Download citation
Download citation
link to html
The title compounds, Ph2PCH2N(H)Ph or C25H22NP and Ph2PCH2N(CH3)Ph or C26H24NP, respectively, are isomorphous, with calculated theoretical Tolman angles of 174 and 182°.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270104007693/hj1003sup1.cif
Contains datablocks global, I, II

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270104007693/hj1003Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270104007693/hj1003IIsup3.hkl
Contains datablock II

CCDC references: 243591; 243592

Comment top

Part of our interest in exploring catalytic reactions led to the manipulation of multifunctional phosphorus-based ligands for evaluation in well known model systems. Aminophosphines, containing both soft (P) and hard (N) Lewis bases, have the ability to stabilize various oxidation states of metals, generating complexes which exhibit different spectroscopic properties, reactivities and applications. Various examples of palladium(II) aminophosphine complexes showing catalytic behaviour have been reported (Koprowski et al., 2002; Reddy et al., 2002), and have also been shown to have potential radiopharmaceutical applications (Chen et al., 2001). The title phosphines, (I) and (II), respectively, are bidentate, and possess a P—N motif which has the potential to bind soft metal centres strongly via the P atom and weakly via the N atom, allowing for the facile displacement of the chelating N-moiety. This situation is frequently desirable in catalysed reactions, and can lead to enhanced stability in the catalyst without sacrificing kinetic or selectivity parameters. By manipulating the substituents on the phosphine, it can be tailored for specific needs in various fields of catalysis as well as further development for radiopharmaceutical use. We report here the structures of (I) and (II) \sch

Compound (I) (Fig. 1) was synthesized previously by Reddy et al. (2002). Compound (II) (Fig. 2) is the methyl derivative of (I). The two compounds are isomorphous, with individual molecules in the centrosymmetric space group C2/c (Z = 8). The bonds and angles in the two compounds are typical compared with other phosphines. An r.m.s overlay (P coordination sphere, r.m.s error 0.01458 Å) of the two compounds shows remarkable similarities (Fig. 3), differing only at the periphery of the molecules. Further investigation into this is required to check whether different electronic and steric groups can be introduced on the N atom without creating additional effects on packing.

The most widely used method for determining ligand steric behaviour at a metal centre is calculation of the Tolman cone angle (Tolman, 1977), using an M—P bond distance of 2.28 Å, C—H bond distances of 0.97 Å, and a van der Waals radius of 1.2 Å for the H atoms. For (I) and (II), dummy atoms were created 2.28 Å from the P atoms and used for the determination of the theoretical Tolman angles, yielding values of 174° for (I) and 182° for (II). The determined value for (II) is slightly larger, due to the contribution from the methyl group on the N atom. However, this may not be an exact indication of the cone angle when bonded to a metal centre, since some degree of freedom for rotation exists on atom C19 and the N atom. The Tolman cone angle is important mainly for monodentate or mono-coordinated ligands, while in bidentate ligands or ligands bound to a metal in a bidentate mode the bite angle becomes more important. In the present instance, the Tolman cone angles calculated for (I) and (II) will be an important parameter in assessing differences (e.g. in reaction rates or selectivities) observed in catalysed reactions, which can be related to a monodentate mode of binding.

No hydrogen-bonding interaction is observed for the N—H group in (I), which is not uncommon (Cambridge Structural Database, Version 5.25, January 2004; Allen, 2002).

Experimental top

Compound (I) was prepared by reduction of the iminomethyl precursor under the action of 2.5 equivalents of LiAlH4 in ether as solvent. The formation of the product at room temperature was followed via thin-layer chromatography analysis, and took about 8–12 h. The reaction was quenched by the addition of ice to the reaction mixture. Ether was removed in vacuo, followed by extraction with dichloromethane and water, and the product was isolated with flash silica chromatography in a yield of 80%. Compound (II) was synthesized by treatment of (I) in dry tetrahydrofuran with 1.1 mole equivalents of n-butyllithium at 195 K, followed by the addition of 1.1 equivalents of methyl iodide. After 2 h, the reaction was quenched using water, and the tetrahydrofuran was removed in vacuo. Dichloromethane and water were used to extract the product, which was purified via flash silica chromatography and obtained in a yield of 65%. For both compounds, crystals were obtained from solutions in hexane.

