sin θ/λ)max1)0.629
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.095, 1.04
No. of reflections5690
No. of parameters342
No. of restraints5
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.29, 0.47
Absolute structureFlack (1983), 2678 Friedel pairs
Absolute structure parameter0.438 (16)

Computer programs: SMART (Bruker, 1998), SMART, SAINT (Bruker, 1998), SHELXS97 (Sheldrick, 1990), SHELXL97 (Sheldrick, 1997), SHELXT (Bruker, 1998)L, SHELXTL.

Selected geometric parameters (Å, º) top
Cu1—S12.2095 (13)Cu1—Cl12.2484 (10)
Cu1—S22.2098 (13)
S1—Cu1—S2119.03 (4)S2—Cu1—Cl1120.24 (5)
S1—Cu1—Cl1120.72 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O20.87 (4)1.99 (4)2.670 (6)134 (4)
N2—H2···Cl10.87 (3)2.31 (3)3.175 (5)176 (2)
N3—H3···O50.87 (4)2.01 (4)2.682 (6)133 (4)
N4—H4···Cl10.87 (3)2.31 (3)3.174 (4)172 (4)
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds