Download citation
Download citation
link to html
Two differently hydrated crystal forms of the title compound, viz. bis­(acetato-κ2O,O′)(2,9-di­methyl-1,10-phenanthroline-κ2N,N′)­mercury(II), [Hg(C2H3O2)2(C14H12N2)] or [HgAc2(dmph)] [dmph is 2,3-di­methyl-1,10-phenantroline (neocuproine) and Ac is acetate], (I), and tris­[bis­(acetato-κ2O,O′)(2,9-di­methyl-1,10-phenanthroline-κ2N,N′)­mercury(II)] hexadecahydrate, [Hg(C2H3O2)2(C14H12N2)]3·16H2O or [HgAc2(dmph)]3·16H2O, (II), are presented. Both structures are composed of very simple monomeric units, which act as the building blocks of complex packing schemes stabilized by a diversity of π–π and hydrogen-bonding interactions.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270104014131/hj1012sup1.cif
Contains datablocks global, I, II

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270104014131/hj1012Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270104014131/hj1012IIsup3.hkl
Contains datablock II

CCDC references: 248129; 248130

Comment top

The weak interactions responsible for the self-assembly of metal-organic systems have become the main topic of many structural reports, with the result that the molecular building blocks end up being viewed as merely supporting media for these interactions to occur. The presence of water molecules and/or polycyclic aromatic ligands often sets favourable conditions for the appearance of these interactions. In these cases, the resulting complexes are usually prone to generate a variety of strong packing interactions, such as hydrogen bonds or medium-range contacts linking aromatic rings, either in a slipped or displaced stacking arrangement (hereinafter ππ) or in an edge- (or point-)to-face conformation (C—H···π) [for details, see Janiak (2000)].

We present here the two title mercury acetate complexes, [Hg(dmph)(Ac)2], (I), and [Hg(dmph)(Ac)2]3.16H2O, (II) [dmph is dimethyl-1,10-phenantroline (neocuproine) and Ac is acetate], which may well constitute such cases. By means of a simple, rather predictable, monomeric unit, [Hg(dmph)(Ac)2], which both structures share as their elemental building block, two very different three-dimensional structures are built up, with an unusual number and diversity of packing interactions which are attractive from a structural point of view. \sch

The monomeric building units in (I) and (II) are composed of an Hg2+ cation coordinated by three chelating ligands (one dmph and two acetate anions), providing an uneven six-coordinated environment for the cation. Due to the narrow bite of the ligands, the coordination polyhedra depart from any regular geometry and the most adequate description is that of a square pyramid, in which atoms N1, N2, O1A and O1B define the base and the pair of atoms O1B and O2B occupy the apex. (In fact, the apical direction is represented by the C1B—Hg line). In order to quantify these assertions, we quote some values for structure (I), but these are representative of all four independent units: the mean deviation of atoms N1, N2, O1A and O1B from the best plane is 0.039 (1)/%A, with the cation displaced 1.05 (1) Å from the plane towards the apex, and the deviation of the C1B—Hg line from the base normal is 7.9 (1)°.

While this molecular unit is the only motif present in (I), the asymmetric unit of (II) is composed of three independent such [Hg(dmph)(Ac)2] groups complemented by 16 hydration water molecules, for which the description of the intermolecular interactions becomes much more complex.

Inspection of Figs. 1 and 2, which present the four independent [Hg(dmph)(Ac)2] units in both structures, confirms their topological similarity. There remain, however, some geometric differences which might well have to do with packing processes (see below) and which can be analysed from the values in Tables 1 and 3, where surveys of relevant bond distances and angles around the cations are presented. In order to facilitate the comparison of homologous parameters, they have been grouped so that they appear in the list in the same sequence.

The dmph ligand binds, as usual, in a very symmetric fashion. The maximum difference in bond lengths corresponds to structure (IIb), where the difference in Hg—N distances is aproximately twice the sum of the individual s.u.s, the remainder not being significant. In all four cases, the coordination plane through the cation is almost coincident with the ligand plane, with a maximum deviation of 2.1 (1)° displayed in structure (I).

All four cations [one in (I), three in (II)] are coordinated by two acetate groups behaving quite differently. One of them binds symmetrically [unit A in (1), and units D, G and I in (2)], the other [unit B in (1), and E, F and H in (2)] being asymmetric and presenting, in all cases but unit H, both the shortest as well as the longest coordination distances, with some of these last even being beyond normally accepted coordination distances [viz. Hg2—O2F 2.752 (5) Å, compared with the SHELXL97 (Sheldrick, 1997) default of 2.66 Å].

The extreme availability in both structures of pyridyl and aryl cycles prone to forming ππ contacts, and the large number of water molecules able to participate in hydrogen-bonding [in structure (2)] lead to very rich interaction schemes for these two compounds.

In structure (I), the main interaction present is the ππ bond shown in Fig. 3, which links the monomeric [Hg(dmph)(Ac)2] building-block units into `dimers', which are in fact the real structural motifs (Table 2). These units are in turn isolated in space, their interaction being much weaker and achieved through diffuse van der Waal's forces.

Structure (II) can be described as chains of ππ-bonded monomers piled up on top of one another and aligned along the c axis, interlinked by a dense network of hydrogen-bonded water molecules. Monomers stack in the column in the sequence CBA·ABC·CBA, where `.' stands for a symmetry centre and A, B and C represent the suffixes characterizing the aromatic ligands in each monomer. Thus, there are four different types of ππ contacts, which can be represented (using the above coding) as A·A, AB, BC and C·C. These are sketched in Fig. 4(a)-(d) and the relevant parameters are shown in Table 4.

The columns thus formed are connected to each other via a H-bonded network, which could be deduced from the O-atom positions as it was not possible to locate water H atoms with any degree of confidence in the presence of Hg. In spite of this limitation, the linkages are very clear, as shown in Fig. 5. A l l water oxygen atoms take part in this H-bonded network with O···O separations in the range 2.439 (17) to 2.985 (17) Å.

Experimental top

Compound (I) was prepared by direct mixture of a methanolic solution of Hg acetate and neocuproine with an aqueous solution of potassium persulfate, in such a way as to have 0.025M final concentrations for all reagents. The solid material obtained after a few days was recrystallized from dimethylformamide, from where pale-yellow prisms were obtained. Compound (II) was prepared by interdifussion of an aqueous solution of potassium sulfate into a methanolic solution of Hg acetate and neocuproine, through a very thin capillary initially full of water (all reagents in 0.025M concentration). In a couple of days, pale-yellow prismas suitable for X-ray diffraction were obtained. The overwhelming number of crystallization water molecules in (II) renders the structure quite unstable at room temperature, to the extent that a single-crystal usually survives just a few s under ambient conditions before collapsing. Closely sealed in a capillary with a drop of mother liquor, however, they can be kept unaltered for weeks.

Refinement top

Aromatic hydrogen atoms were placed at their calculated positions (C—H: 0.93 Å) and allowed to ride, while those pertaining to terminal methyl groups were not included in the models because they could not be confidently positoned. A similar situation arose with H's from water molecules which could not be reliably located in the presence of Hg, so they were disregarded from the model and the hydrogen-bonding interactions were discussed solely in terms of O···O distances. Full use of the CCDC package was made for searching in the Cambridge Structural Database (Allen, 2002).

Computing details top

For both compounds, data collection: SMART (Bruker, 2001); cell refinement: SMART; data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: XP in SHELXTL/PC (Sheldrick, 1994); software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1] Fig. 1. Molecular diagram for (1). Displacement ellipsoids are drawn at the 40% probability level.
[Figure 2] Fig. 2. Molecular diagram for (II). Displacement ellipsoids are drawn at the 40% probability level and H atoms have been omitted for clarity.
[Figure 3] Fig. 3. A schematic diagram showing the ππ interactions between dmph groups in (I). Primed labels denote atoms at the symmetry position (-x, 1 − y, 1 − z).
[Figure 4] Fig. 4. Schematic diagrams showing the ππ interactions between dmph groups in (II). (a) A'-A interaction. Primed labels denote atoms at the symmetry position (2 − x, 1 − y, 2 − z). (b) A—B interaction. (c) B—C interaction. (d) C—C'' interaction. Doubly-primed labels denote atoms at the symmetry position (2 − x, 1 − y, 1 − z).
[Figure 5] Fig. 5. A packing view of (II) down the (110) direction, showing two columns connected by a dense network of crystallization water molecules. A column one level above the water network and another one level below (which complete a four-column environment of the latter) have been omitted for clarity.
(I) bis(acetato-κ2O,O')(2,9-dimethyl-1,10-phenanthroline-κ2N,N')mercury(II) top
Crystal data top
[Hg(C2H3O2)2(C14H12N2)]Z = 2
Mr = 526.93F(000) = 504
Triclinic, P1Dx = 2.008 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.3619 (15) ÅCell parameters from 187 reflections
b = 9.4973 (18) Åθ = 2.0–25.0°
c = 12.349 (2) ŵ = 8.86 mm1
α = 83.167 (3)°T = 293 K
β = 76.646 (4)°Prism, pale yellow
γ = 66.027 (3)°0.25 × 0.14 × 0.10 mm
V = 871.5 (3) Å3
Data collection top
Bruker SMART CCD area-detector
diffractometer
3659 independent reflections
Radiation source: fine-focus sealed tube1839 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.054
ϕ and ω scansθmax = 28.0°, θmin = 1.7°
Absorption correction: multi-scan
SADABS (Sheldrick, 1996) in SAINT (Bruker, 2000)
h = 1011
Tmin = 0.22, Tmax = 0.41k = 1111
7356 measured reflectionsl = 1115
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.050Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.084H-atom parameters constrained
S = 0.81 w = 1/[σ2(Fo2) + (0.0119P)2]
where P = (Fo2 + 2Fc2)/3
3659 reflections(Δ/σ)max = 0.007
230 parametersΔρmax = 0.76 e Å3
0 restraintsΔρmin = 0.78 e Å3
Crystal data top
[Hg(C2H3O2)2(C14H12N2)]γ = 66.027 (3)°
Mr = 526.93V = 871.5 (3) Å3
Triclinic, P1Z = 2
a = 8.3619 (15) ÅMo Kα radiation
b = 9.4973 (18) ŵ = 8.86 mm1
c = 12.349 (2) ÅT = 293 K
α = 83.167 (3)°0.25 × 0.14 × 0.10 mm
β = 76.646 (4)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
3659 independent reflections
Absorption correction: multi-scan
SADABS (Sheldrick, 1996) in SAINT (Bruker, 2000)
1839 reflections with I > 2σ(I)
Tmin = 0.22, Tmax = 0.41Rint = 0.054
7356 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0500 restraints
wR(F2) = 0.084H-atom parameters constrained
S = 0.81Δρmax = 0.76 e Å3
3659 reflectionsΔρmin = 0.78 e Å3
230 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Hg0.29190 (5)0.23364 (5)0.25232 (4)0.04944 (17)
N10.0763 (11)0.4703 (10)0.2192 (8)0.046 (2)
N20.0679 (10)0.2932 (9)0.4099 (7)0.041 (2)
C10.0953 (17)0.5520 (14)0.1201 (11)0.063 (4)
C20.0509 (17)0.6894 (14)0.1087 (11)0.063 (4)
H2A0.04340.74960.04410.075*
C30.2015 (17)0.7384 (13)0.1870 (13)0.071 (4)
H3A0.29620.82830.17310.085*
C40.2211 (15)0.6571 (12)0.2907 (10)0.048 (3)
C50.3727 (15)0.7074 (14)0.3775 (11)0.063 (4)
H5A0.46910.79910.36940.075*
C60.3766 (14)0.6221 (14)0.4715 (12)0.065 (4)
H6A0.47680.65560.52870.079*
C70.2280 (14)0.4782 (15)0.4865 (10)0.057 (3)
C80.2248 (16)0.3855 (16)0.5846 (10)0.063 (4)
H8A0.31880.41630.64570.076*
C90.0784 (16)0.2468 (14)0.5881 (11)0.063 (4)
H9A0.07900.18220.65080.076*
C100.0676 (15)0.2023 (14)0.5014 (10)0.054 (3)
C110.0758 (13)0.4281 (13)0.3986 (9)0.044 (3)
C120.0680 (14)0.5188 (12)0.2973 (10)0.047 (3)
C130.2614 (13)0.4906 (12)0.0340 (9)0.061 (3)
C140.2313 (13)0.0511 (12)0.5036 (9)0.058 (3)
O1A0.2819 (9)0.1215 (9)0.0924 (6)0.067 (2)
O2A0.2975 (10)0.0280 (9)0.2395 (7)0.072 (3)
C1A0.2938 (13)0.0068 (14)0.1366 (11)0.049 (3)
C2A0.3056 (14)0.1336 (14)0.0679 (11)0.079 (4)
O1B0.5751 (9)0.1283 (10)0.2648 (7)0.072 (3)
O2B0.5414 (10)0.3585 (11)0.2195 (8)0.092 (3)
C1B0.644 (2)0.2245 (15)0.2348 (10)0.072 (4)
C2B0.8418 (12)0.1854 (15)0.2240 (10)0.080 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Hg0.0366 (3)0.0391 (3)0.0633 (3)0.00673 (19)0.0086 (2)0.0007 (2)
N10.037 (6)0.033 (6)0.064 (7)0.000 (5)0.020 (5)0.013 (5)
N20.034 (5)0.027 (5)0.057 (7)0.007 (4)0.006 (5)0.008 (5)
C10.072 (9)0.042 (8)0.087 (11)0.023 (7)0.045 (9)0.013 (8)
C20.084 (10)0.067 (10)0.066 (10)0.054 (9)0.030 (9)0.012 (8)
C30.075 (10)0.041 (8)0.107 (13)0.017 (8)0.061 (9)0.023 (9)
C40.046 (8)0.027 (7)0.073 (10)0.009 (6)0.025 (7)0.009 (7)
C50.044 (8)0.043 (9)0.093 (12)0.006 (7)0.019 (8)0.004 (8)
C60.020 (6)0.047 (9)0.124 (14)0.008 (6)0.005 (8)0.024 (8)
C70.040 (7)0.095 (11)0.046 (9)0.036 (7)0.007 (7)0.015 (8)
C80.078 (10)0.101 (12)0.031 (8)0.062 (9)0.013 (7)0.028 (8)
C90.074 (9)0.056 (9)0.079 (11)0.039 (8)0.027 (8)0.003 (8)
C100.068 (9)0.075 (10)0.042 (8)0.056 (8)0.004 (7)0.008 (7)
C110.035 (7)0.056 (8)0.049 (8)0.027 (6)0.004 (6)0.009 (7)
C120.045 (7)0.032 (7)0.064 (9)0.014 (6)0.017 (7)0.002 (6)
C130.037 (7)0.055 (8)0.068 (9)0.008 (6)0.009 (6)0.005 (7)
C140.050 (7)0.043 (8)0.052 (8)0.011 (6)0.010 (6)0.003 (6)
O1A0.088 (6)0.045 (5)0.072 (6)0.028 (5)0.022 (5)0.003 (5)
O2A0.079 (6)0.057 (6)0.081 (7)0.020 (5)0.033 (6)0.007 (5)
C1A0.026 (6)0.048 (8)0.062 (9)0.009 (6)0.006 (6)0.012 (7)
C2A0.091 (10)0.060 (9)0.088 (11)0.026 (7)0.013 (8)0.039 (8)
O1B0.054 (5)0.062 (6)0.102 (8)0.027 (5)0.017 (5)0.007 (5)
O2B0.060 (6)0.083 (7)0.129 (9)0.039 (4)0.004 (6)0.007 (7)
C1B0.115 (12)0.034 (8)0.033 (8)0.003 (8)0.013 (8)0.003 (7)
C2B0.018 (6)0.142 (13)0.075 (10)0.031 (7)0.023 (6)0.040 (9)
Geometric parameters (Å, º) top
Hg—O1B2.200 (7)C5—H5A0.9300
Hg—N12.302 (8)C6—C71.453 (14)
Hg—N22.309 (8)C6—H6A0.9300
Hg—O1A2.385 (7)C7—C81.409 (15)
Hg—O2A2.489 (8)C7—C111.420 (13)
Hg—O2B2.726 (8)C8—C91.392 (14)
N1—C121.310 (12)C8—H8A0.9300
N1—C11.381 (14)C9—C101.378 (14)
N2—C101.338 (13)C9—H9A0.9300
N2—C111.374 (11)C10—C141.532 (14)
C1—C21.399 (14)C11—C121.437 (14)
C1—C131.485 (14)O1A—C1A1.250 (12)
C2—C31.344 (14)O2A—C1A1.268 (12)
C2—H2A0.9300C1A—C2A1.513 (14)
C3—C41.426 (15)O1B—C1B1.243 (15)
C3—H3A0.9300O1B—O2B2.110 (12)
C4—C51.409 (14)O2B—C1B1.232 (12)
C4—C121.424 (13)C1B—C2B1.521 (16)
C5—C61.335 (15)
O1B—Hg—N1140.1 (3)C5—C6—C7121.6 (12)
O1B—Hg—N2121.0 (3)C5—C6—H6A119.2
N1—Hg—N272.6 (3)C7—C6—H6A119.2
O1B—Hg—O1A104.3 (3)C8—C7—C11117.6 (12)
N1—Hg—O1A93.9 (3)C8—C7—C6123.6 (12)
N2—Hg—O1A123.7 (3)C11—C7—C6118.7 (12)
O1B—Hg—O2A89.5 (3)C9—C8—C7118.7 (11)
N1—Hg—O2A129.0 (3)C9—C8—H8A120.7
N2—Hg—O2A93.9 (3)C7—C8—H8A120.6
O1A—Hg—O2A52.6 (2)C8—C9—C10122.0 (13)
O1B—Hg—O2B49.3 (3)C8—C9—H9A119.0
N1—Hg—O2B90.8 (3)C10—C9—H9A119.0
N2—Hg—O2B119.4 (3)N2—C10—C9119.3 (12)
O1A—Hg—O2B115.0 (3)N2—C10—C14117.6 (10)
O2A—Hg—O2B135.6 (3)C9—C10—C14123.1 (12)
C12—N1—C1122.3 (10)N2—C11—C7120.5 (11)
C12—N1—Hg116.1 (8)N2—C11—C12118.8 (10)
C1—N1—Hg121.6 (8)C7—C11—C12120.6 (11)
C10—N2—C11121.7 (10)N1—C12—C4125.1 (11)
C10—N2—Hg124.7 (7)N1—C12—C11118.8 (10)
C11—N2—Hg113.4 (7)C4—C12—C11116.1 (11)
N1—C1—C2115.4 (12)C1A—O1A—Hg97.2 (8)
N1—C1—C13119.9 (11)C1A—O2A—Hg91.7 (7)
C2—C1—C13124.7 (13)O1A—C1A—O2A118.4 (12)
C3—C2—C1122.9 (13)O1A—C1A—C2A120.3 (12)
C3—C2—H2A118.6O2A—C1A—C2A121.3 (12)
C1—C2—H2A118.5C1B—O1B—O2B31.4 (7)
C2—C3—C4122.3 (12)C1B—O1B—Hg109.4 (9)
C2—C3—H3A118.9O2B—O1B—Hg78.4 (3)
C4—C3—H3A118.8C1B—O2B—O1B31.7 (9)
C5—C4—C12123.5 (12)C1B—O2B—Hg83.7 (9)
C5—C4—C3124.4 (12)O1B—O2B—Hg52.2 (2)
C12—C4—C3112.0 (11)O1B—C1B—O2B116.9 (14)
C6—C5—C4119.4 (12)O1B—C1B—C2B123.0 (11)
C6—C5—H5A120.3O2B—C1B—C2B119.9 (14)
C4—C5—H5A120.3
(II) tris[bis(acetato-κ2O,O')(2,9-dimethyl-1,10-phenanthroline- κ2N,N')mercury(II)] hexadecahydrate top
Crystal data top
[Hg(C2H3O2)2(C14H12N2]3·16H2OZ = 2
Mr = 1869.03F(000) = 1832
Triclinic, P1Dx = 1.784 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 13.738 (3) ÅCell parameters from 277 reflections
b = 14.076 (3) Åθ = 2.3–23.8°
c = 20.615 (4) ŵ = 6.68 mm1
α = 93.11 (3)°T = 293 K
β = 90.85 (3)°Prism, pale yellow
γ = 118.93 (3)°0.18 × 0.16 × 0.12 mm
V = 3480.2 (16) Å3
Data collection top
Bruker SMART CCD area-detector
diffractometer
14989 independent reflections
Radiation source: fine-focus sealed tube9362 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.034
ϕ and ω scansθmax = 28.0°, θmin = 1.7°
Absorption correction: multi-scan
SADABS (Sheldrick, 1996) in SAINT (Bruker, 2000)
h = 1717
Tmin = 0.31, Tmax = 0.45k = 1817
29254 measured reflectionsl = 2626
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.114Riding
S = 1.01 w = 1/[σ2(Fo2) + (0.0484P)2]
where P = (Fo2 + 2Fc2)/3
14989 reflections(Δ/σ)max = 0.010
820 parametersΔρmax = 0.77 e Å3
0 restraintsΔρmin = 0.77 e Å3
Crystal data top
[Hg(C2H3O2)2(C14H12N2]3·16H2Oγ = 118.93 (3)°
Mr = 1869.03V = 3480.2 (16) Å3
Triclinic, P1Z = 2
a = 13.738 (3) ÅMo Kα radiation
b = 14.076 (3) ŵ = 6.68 mm1
c = 20.615 (4) ÅT = 293 K
α = 93.11 (3)°0.18 × 0.16 × 0.12 mm
β = 90.85 (3)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
14989 independent reflections
Absorption correction: multi-scan
SADABS (Sheldrick, 1996) in SAINT (Bruker, 2000)
9362 reflections with I > 2σ(I)
Tmin = 0.31, Tmax = 0.45Rint = 0.034
29254 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0450 restraints
wR(F2) = 0.114Riding
S = 1.01Δρmax = 0.77 e Å3
14989 reflectionsΔρmin = 0.77 e Å3
820 parameters
Special details top