Refinement top

The aromatic, methylene and methyl H atoms were placed in geometrically idealized positions (C—H = 0.97–0.98 Å) and constrained to ride on their parent atoms, with Uiso(H) = 1.2Ueq(C). The positions of the imine H atoms were determined from a difference Fourier map.

Computing details top

For both compounds, data collection: SMART-NT (Bruker, 1998); cell refinement: SAINT-Plus (Bruker, 1999); data reduction: SAINT-Plus and XPREP (Bruker, 1999). Program(s) used to solve structure: SIR2002 (Burla et al., 2003) for (I); SIR2002 (Altomare et al., 2003) for (II). For both compounds, program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: DIAMOND (Brandenburg & Berndt, 2001); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. A view of the structure of (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radii.
[Figure 2] Fig. 2. A view of the structure of (II), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radii.
[Figure 3] Fig. 3. An r.m.s. overlay of (I) and (II).
(I) top
Crystal data top
C25H22NPF(000) = 1552
Mr = 367.41Dx = 1.226 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C2ycCell parameters from 789 reflections
a = 22.174 (4) Åθ = 2.7–21.5°
b = 7.9968 (16) ŵ = 0.15 mm1
c = 22.519 (5) ÅT = 293 K
β = 94.50 (3)°Plates, colourless
V = 3980.7 (14) Å30.38 × 0.24 × 0.04 mm
Z = 8
Data collection top
Bruker SMART 1K CCD area-detector
diffractometer
2201 reflections with I > 2σ(I)
Radiation source: rotating anodeRint = 0.075
ω scansθmax = 28.4°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Bruker, 1998)
h = 2929
Tmin = 0.95, Tmax = 0.97k = 1010
16110 measured reflectionsl = 3024
4943 independent reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.046 w = 1/[σ2(Fo2) + (0.0411P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.103(Δ/σ)max = 0.001
S = 0.86Δρmax = 0.15 e Å3
4943 reflectionsΔρmin = 0.19 e Å3
248 parameters
Crystal data top
C25H22NPV = 3980.7 (14) Å3
Mr = 367.41Z = 8
Monoclinic, C2/cMo Kα radiation
a = 22.174 (4) ŵ = 0.15 mm1
b = 7.9968 (16) ÅT = 293 K
c = 22.519 (5) Å0.38 × 0.24 × 0.04 mm
β = 94.50 (3)°
Data collection top
Bruker SMART 1K CCD area-detector
diffractometer
4943 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1998)
2201 reflections with I > 2σ(I)
Tmin = 0.95, Tmax = 0.97Rint = 0.075
16110 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0460 restraints
wR(F2) = 0.103H atoms treated by a mixture of independent and constrained refinement
S = 0.86Δρmax = 0.15 e Å3
4943 reflectionsΔρmin = 0.19 e Å3
248 parameters
Special details top

Experimental. The intensity data for I were collected on a Siemens SMART CCD 1 K diffractometer using an exposure time of 20 s/frame. A total of 2150 frames were collected with a frame width of 0.2° covering up to θ = 28.36° with 99.4% completeness accomplished.