Geometry. loop_ _geom_hbond_atom_site_label_D _geom_hbond_atom_site_label_H _geom_hbond_atom_site_label_A _geom_hbond_distance_DH _geom_hbond_distance_HA _geom_hbond_distance_DA _geom_hbond_angle_DHA _geom_hbond_site_symmetry_A C8A H8AA O2F 0.93 2.51 3.368 (10) 154.0. C3C H3CA O1G 0.93 2.48 3.317 (13) 149.9. C8C H8CA O13W 0.93 2.50 3.349 (13) 152.5 2_766 ? ? ? ? ? ? ? ? O1W ? O7W ? ? 2.782 (9) ?. O1W ? O2F ? ? 2.797 (8) ? 1_455 O1W ? O1W ? ? 2.817 (12) ? 2_557 O2W ? O1H ? ? 2.778 (10) ? 1_445 O2W ? O10W ? ? 2.805 (11) ?. O2W ? O2D ? ? 2.803 (9) ? 1_445 O2W ? O7W ? ? 2.948 (9) ?. O3W ? O14W ? ? 2.665 (12) ?. O3W ? O13W ? ? 2.689 (11) ?. O3W ? O2I ? ? 2.693 (10) ? 2_666 O3W ? O8W ? ? 2.782 (9) ?. O4W ? O4W ? ? 2.711 (14) ? 2_656 O4W ? O8W ? ? 2.744 (10) ?. O4W ? O1G ? ? 2.813 (9) ?. O5W ? O2H ? ? 2.721 (9) ? 2_666 O5W ? O9W ? ? 2.739 (10) ?. O5W ? O2G ? ? 2.789 (10) ? 2_656 O5W ? O13W ? ? 2.902 (13) ?. O6W ? O12W ? ? 2.755 (13) ? 2_666 O6W ? O11W ? ? 2.774 (12) ? 1_554 O6W ? O9W ? ? 2.850 (11) ?. O7W ? O11W ? ? 2.875 (11) ?. O7W ? O16W ? ? 2.985 (17) ?. O8W ? O10W ? ? 2.766 (10) ?. O9W ? O1D ? ? 2.804 (9) ? 2_766 O9W ? O15W ? ? 2.918 (13) ? 2_666 O10W ? O16W ? ? 2.640 (17) ?. O11W ? O1E ? ? 2.717 (10) ? 2_767 O11W ? O6W ? ? 2.774 (12) ? 1_556 O11W ? O12W ? ? 2.907 (13) ?. O12W ? O16W ? ? 2.554 (18) ?. O12W ? O6W ? ? 2.755 (13) ? 2_666 O13W ? O14W ? ? 2.439 (17) ? 2_666 O14W ? O13W ? ? 2.439 (17) ? 2_666 O14W ? O15W ? ? 2.850 (16) ?. O15W ? O16W ? ? 2.468 (18) ?. O15W ? O9W ? ? 2.918 (13) ? 2_666

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Hg11.27875 (2)0.71893 (2)0.920467 (13)0.06337 (9)
Hg20.80829 (2)0.13877 (2)0.751570 (13)0.06877 (10)
Hg30.95583 (2)0.73314 (2)0.593338 (14)0.06902 (10)
C1A1.0488 (7)0.7359 (7)0.9284 (3)0.071 (2)
C2A0.9338 (8)0.6932 (9)0.9273 (4)0.085 (2)
H2AA0.90480.74080.93060.102*
C3A0.8633 (7)0.5857 (8)0.9218 (4)0.082 (2)
H3AA0.78680.55970.92010.099*
C4A0.9051 (6)0.5133 (7)0.9187 (3)0.068 (2)
C5A0.8374 (7)0.3991 (7)0.9161 (3)0.083 (3)
H5AA0.76050.36970.91600.099*
C6A0.8812 (7)0.3311 (7)0.9139 (3)0.077 (2)
H6AA0.83480.25630.91320.092*
C7A0.9988 (6)0.3748 (6)0.9128 (3)0.0651 (19)
C8A1.0488 (8)0.3089 (6)0.9097 (3)0.082 (2)
H8AA1.00470.23360.90740.098*
C9A1.1614 (8)0.3540 (6)0.9101 (3)0.075 (2)
H9AA1.19390.30930.90790.089*
C10A1.2300 (6)0.4689 (6)0.9138 (3)0.0664 (19)
C11A1.0708 (5)0.4877 (5)0.9164 (3)0.0501 (15)
C12A1.0227 (5)0.5583 (6)0.9188 (3)0.0551 (16)
C13A1.3538 (7)0.5186 (7)0.9149 (4)0.088 (2)
C14A1.1275 (8)0.8552 (7)0.9375 (4)0.090 (3)
C1B1.0744 (7)0.2543 (9)0.7432 (3)0.094 (3)
C2B1.1823 (10)0.3539 (15)0.7395 (5)0.138 (5)
H2BA1.24520.34580.73550.165*
C3B1.1968 (10)0.4558 (12)0.7415 (5)0.130 (5)
H3BA1.26760.51530.73990.156*
C4B1.1054 (9)0.4697 (9)0.7460 (3)0.100 (3)
C5B1.1114 (13)0.5743 (10)0.7482 (5)0.135 (6)
H5BA1.18070.63590.74670.162*
C6B1.0217 (13)0.5870 (9)0.7525 (5)0.129 (5)
H6BA1.02960.65660.75570.155*
C7B0.9143 (10)0.4949 (7)0.7521 (3)0.087 (3)
C8B0.8167 (13)0.5007 (10)0.7530 (4)0.112 (4)
H8BA0.82070.56850.75210.135*
C9B0.7187 (11)0.4143 (11)0.7552 (4)0.104 (3)
H9BA0.65600.42300.75860.125*
C10B0.7053 (10)0.3046 (9)0.7522 (3)0.097 (3)
C11B0.9023 (7)0.3894 (6)0.7497 (3)0.0638 (19)
C12B0.9974 (7)0.3751 (7)0.7469 (3)0.071 (2)
C13B0.5994 (7)0.2039 (9)0.7516 (5)0.108 (3)
C14B1.0557 (9)0.1413 (9)0.7448 (5)0.110 (3)
C1C0.7721 (7)0.4739 (7)0.5866 (3)0.082 (2)
C2C0.7406 (9)0.3624 (8)0.5833 (4)0.111 (4)
H2CA0.66550.31080.58200.133*
C3C0.8207 (13)0.3285 (8)0.5820 (4)0.110 (4)
H3CA0.79910.25490.58190.131*
C4C0.9314 (10)0.4041 (8)0.5809 (3)0.087 (3)
C5C1.0202 (14)0.3745 (10)0.5778 (4)0.119 (5)
H5CA1.00100.30130.57580.142*
C6C1.1222 (13)0.4453 (13)0.5777 (5)0.122 (5)
H6CA1.17600.42340.57510.146*
C7C1.1545 (10)0.5566 (10)0.5815 (4)0.094 (3)
C8C1.2624 (12)0.6349 (15)0.5828 (4)0.133 (6)
H8CA1.31740.61440.58180.160*
C9C1.2941 (9)0.7451 (13)0.5855 (5)0.126 (4)
H9CA1.36910.79640.58520.151*
C10C1.2118 (8)0.7805 (9)0.5887 (3)0.099 (3)
C11C1.0732 (7)0.5910 (7)0.5842 (3)0.068 (2)
C12C0.9601 (7)0.5123 (6)0.5838 (3)0.0636 (18)
C13C1.2394 (8)0.8969 (8)0.5932 (6)0.127 (4)
C14C0.6912 (7)0.5148 (8)0.5893 (5)0.104 (3)
C1D1.3781 (7)0.8150 (7)0.8054 (4)0.080 (2)
C2D1.4404 (8)0.8637 (8)0.7462 (4)0.113 (3)
C1E1.4281 (7)0.8348 (7)1.0248 (4)0.076 (2)
C2E1.5061 (7)0.9092 (7)1.0800 (4)0.096 (3)
C1F0.7508 (7)0.0141 (6)0.8621 (4)0.073 (2)
C2F0.6890 (8)0.0607 (8)0.9143 (4)0.110 (3)
C1G0.7367 (10)0.0123 (9)0.6321 (5)0.115 (3)
C2G0.7146 (13)0.0578 (10)0.5678 (5)0.163 (5)
C1H0.9479 (11)0.8173 (8)0.7202 (5)0.094 (3)
C2H0.9205 (10)0.8533 (9)0.7857 (4)0.122 (4)
C1I0.9060 (10)0.8231 (8)0.4903 (4)0.088 (3)
C2I0.8943 (10)0.8799 (8)0.4322 (4)0.123 (4)
N1A1.0917 (4)0.6670 (4)0.9238 (2)0.0521 (12)
N2A1.1820 (4)0.5316 (4)0.9165 (2)0.0517 (12)
N1B0.9864 (5)0.2744 (6)0.7460 (2)0.0694 (16)
N2B0.8012 (5)0.2992 (5)0.7502 (2)0.0633 (15)
N1C0.8816 (5)0.5462 (4)0.5868 (2)0.0613 (14)
N2C1.1029 (5)0.6990 (6)0.5880 (3)0.0682 (16)
O1D1.3953 (4)0.7465 (5)0.8309 (3)0.0909 (16)
O2D1.3097 (5)0.8399 (5)0.8281 (3)0.1010 (18)
O1E1.4353 (5)0.7561 (6)1.0028 (3)0.127 (2)
O2E1.3547 (5)0.8511 (5)1.0015 (3)0.106 (2)
O1F0.6935 (4)0.0351 (5)0.8229 (3)0.0978 (18)
O2F0.8518 (5)0.0551 (5)0.8588 (3)0.0923 (16)
O1G0.7080 (6)0.0810 (6)0.6355 (3)0.117 (2)
O2G0.7855 (7)0.0007 (6)0.6780 (3)0.128 (3)
O1H1.0416 (7)0.8465 (6)0.7051 (4)0.131 (3)
O2H0.8680 (6)0.7571 (5)0.6826 (3)0.0977 (18)
O1I1.0019 (6)0.8500 (5)0.5125 (3)0.115 (2)
O2I0.8266 (6)0.7523 (6)0.5138 (3)0.119 (2)
O1W0.0089 (6)0.0362 (6)0.9370 (3)0.127 (2)
O2W0.2351 (6)0.0217 (6)0.7821 (3)0.125 (2)
O3W0.3888 (6)0.3216 (6)0.5217 (3)0.133 (2)