The first 50 frames were recollected at the end of each data collection to check for decay; none was found.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
P0.08620 (2)0.22436 (7)0.10666 (2)0.04918 (17)
N0.02530 (9)0.3652 (2)0.08252 (7)0.0615 (5)
C130.09251 (8)0.0868 (2)0.04207 (8)0.0431 (5)
C010.11279 (10)0.0904 (2)0.16913 (8)0.0502 (5)
C180.06864 (8)0.1419 (2)0.01423 (8)0.0434 (5)
C070.15072 (8)0.3650 (2)0.10155 (7)0.0448 (5)
C080.15236 (10)0.5100 (2)0.13583 (8)0.0542 (6)
H080.12090.53260.15960.065*
C200.06838 (10)0.4361 (2)0.11593 (8)0.0488 (5)
C160.09611 (10)0.1229 (3)0.05682 (10)0.0613 (6)
H160.09710.19240.08980.074*
C090.20008 (11)0.6209 (3)0.13514 (9)0.0629 (6)
H090.20060.71650.15870.075*
C190.04011 (9)0.3135 (3)0.02142 (8)0.0559 (6)
H19A0.00340.31480.00070.067*
H19B0.06760.39490.00230.067*
C060.17079 (10)0.0911 (2)0.19630 (9)0.0574 (6)
H060.20.15960.18140.069*
C120.19853 (9)0.3374 (3)0.06684 (9)0.0593 (6)
H120.19870.24130.04360.071*
C210.12973 (9)0.4280 (2)0.09905 (9)0.0538 (5)
H210.1430.37320.0640.065*
C170.07146 (9)0.0358 (3)0.06269 (8)0.0547 (5)
H170.05640.07240.10020.066*
C140.11712 (9)0.0722 (2)0.04693 (9)0.0553 (5)
H140.13270.10980.08410.066*
C100.24634 (11)0.5913 (3)0.10028 (10)0.0690 (6)
H100.27820.66690.09960.083*
C150.11921 (9)0.1765 (3)0.00157 (10)0.0628 (6)
H150.13610.28260.0030.075*
C250.04999 (11)0.5184 (3)0.16886 (9)0.0620 (6)
H250.00910.52470.18140.074*
C110.24577 (10)0.4487 (3)0.06592 (10)0.0740 (7)
H110.27730.42770.04210.089*
C050.18624 (12)0.0091 (3)0.24556 (10)0.0759 (7)
H050.22550.00690.26340.091*
C230.15288 (14)0.5818 (3)0.18525 (11)0.0779 (7)
H230.18110.63070.20830.093*
C240.09213 (14)0.5902 (3)0.20248 (10)0.0757 (7)
H240.07930.64540.23760.091*
C220.17122 (11)0.4998 (3)0.13332 (11)0.0687 (6)
H220.21220.49280.12130.082*
C020.07125 (12)0.0126 (3)0.19318 (10)0.0816 (8)
H020.03160.01420.17630.098*
C040.14409 (16)0.1106 (3)0.26785 (11)0.0905 (9)
H040.15450.17750.30080.109*
C030.08701 (14)0.1132 (4)0.24164 (12)0.0991 (9)
H030.05830.18340.25640.119*
H10.0112 (10)0.402 (3)0.0913 (9)0.074 (8)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
P0.0519 (3)0.0544 (4)0.0414 (3)0.0045 (3)0.0047 (2)0.0038 (2)
N0.0484 (12)0.0870 (14)0.0487 (11)0.0118 (11)0.0019 (9)0.0168 (9)