O4W0.5330 (6)0.0659 (6)0.5547 (4)0.144 (3)
O5W0.3176 (6)0.2215 (6)0.3043 (3)0.135 (2)
O6W0.3513 (6)0.3627 (7)0.0904 (4)0.158 (3)
O7W0.2180 (5)0.1254 (5)0.8829 (3)0.122 (2)
O8W0.4407 (6)0.1910 (6)0.5969 (4)0.136 (2)
O9W0.4448 (6)0.3171 (7)0.2004 (3)0.143 (3)
O10W0.3286 (7)0.1635 (8)0.7098 (4)0.168 (3)
O11W0.3854 (7)0.2744 (7)0.9757 (4)0.164 (3)
O12W0.5630 (7)0.4166 (8)0.8913 (5)0.180 (4)
O13W0.4849 (7)0.3454 (11)0.4070 (5)0.224 (5)
O14W0.4039 (9)0.4683 (10)0.6154 (6)0.243 (6)
O15W0.4772 (8)0.4611 (9)0.7456 (5)0.213 (5)
O16W0.3945 (13)0.3047 (13)0.8117 (7)0.293 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Hg10.05485 (17)0.05887 (17)0.07233 (18)0.02445 (14)0.00152 (13)0.00433 (13)
Hg20.0726 (2)0.06321 (18)0.06641 (18)0.03002 (15)0.00697 (14)0.00465 (13)
Hg30.06991 (19)0.07233 (19)0.07314 (19)0.04168 (16)0.00082 (14)0.00031 (14)
C1A0.076 (5)0.102 (6)0.056 (4)0.060 (5)0.002 (4)0.008 (4)
C2A0.096 (7)0.131 (8)0.068 (5)0.086 (7)0.010 (5)0.018 (5)
C3A0.067 (5)0.120 (7)0.070 (5)0.052 (6)0.008 (4)0.023 (5)
C4A0.056 (4)0.104 (6)0.039 (3)0.036 (5)0.004 (3)0.001 (4)
C5A0.058 (5)0.094 (6)0.053 (4)0.002 (5)0.002 (4)0.015 (4)
C6A0.083 (6)0.070 (5)0.041 (4)0.008 (5)0.005 (4)0.005 (3)
C7A0.075 (5)0.063 (5)0.035 (3)0.017 (4)0.004 (3)0.000 (3)
C8A0.110 (7)0.057 (5)0.064 (5)0.031 (5)0.000 (5)0.007 (4)
C9A0.105 (7)0.061 (5)0.067 (5)0.048 (5)0.009 (4)0.004 (4)
C10A0.086 (5)0.060 (4)0.059 (4)0.039 (4)0.009 (4)0.007 (3)
C11A0.064 (4)0.050 (4)0.032 (3)0.024 (3)0.001 (3)0.003 (3)
C12A0.049 (4)0.070 (5)0.036 (3)0.021 (4)0.003 (3)0.004 (3)
C13A0.073 (5)0.090 (6)0.122 (7)0.054 (5)0.019 (5)0.021 (5)
C14A0.109 (7)0.064 (5)0.107 (6)0.049 (5)0.006 (5)0.007 (5)
C1B0.062 (5)0.167 (10)0.046 (4)0.048 (6)0.011 (4)0.017 (5)
C2B0.081 (8)0.265 (17)0.069 (6)0.082 (11)0.012 (5)0.039 (10)
C3B0.069 (7)0.172 (12)0.084 (7)0.006 (9)0.013 (5)0.032 (8)
C4B0.093 (7)0.117 (8)0.041 (4)0.012 (6)0.002 (4)0.018 (5)
C5B0.173 (14)0.075 (8)0.059 (6)0.018 (8)0.007 (8)0.007 (5)
C6B0.224 (16)0.060 (6)0.053 (5)0.030 (10)0.004 (9)0.001 (4)
C7B0.131 (8)0.078 (6)0.036 (4)0.037 (6)0.006 (4)0.005 (4)
C8B0.188 (13)0.129 (10)0.057 (5)0.105 (10)0.017 (7)0.016 (6)
C9B0.138 (10)0.161 (10)0.068 (5)0.114 (9)0.020 (6)0.024 (6)
C10B0.167 (10)0.157 (9)0.043 (4)0.136 (9)0.017 (5)0.022 (5)
C11B0.088 (6)0.056 (4)0.035 (3)0.026 (4)0.004 (3)0.002 (3)
C12B0.073 (5)0.075 (5)0.035 (3)0.012 (5)0.002 (3)0.002 (3)
C13B0.053 (5)0.121 (8)0.137 (8)0.030 (6)0.017 (5)0.036 (7)
C14B0.125 (8)0.145 (9)0.116 (7)0.106 (8)0.022 (6)0.037 (7)
C1C0.087 (6)0.073 (5)0.048 (4)0.008 (5)0.001 (4)0.002 (4)
C2C0.116 (8)0.083 (7)0.059 (5)0.009 (6)0.006 (5)0.001 (5)
C3C0.192 (13)0.079 (7)0.056 (5)0.064 (9)0.011 (7)0.003 (4)
C4C0.141 (9)0.082 (6)0.040 (4)0.055 (7)0.008 (5)0.007 (4)
C5C0.254 (16)0.126 (10)0.049 (5)0.151 (12)0.002 (8)0.000 (6)
C6C0.187 (13)0.182 (15)0.069 (6)0.149 (12)0.005 (8)0.010 (8)
C7C0.115 (8)0.165 (10)0.054 (4)0.111 (8)0.004 (5)0.005 (5)
C8C0.130 (11)0.284 (18)0.062 (5)0.165 (14)0.013 (6)0.015 (9)
C9C0.070 (6)0.225 (15)0.082 (7)0.072 (9)0.002 (5)0.005 (9)
C10C0.071 (6)0.169 (11)0.054 (5)0.057 (7)0.001 (4)0.002 (5)
C11C0.083 (6)0.103 (6)0.042 (4)0.063 (5)0.005 (4)0.002 (4)
C12C0.093 (6)0.069 (5)0.040 (3)0.048 (5)0.006 (4)0.002 (3)
C13C0.087 (7)0.071 (6)0.176 (11)0.000 (5)0.013 (7)0.006 (6)
C14C0.058 (5)0.128 (8)0.123 (7)0.042 (5)0.010 (5)0.021 (6)
C1D0.060 (5)0.074 (6)0.072 (5)0.005 (4)0.011 (4)0.001 (4)
C2D0.093 (7)0.111 (7)0.080 (6)0.003 (6)0.011 (5)0.026 (5)
C1E0.067 (5)0.067 (5)0.071 (5)0.014 (4)0.007 (4)0.005 (4)
C2E0.090 (6)0.106 (7)0.072 (5)0.035 (5)0.017 (5)0.009 (5)
C1F0.077 (6)0.052 (4)0.076 (5)0.022 (4)0.009 (4)0.001 (4)
C2F0.115 (8)0.091 (6)0.091 (6)0.021 (6)0.018 (6)0.036 (5)
C1G0.157 (10)0.102 (8)0.094 (7)0.072 (8)0.027 (7)0.022 (6)
C2G0.246 (15)0.155 (10)0.100 (8)0.113 (11)0.037 (9)0.058 (7)
C1H0.133 (9)0.094 (7)0.084 (6)0.080 (7)0.009 (7)0.006 (5)
C2H0.194 (11)0.136 (8)0.072 (5)0.111 (9)0.004 (6)0.009 (6)
C1I0.125 (9)0.084 (6)0.078 (6)0.071 (7)0.012 (6)0.008 (5)