C130.0439 (11)0.0440 (12)0.0417 (11)0.0025 (10)0.0048 (9)0.0026 (9)
C010.0586 (14)0.0560 (13)0.0360 (11)0.0005 (11)0.0045 (10)0.0055 (9)
C180.0370 (11)0.0523 (12)0.0414 (12)0.0072 (10)0.0054 (9)0.0007 (10)
C070.0543 (13)0.0414 (12)0.0379 (11)0.0054 (10)0.0014 (9)0.0024 (9)
C080.0677 (15)0.0507 (13)0.0440 (12)0.0109 (12)0.0040 (10)0.0044 (10)
C200.0586 (14)0.0468 (12)0.0413 (12)0.0086 (11)0.0044 (10)0.0018 (9)
C160.0726 (16)0.0586 (15)0.0538 (14)0.0172 (12)0.0118 (11)0.0191 (11)
C090.0816 (17)0.0421 (13)0.0629 (14)0.0045 (13)0.0072 (13)0.0115 (10)
C190.0524 (13)0.0702 (15)0.0460 (13)0.0102 (11)0.0102 (10)0.0073 (10)
C060.0703 (16)0.0542 (13)0.0472 (13)0.0021 (12)0.0017 (11)0.0043 (10)
C120.0635 (14)0.0556 (13)0.0598 (14)0.0088 (12)0.0120 (11)0.0206 (11)
C210.0556 (14)0.0485 (12)0.0570 (13)0.0019 (11)0.0035 (11)0.0021 (10)
C170.0562 (14)0.0657 (15)0.0415 (12)0.0107 (12)0.0004 (10)0.0032 (10)
C140.0668 (14)0.0495 (13)0.0489 (12)0.0003 (11)0.0010 (10)0.0028 (10)
C100.0710 (16)0.0594 (15)0.0756 (16)0.0146 (13)0.0001 (13)0.0084 (12)
C150.0799 (16)0.0440 (13)0.0652 (16)0.0016 (11)0.0100 (12)0.0072 (11)
C250.0738 (16)0.0669 (15)0.0450 (13)0.0119 (12)0.0022 (12)0.0003 (11)
C110.0676 (16)0.0796 (18)0.0773 (17)0.0176 (14)0.0215 (13)0.0225 (13)
C050.0956 (19)0.0776 (17)0.0516 (15)0.0176 (15)0.0130 (13)0.0047 (13)
C230.104 (2)0.0628 (16)0.0711 (18)0.0159 (16)0.0310 (16)0.0013 (13)
C240.115 (2)0.0651 (16)0.0469 (14)0.0034 (16)0.0094 (15)0.0031 (11)
C220.0689 (16)0.0568 (15)0.0813 (18)0.0066 (12)0.0123 (13)0.0017 (13)
C020.0753 (18)0.102 (2)0.0663 (17)0.0172 (15)0.0003 (13)0.0206 (15)
C040.139 (3)0.081 (2)0.0523 (16)0.018 (2)0.0120 (17)0.0174 (14)
C030.111 (2)0.106 (2)0.082 (2)0.0147 (19)0.0172 (18)0.0330 (17)
Geometric parameters (Å, º) top
P—C011.829 (2)C06—H060.93
P—C071.830 (2)C12—C111.376 (3)
P—C131.8378 (19)C12—H120.93
N—C201.383 (2)C21—C221.372 (3)
N—C191.450 (2)C21—H210.93
N—H10.87 (2)C17—H170.93
C13—C141.385 (3)C14—C151.378 (3)
C13—C181.406 (2)C14—H140.93
C01—C021.378 (3)C10—C111.377 (3)
C01—C061.380 (3)C10—H100.93
C18—C171.387 (2)C15—H150.93
C18—C191.514 (3)C25—C241.374 (3)
C07—C121.383 (3)C25—H250.93
C07—C081.392 (2)C11—H110.93
C08—C091.382 (3)C05—C041.363 (3)
C08—H080.93C05—H050.93
C20—C211.385 (3)C23—C241.374 (3)
C20—C251.394 (3)C23—C221.374 (3)
C16—C151.376 (3)C23—H230.93
C16—C171.384 (3)C24—H240.93
C16—H160.93C22—H220.93
C09—C101.361 (3)C02—C031.379 (3)
C09—H090.93C02—H020.93
C19—H19A0.97C04—C031.354 (4)
C19—H19B0.97C04—H040.93
C06—C051.389 (3)C03—H030.93
C01—P—C07101.66 (9)C22—C21—C20120.9 (2)
C01—P—C13102.61 (9)C22—C21—H21119.5
C07—P—C13102.09 (8)C20—C21—H21119.5
C20—N—C19121.23 (18)C16—C17—C18121.81 (18)
C20—N—H1114.1 (14)C16—C17—H17119.1
C19—N—H1116.8 (14)C18—C17—H17119.1
C14—C13—C18118.50 (17)C15—C14—C13122.05 (19)
C14—C13—P122.75 (14)C15—C14—H14119
C18—C13—P118.67 (14)C13—C14—H14119
C02—C01—C06117.17 (19)C09—C10—C11119.6 (2)
C02—C01—P117.87 (17)C09—C10—H10120.2
C06—C01—P124.85 (16)C11—C10—H10120.2
C17—C18—C13118.75 (18)C16—C15—C14119.6 (2)
C17—C18—C19120.93 (17)C16—C15—H15120.2
C13—C18—C19120.32 (16)C14—C15—H15120.2
C12—C07—C08117.28 (18)C24—C25—C20120.2 (2)
C12—C07—P125.10 (15)C24—C25—H25119.9
C08—C07—P117.61 (15)C20—C25—H25119.9
C09—C08—C07121.01 (19)C12—C11—C10120.0 (2)
C09—C08—H08119.5C12—C11—H11120
C07—C08—H08119.5C10—C11—H11120
N—C20—C21122.49 (18)C04—C05—C06120.3 (2)
N—C20—C25119.36 (19)C04—C05—H05119.9
C21—C20—C25118.15 (19)C06—C05—H05119.9
C15—C16—C17119.23 (18)C24—C23—C22118.8 (2)
C15—C16—H16120.4C24—C23—H23120.6
C17—C16—H16120.4C22—C23—H23120.6
C10—C09—C08120.5 (2)C25—C24—C23121.2 (2)
C10—C09—H09119.7C25—C24—H24119.4
C08—C09—H09119.7C23—C24—H24119.4
N—C19—C18114.94 (16)C21—C22—C23120.8 (2)
N—C19—H19A108.5C21—C22—H22119.6
C18—C19—H19A108.5C23—C22—H22119.6
N—C19—H19B108.5C01—C02—C03121.6 (2)
C18—C19—H19B108.5C01—C02—H02119.2
H19A—C19—H19B107.5C03—C02—H02119.2
C01—C06—C05121.0 (2)C03—C04—C05119.6 (2)
C01—C06—H06119.5C03—C04—H04120.2
C05—C06—H06119.5C05—C04—H04120.2
C11—C12—C07121.56 (19)C04—C03—C02120.4 (3)
C11—C12—H12119.2C04—C03—H03119.8
C07—C12—H12119.2C02—C03—H03119.8
C01—P—C13—C144.49 (18)C08—C07—C12—C110.2 (3)
C07—P—C13—C14100.56 (17)P—C07—C12—C11179.30 (16)
C01—P—C13—C18172.24 (15)N—C20—C21—C22179.95 (19)
C07—P—C13—C1882.71 (15)C25—C20—C21—C220.3 (3)
C07—P—C01—C02168.20 (17)C15—C16—C17—C180.9 (3)
C13—P—C01—C0286.41 (18)C13—C18—C17—C161.1 (3)
C07—P—C01—C068.05 (19)C19—C18—C17—C16178.52 (18)
C13—P—C01—C0697.34 (18)C18—C13—C14—C150.5 (3)
C14—C13—C18—C170.9 (3)P—C13—C14—C15177.21 (15)
P—C13—C18—C17177.77 (14)C08—C09—C10—C110.7 (3)