C2I0.180 (11)0.123 (8)0.080 (6)0.084 (8)0.009 (7)0.026 (6)
N1A0.050 (3)0.065 (4)0.045 (3)0.031 (3)0.002 (2)0.001 (2)
N2A0.057 (3)0.049 (3)0.045 (3)0.023 (3)0.006 (2)0.000 (2)
N1B0.061 (4)0.101 (5)0.041 (3)0.034 (4)0.003 (3)0.009 (3)
N2B0.089 (5)0.076 (4)0.039 (3)0.052 (4)0.005 (3)0.007 (3)
N1C0.072 (4)0.057 (3)0.045 (3)0.025 (3)0.004 (3)0.003 (2)
N2C0.062 (4)0.094 (5)0.053 (3)0.043 (4)0.001 (3)0.001 (3)
O1D0.077 (4)0.104 (4)0.083 (4)0.034 (3)0.015 (3)0.020 (3)
O2D0.091 (4)0.100 (4)0.105 (4)0.041 (4)0.015 (4)0.003 (3)
O1E0.093 (5)0.131 (6)0.142 (6)0.049 (4)0.034 (4)0.044 (5)
O2E0.102 (5)0.077 (4)0.120 (5)0.030 (3)0.043 (4)0.003 (3)
O1F0.066 (3)0.109 (4)0.102 (4)0.026 (3)0.002 (3)0.040 (4)
O2F0.080 (4)0.093 (4)0.105 (4)0.042 (3)0.004 (3)0.024 (3)
O1G0.151 (6)0.102 (5)0.099 (5)0.065 (5)0.029 (4)0.010 (4)
O2G0.193 (7)0.132 (6)0.097 (5)0.116 (6)0.047 (5)0.033 (4)
O1H0.121 (6)0.132 (6)0.140 (6)0.066 (5)0.001 (5)0.028 (5)
O2H0.119 (5)0.123 (5)0.074 (4)0.079 (4)0.006 (4)0.014 (3)
O1I0.125 (6)0.098 (5)0.125 (5)0.055 (4)0.021 (5)0.014 (4)
O2I0.128 (6)0.140 (6)0.114 (5)0.082 (5)0.014 (5)0.038 (5)
O1W0.131 (6)0.173 (7)0.120 (5)0.106 (5)0.020 (4)0.034 (5)
O2W0.124 (5)0.121 (5)0.134 (5)0.063 (5)0.003 (4)0.001 (4)
O3W0.127 (6)0.148 (6)0.142 (6)0.082 (5)0.014 (5)0.017 (5)
O4W0.108 (5)0.168 (7)0.164 (6)0.079 (5)0.024 (5)0.034 (6)
O5W0.136 (6)0.157 (6)0.130 (5)0.082 (5)0.033 (5)0.038 (5)
O6W0.104 (5)0.195 (8)0.204 (8)0.096 (6)0.002 (5)0.012 (6)
O7W0.111 (5)0.106 (5)0.159 (6)0.059 (4)0.006 (5)0.015 (4)
O8W0.131 (6)0.137 (6)0.157 (6)0.078 (5)0.002 (5)0.020 (5)
O9W0.143 (6)0.181 (7)0.137 (6)0.099 (6)0.044 (5)0.037 (5)
O10W0.151 (7)0.230 (10)0.165 (7)0.120 (7)0.041 (6)0.059 (7)
O11W0.198 (8)0.158 (7)0.169 (7)0.115 (7)0.040 (6)0.011 (6)
O12W0.140 (7)0.170 (8)0.214 (9)0.065 (6)0.007 (7)0.002 (7)
O13W0.127 (7)0.381 (17)0.210 (10)0.152 (10)0.037 (7)0.086 (10)
O14W0.177 (9)0.278 (13)0.314 (14)0.158 (10)0.064 (9)0.124 (11)
O15W0.157 (8)0.239 (11)0.247 (11)0.109 (8)0.014 (8)0.056 (9)
O16W0.365 (19)0.322 (17)0.272 (14)0.235 (16)0.009 (14)0.025 (13)
Geometric parameters (Å, º) top
Hg1—O2E2.253 (6)C6B—H6BA0.9300
Hg1—N2A2.305 (5)C7B—C8B1.382 (14)
Hg1—N1A2.309 (5)C7B—C11B1.411 (11)
Hg1—O1D2.385 (5)C8B—C9B1.310 (14)
Hg1—O2D2.527 (6)C8B—H8BA0.9300
Hg1—O1E2.547 (6)C9B—C10B1.462 (14)
Hg2—O1F2.203 (5)C9B—H9BA0.9300
Hg2—N1B2.271 (6)C10B—N2B1.357 (10)
Hg2—O2G2.292 (6)C10B—C13B1.459 (13)
Hg2—N2B2.308 (6)C11B—N2B1.356 (9)
Hg2—O1G2.626 (6)C11B—C12B1.417 (11)
Hg2—O2F2.748 (5)C12B—N1B1.350 (9)
Hg3—O1I2.282 (6)C1C—N1C1.347 (9)
Hg3—N2C2.295 (6)C1C—C2C1.409 (13)
Hg3—N1C2.312 (5)C1C—C14C1.479 (12)
Hg3—O2H2.313 (5)C2C—C3C1.396 (14)
Hg3—O2I2.517 (7)C2C—H2CA0.9300
Hg3—O1H2.635 (7)C3C—C4C1.372 (14)
C1A—N1A1.358 (9)C3C—H3CA0.9300
C1A—C2A1.392 (11)C4C—C12C1.374 (11)
C1A—C14A1.493 (12)C4C—C5C1.469 (15)
C2A—C3A1.342 (11)C5C—C6C1.267 (16)
C2A—H2AA0.9300C5C—H5CA0.9300
C3A—C4A1.391 (11)C6C—C7C1.403 (15)
C3A—H3AA0.9300C6C—H6CA0.9300
C4A—C5A1.413 (11)C7C—C8C1.352 (16)
C4A—C12A1.421 (9)C7C—C11C1.418 (11)
C5A—C6A1.353 (11)C8C—C9C1.391 (17)
C5A—H5AA0.9300C8C—H8CA0.9300
C6A—C7A1.425 (10)C9C—C10C1.440 (14)
C6A—H6AA0.9300C9C—H9CA0.9300
C7A—C8A1.395 (11)C10C—N2C1.376 (10)
C7A—C11A1.406 (9)C10C—C13C1.489 (13)
C8A—C9A1.359 (11)C11C—N2C1.366 (9)
C8A—H8AA0.9300C11C—C12C1.406 (10)
C9A—C10A1.421 (10)C12C—N1C1.376 (9)
C9A—H9AA0.9300C1D—O1D1.239 (10)
C10A—N2A1.332 (8)C1D—O2D1.240 (10)
C10A—C13A1.492 (10)C1D—C2D1.499 (11)
C11A—N2A1.343 (8)C1E—O1E1.223 (10)
C11A—C12A1.434 (9)C1E—O2E1.233 (10)
C12A—N1A1.352 (8)C1E—C2E1.513 (11)
C1B—N1B1.369 (10)C1F—O2F1.224 (9)
C1B—C2B1.475 (16)C1F—O1F1.261 (9)
C1B—C14B1.486 (13)C1F—C2F1.508 (11)
C2B—C3B1.346 (17)C1G—O1G1.207 (11)
C2B—H2BA0.9300C1G—O2G1.215 (11)
C3B—C4B1.366 (15)C1G—C2G1.542 (13)
C3B—H3BA0.9300C1H—O1H1.199 (11)
C4B—C5B1.433 (16)C1H—O2H1.235 (11)
C4B—C12B1.437 (11)C1H—C2H1.532 (12)
C5B—C6B1.331 (17)C1I—O2I1.198 (11)
C5B—H5BA0.9300C1I—O1I1.253 (11)
C6B—C7B1.416 (15)C1I—C2I1.525 (12)
O2E—Hg1—N2A134.23 (19)C11B—C7B—C6B120.0 (11)
O2E—Hg1—N1A102.5 (2)C9B—C8B—C7B122.5 (11)
N2A—Hg1—N1A72.57 (19)C9B—C8B—H8BA118.7
O2E—Hg1—O1D114.0 (2)C7B—C8B—H8BA118.7
N2A—Hg1—O1D100.5 (2)C8B—C9B—C10B121.7 (10)
N1A—Hg1—O1D131.11 (18)C8B—C9B—H9BA119.1
O2E—Hg1—O2D97.6 (2)C10B—C9B—H9BA119.1
N2A—Hg1—O2D127.77 (18)N2B—C10B—C13B119.1 (8)
N1A—Hg1—O2D93.5 (2)N2B—C10B—C9B115.4 (10)
O1D—Hg1—O2D51.8 (2)C13B—C10B—C9B125.4 (10)
O2E—Hg1—O1E51.7 (2)N2B—C11B—C7B121.9 (8)
N2A—Hg1—O1E100.0 (2)N2B—C11B—C12B117.9 (7)
N1A—Hg1—O1E136.3 (2)C7B—C11B—C12B120.2 (8)
O1D—Hg1—O1E92.5 (2)N1B—C12B—C11B120.3 (7)
O2D—Hg1—O1E121.5 (2)N1B—C12B—C4B120.9 (9)
O1F—Hg2—N1B140.3 (2)C11B—C12B—C4B118.7 (9)
O1F—Hg2—O2G96.8 (3)N1C—C1C—C2C117.8 (9)
N1B—Hg2—O2G106.9 (3)N1C—C1C—C14C118.9 (8)
O1F—Hg2—N2B109.7 (2)C2C—C1C—C14C123.3 (9)
N1B—Hg2—N2B73.3 (2)C3C—C2C—C1C120.8 (9)
O2G—Hg2—N2B137.2 (2)C3C—C2C—H2CA119.6
O1F—Hg2—O1G109.2 (2)C1C—C2C—H2CA119.6
N1B—Hg2—O1G110.5 (2)C4C—C3C—C2C119.9 (10)
O2G—Hg2—O1G50.1 (2)C4C—C3C—H3CA120.1
N2B—Hg2—O1G88.8 (2)C2C—C3C—H3CA120.1
O1F—Hg2—O2F50.44 (18)C3C—C4C—C12C118.3 (10)
N1B—Hg2—O2F94.71 (19)C3C—C4C—C5C123.0 (11)
O2G—Hg2—O2F96.4 (2)C12C—C4C—C5C118.7 (10)
N2B—Hg2—O2F126.35 (18)C6C—C5C—C4C122.2 (12)
O1G—Hg2—O2F142.1 (2)C6C—C5C—H5CA118.9
O1I—Hg3—N2C98.5 (2)C4C—C5C—H5CA118.9
O1I—Hg3—N1C129.9 (2)C5C—C6C—C7C120.5 (13)
N2C—Hg3—N1C73.2 (2)C5C—C6C—H6CA119.7
O1I—Hg3—O2H119.5 (2)C7C—C6C—H6CA119.7
N2C—Hg3—O2H130.1 (2)C8C—C7C—C6C122.5 (11)
N1C—Hg3—O2H100.6 (2)C8C—C7C—C11C117.2 (11)
O1I—Hg3—O2I52.2 (2)C6C—C7C—C11C120.3 (11)
N2C—Hg3—O2I136.8 (2)C7C—C8C—C9C122.4 (10)
N1C—Hg3—O2I100.6 (2)C7C—C8C—H8CA118.8
O2H—Hg3—O2I93.1 (2)C9C—C8C—H8CA118.8
O1I—Hg3—O1H108.9 (3)C8C—C9C—C10C120.7 (11)
N2C—Hg3—O1H89.3 (2)C8C—C9C—H9CA119.7
N1C—Hg3—O1H120.0 (2)C10C—C9C—H9CA119.7
O2H—Hg3—O1H50.2 (2)N2C—C10C—C9C115.6 (10)
O2I—Hg3—O1H127.4 (2)N2C—C10C—C13C120.6 (8)
N1A—C1A—C2A119.3 (8)C9C—C10C—C13C123.8 (11)
N1A—C1A—C14A118.3 (7)N2C—C11C—C12C119.7 (7)
C2A—C1A—C14A122.3 (8)N2C—C11C—C7C121.3 (9)
C3A—C2A—C1A122.2 (8)C12C—C11C—C7C119.1 (9)
C3A—C2A—H2AA118.9C4C—C12C—N1C122.0 (8)
C1A—C2A—H2AA118.9C4C—C12C—C11C119.1 (8)
C2A—C3A—C4A119.7 (8)N1C—C12C—C11C118.8 (6)
C2A—C3A—H3AA120.1O1D—C1D—O2D120.3 (8)
C4A—C3A—H3AA120.1O1D—C1D—C2D117.7 (10)
C3A—C4A—C5A123.6 (8)O2D—C1D—C2D122.0 (10)
C3A—C4A—C12A117.3 (8)O1E—C1E—O2E118.4 (8)
C5A—C4A—C12A119.1 (8)O1E—C1E—C2E120.7 (9)
C6A—C5A—C4A121.9 (8)O2E—C1E—C2E120.8 (9)
C6A—C5A—H5AA119.0O2F—C1F—O1F121.3 (8)
C4A—C5A—H5AA119.0O2F—C1F—C2F122.0 (8)
C5A—C6A—C7A119.7 (8)O1F—C1F—C2F116.6 (8)
C5A—C6A—H6AA120.2O1G—C1G—O2G120.6 (9)
C7A—C6A—H6AA120.2O1G—C1G—C2G119.2 (11)
C8A—C7A—C11A116.5 (7)O2G—C1G—C2G120.2 (11)
C8A—C7A—C6A122.4 (8)O1H—C1H—O2H121.0 (9)
C11A—C7A—C6A121.1 (8)O1H—C1H—C2H122.5 (11)
C9A—C8A—C7A120.4 (7)O2H—C1H—C2H116.6 (10)
C9A—C8A—H8AA119.8O2I—C1I—O1I119.7 (9)
C7A—C8A—H8AA119.8O2I—C1I—C2I121.8 (11)
C8A—C9A—C10A120.5 (8)O1I—C1I—C2I118.4 (10)
C8A—C9A—H9AA119.7C12A—N1A—C1A119.8 (6)
C10A—C9A—H9AA119.7C12A—N1A—Hg1114.8 (4)
N2A—C10A—C9A118.9 (7)C1A—N1A—Hg1125.4 (5)
N2A—C10A—C13A120.5 (6)C10A—N2A—C11A121.0 (6)
C9A—C10A—C13A120.6 (7)C10A—N2A—Hg1124.0 (5)
N2A—C11A—C7A122.6 (6)C11A—N2A—Hg1115.0 (4)
N2A—C11A—C12A119.1 (6)C12B—N1B—C1B123.6 (8)
C7A—C11A—C12A118.2 (6)C12B—N1B—Hg2114.3 (5)
N1A—C12A—C4A121.7 (7)C1B—N1B—Hg2122.1 (6)
N1A—C12A—C11A118.4 (6)C11B—N2B—C10B122.2 (7)
C4A—C12A—C11A119.9 (7)C11B—N2B—Hg2114.1 (5)
N1B—C1B—C2B113.0 (10)C10B—N2B—Hg2123.7 (6)
N1B—C1B—C14B120.3 (8)C1C—N1C—C12C121.2 (7)
C2B—C1B—C14B126.7 (10)C1C—N1C—Hg3124.9 (6)
C3B—C2B—C1B125.1 (12)C12C—N1C—Hg3113.9 (5)
C3B—C2B—H2BA117.4C11C—N2C—C10C122.9 (7)
C1B—C2B—H2BA117.4C11C—N2C—Hg3114.4 (5)
C2B—C3B—C4B118.6 (12)C10C—N2C—Hg3122.7 (6)
C2B—C3B—H3BA120.7C1D—O1D—Hg197.3 (5)
C4B—C3B—H3BA120.7C1D—O2D—Hg190.4 (5)
C3B—C4B—C5B123.1 (12)C1E—O1E—Hg187.8 (6)
C3B—C4B—C12B118.7 (11)C1E—O2E—Hg1101.9 (6)
C5B—C4B—C12B118.1 (11)C1F—O1F—Hg2106.7 (5)
C6B—C5B—C4B122.7 (13)C1F—O2F—Hg281.4 (5)
C6B—C5B—H5BA118.7C1G—O1G—Hg286.5 (6)
C4B—C5B—H5BA118.7C1G—O2G—Hg2102.8 (6)
C5B—C6B—C7B120.2 (12)C1H—O1H—Hg387.0 (6)
C5B—C6B—H6BA119.9C1H—O2H—Hg3101.8 (6)
C7B—C6B—H6BA119.9C1I—O1I—Hg399.0 (6)
C8B—C7B—C11B116.1 (9)C1I—O2I—Hg389.1 (6)
C8B—C7B—C6B123.9 (11)