C14—C13—C18—C19178.73 (17)C17—C16—C15—C140.4 (3)
P—C13—C18—C191.9 (2)C13—C14—C15—C160.2 (3)
C01—P—C07—C1290.71 (17)N—C20—C25—C24179.75 (19)
C13—P—C07—C1215.08 (18)C21—C20—C25—C240.6 (3)
C01—P—C07—C0888.35 (15)C07—C12—C11—C100.3 (3)
C13—P—C07—C08165.86 (14)C09—C10—C11—C120.2 (3)
C12—C07—C08—C090.2 (3)C01—C06—C05—C040.2 (3)
P—C07—C08—C09178.89 (15)C20—C25—C24—C230.5 (3)
C19—N—C20—C2115.0 (3)C22—C23—C24—C250.0 (4)
C19—N—C20—C25165.43 (18)C20—C21—C22—C230.1 (3)
C07—C08—C09—C100.7 (3)C24—C23—C22—C210.3 (3)
C20—N—C19—C1883.4 (2)C06—C01—C02—C031.2 (3)
C17—C18—C19—N9.0 (3)P—C01—C02—C03177.7 (2)
C13—C18—C19—N171.35 (17)C06—C05—C04—C030.0 (4)
C02—C01—C06—C050.4 (3)C05—C04—C03—C020.8 (4)
P—C01—C06—C05176.66 (15)C01—C02—C03—C041.4 (4)
(II) top
Crystal data top
C26H24NPF(000) = 1616
Mr = 381.43Dx = 1.19 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C2ycCell parameters from 920 reflections
a = 23.518 (5) Åθ = 2.7–21.3°
b = 8.2811 (17) ŵ = 0.14 mm1
c = 21.892 (4) ÅT = 293 K
β = 93.04 (3)°Cuboid, colourless
V = 4257.6 (15) Å30.34 × 0.24 × 0.12 mm
Z = 8
Data collection top
Bruker SMART 1K CCD area-detector
diffractometer
2474 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.051
ω scansθmax = 28.3°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Bruker, 1998)
h = 2831
Tmin = 0.94, Tmax = 0.97k = 1010
14295 measured reflectionsl = 2926
5216 independent reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.046 w = 1/[σ2(Fo2) + (0.0494P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.114(Δ/σ)max < 0.001
S = 0.91Δρmax = 0.18 e Å3
5216 reflectionsΔρmin = 0.16 e Å3
253 parameters
Crystal data top
C26H24NPV = 4257.6 (15) Å3
Mr = 381.43Z = 8
Monoclinic, C2/cMo Kα radiation
a = 23.518 (5) ŵ = 0.14 mm1
b = 8.2811 (17) ÅT = 293 K
c = 21.892 (4) Å0.34 × 0.24 × 0.12 mm
β = 93.04 (3)°
Data collection top
Bruker SMART 1K CCD area-detector
diffractometer
5216 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1998)
2474 reflections with I > 2σ(I)
Tmin = 0.94, Tmax = 0.97Rint = 0.051
14295 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0460 restraints
wR(F2) = 0.114H atoms treated by a mixture of independent and constrained refinement
S = 0.91Δρmax = 0.18 e Å3
5216 reflectionsΔρmin = 0.16 e Å3
253 parameters
Special details top

Experimental. The intensity data for II were collected on a Siemens SMART CCD 1 K diffractometer using an exposure time of 15 s/frame. A total of 1350 frames were collected with a frame width of 0.2° covering up to θ = 28.29° with 98.6% completeness accomplished.

The first 50 frames were recollected at the end of each data collection to check for decay; none was found.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
P0.09810 (2)0.21681 (6)0.11595 (2)0.05015 (17)
N0.03980 (7)0.3683 (2)0.07439 (7)0.0652 (5)
C130.10333 (8)0.0879 (2)0.04803 (8)0.0462 (5)
C010.12048 (9)0.0810 (2)0.17833 (8)0.0518 (5)
C180.08039 (8)0.1442 (2)0.00838 (8)0.0503 (5)
C070.15945 (8)0.3510 (2)0.10992 (8)0.0460 (5)
C080.15974 (9)0.4958 (2)0.14176 (8)0.0533 (5)
H080.12970.51940.16630.064*
C200.07878 (9)0.4437 (2)0.10932 (9)0.0528 (5)
C160.10364 (9)0.1089 (3)0.05497 (10)0.0677 (6)
H160.1030.1750.08930.081*
C090.20329 (10)0.6054 (3)0.13800 (10)0.0673 (6)
H090.20270.70140.160.081*
C190.05499 (9)0.3129 (2)0.01321 (9)0.0643 (6)
H19A0.02120.31560.01030.077*
H19B0.08210.38840.00560.077*
C060.17545 (10)0.0628 (2)0.20217 (9)0.0630 (6)
H060.20470.12120.18570.076*
C120.20506 (9)0.3209 (3)0.07388 (9)0.0650 (6)
H120.20620.22490.05190.078*
C210.13646 (10)0.4449 (2)0.09216 (10)0.0643 (6)
H210.14920.3930.05630.077*
C170.08115 (9)0.0444 (3)0.05906 (9)0.0626 (6)
H170.06620.08170.09660.075*
C140.12681 (9)0.0661 (2)0.05078 (9)0.0574 (5)
H140.14270.1040.08780.069*
C100.24773 (10)0.5729 (3)0.10169 (10)0.0724 (6)
H100.2770.64740.09860.087*
C150.12704 (9)0.1641 (2)0.00008 (10)0.0658 (6)
H150.14290.26680.00270.079*
C250.06209 (11)0.5213 (2)0.16366 (9)0.0701 (6)
H250.02390.52220.1770.084*
C110.24871 (10)0.4306 (3)0.07012 (10)0.0767 (7)
H110.27910.40770.0460.092*
C050.18763 (12)0.0429 (3)0.25105 (10)0.0790 (7)
H050.22480.05420.26730.095*
C230.15791 (16)0.5973 (3)0.18021 (15)0.1027 (10)
H230.18420.64870.20390.123*
C240.10185 (15)0.5969 (3)0.19793 (11)0.0930 (9)
H240.08990.64880.2340.112*
C220.17524 (11)0.5215 (3)0.12733 (14)0.0852 (8)
H220.21360.52140.11480.102*
C020.07793 (10)0.0073 (3)0.20446 (9)0.0725 (6)
H020.04040.00510.18950.087*
C040.14409 (15)0.1301 (3)0.27490 (11)0.0919 (9)
H040.1520.20140.3070.11*
C030.08997 (14)0.1128 (3)0.25192 (11)0.0938 (9)
H030.06080.17220.26820.113*
C260.01834 (10)0.3486 (3)0.09676 (11)0.0848 (7)
H26A0.03930.2940.06650.127*
H26B0.01950.2860.13370.127*
H26C0.0350.45270.1050.127*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
P0.0587 (3)0.0464 (3)0.0461 (3)0.0004 (3)0.0094 (2)0.0015 (2)
N0.0539 (12)0.0811 (13)0.0601 (11)0.0028 (10)0.0023 (9)0.0221 (10)
C130.0513 (12)0.0425 (11)0.0452 (11)0.0089 (9)0.0065 (9)0.0007 (9)
C010.0681 (14)0.0453 (11)0.0426 (11)0.0039 (11)0.0081 (11)0.0047 (9)
C180.0558 (13)0.0498 (12)0.0460 (12)0.0087 (10)0.0086 (9)0.0004 (10)
C070.0586 (13)0.0374 (10)0.0422 (10)0.0033 (9)0.0042 (9)0.0007 (9)
C080.0598 (14)0.0484 (13)0.0515 (12)0.0067 (10)0.0006 (10)0.0040 (10)
C200.0647 (15)0.0436 (11)0.0504 (12)0.0006 (10)0.0038 (11)0.0004 (9)
C160.0845 (17)0.0612 (16)0.0581 (14)0.0158 (13)0.0105 (12)0.0191 (11)
C090.0762 (16)0.0485 (13)0.0757 (16)0.0024 (12)0.0092 (13)0.0129 (11)
C190.0701 (15)0.0670 (15)0.0566 (13)0.0095 (12)0.0111 (11)0.0100 (11)
C060.0800 (17)0.0580 (14)0.0514 (12)0.0016 (12)0.0064 (12)0.0024 (10)
C120.0719 (15)0.0578 (14)0.0667 (14)0.0110 (12)0.0177 (12)0.0204 (11)
C210.0689 (16)0.0515 (13)0.0727 (15)0.0024 (12)0.0061 (13)0.0033 (11)
C170.0746 (15)0.0659 (15)0.0471 (12)0.0074 (12)0.0015 (11)0.0025 (11)
C140.0736 (15)0.0478 (12)0.0512 (12)0.0041 (11)0.0058 (10)0.0002 (10)
C100.0765 (17)0.0631 (15)0.0770 (16)0.0227 (13)0.0008 (13)0.0031 (12)
C150.0895 (17)0.0422 (12)0.0670 (15)0.0050 (11)0.0167 (12)0.0067 (11)
C250.0979 (18)0.0603 (14)0.0520 (13)0.0022 (13)0.0027 