Experimental details

(I)(II)
Crystal data
Chemical formula[Hg(C2H3O2)2(C14H12N2)][Hg(C2H3O2)2(C14H12N2]3·16H2O
Mr526.931869.03
Crystal system, space groupTriclinic, P1Triclinic, P1
Temperature (K)293293
a, b, c (Å)8.3619 (15), 9.4973 (18), 12.349 (2)13.738 (3), 14.076 (3), 20.615 (4)
α, β, γ (°)83.167 (3), 76.646 (4), 66.027 (3)93.11 (3), 90.85 (3), 118.93 (3)
V3)871.5 (3)3480.2 (16)
Z22
Radiation typeMo KαMo Kα
µ (mm1)8.866.68
Crystal size (mm)0.25 × 0.14 × 0.100.18 × 0.16 × 0.12
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Bruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
SADABS (Sheldrick, 1996) in SAINT (Bruker, 2000)
Multi-scan
SADABS (Sheldrick, 1996) in SAINT (Bruker, 2000)
Tmin, Tmax0.22, 0.410.31, 0.45
No. of measured, independent and
observed [I > 2σ(I)] reflections
7356, 3659, 1839 29254, 14989, 9362
Rint0.0540.034
(sin θ/λ)max1)0.6600.661
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.050, 0.084, 0.81 0.045, 0.114, 1.01
No. of reflections365914989
No. of parameters230820
H-atom treatmentH-atom parameters constrainedRiding
Δρmax, Δρmin (e Å3)0.76, 0.780.77, 0.77

Computer programs: SMART (Bruker, 2001), SMART, SAINT (Bruker, 2000), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), XP in SHELXTL/PC (Sheldrick, 1994), SHELXL97.

Selected geometric parameters (Å, º) for (I) top
Hg—O1B2.200 (7)Hg—O1A2.385 (7)
Hg—N12.302 (8)Hg—O2A2.489 (8)
Hg—N22.309 (8)Hg—O2B2.726 (8)
N1—Hg—N272.6 (3)O1B—Hg—O2B49.3 (3)
O1A—Hg—O2A52.6 (2)
ππ contacts for (I) top
Group 1/Group 2ipd (Å)ccd (Å)sa (°)
C4-C7,C11,C12/N1',C1B'–C4',C12'3.46 (1)3.62 (1)18.2 (2)
See Fig. 3 for details of the atom labelling and symmetry code. ipd is the interplanar distance, ccd the centre-to-centre distance and sa the slippage angle.
Selected geometric parameters (Å, º) for (II) top
Hg1—O2E2.253 (6)Hg2—N2B2.308 (6)
Hg1—N2A2.305 (5)Hg2—O1G2.626 (6)
Hg1—N1A2.309 (5)Hg2—O2F2.748 (5)
Hg1—O1D2.385 (5)Hg3—O1I2.282 (6)
Hg1—O2D2.527 (6)Hg3—N2C2.295 (6)
Hg1—O1E2.547 (6)Hg3—N1C2.312 (5)
Hg2—O1F2.203 (5)Hg3—O2H2.313 (5)
Hg2—N1B2.271 (6)Hg3—O2I2.517 (7)
Hg2—O2G2.292 (6)Hg3—O1H2.635 (7)
N2A—Hg1—N1A72.57 (19)O1F—Hg2—O2F50.44 (18)
O1D—Hg1—O2D51.8 (2)N2C—Hg3—N1C73.2 (2)
O2E—Hg1—O1E51.7 (2)O1I—Hg3—O2I52.2 (2)
N1B—Hg2—N2B73.3 (2)O2H—Hg3—O1H50.2 (2)
O2G—Hg2—O1G50.1 (2)
ππ contacts for (II) top
Group 1/Group 2ipd (Å)ccd (Å)sa (°)
N2A',C7A'-C11A'/N1A,C1A-C4A,C12A3.40 (1)3.60 (1)19.2 (2)
C4A'-C7A',C11A',C12A'/C4A-C7A,C11A,C12A3.39 (1)3.67 (1)22.4 (2)
N2A,C7A-C11A/N1B,C1B-C4B,C12B3.45 (1)3.51 (1)21.0 (2)
C4A-C7A,C11A,C12A/C4B-C7B,C11B,C12B3.45 (1)3.55 (1)13.7 (2)
N2B,C7B-C11B/N1C, C1C-C4C,C12C3.45 (1)3.54 (1)13.1 (2)
C4B-C7B,C11B,C12B/C4C-C7C,C11C,C12C3.43 (1)3.51 (1)10.7 (2)
N2C,C7C-C11C/N1C'',C1C''-C4C'',C12C''3.42 (1)3.64 (1)20.2 (2)
C4C-C7C,C11C,C12C/C4C''-C7C'',C11C'',C12C''3.43 (1)3.68 (1)22.4 (2)
See Fig. 4 for details of the atom labelling and symmetry codes. ipd is the interplanar distance, ccd the centre-to-centre distance and sa the slippage angle.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds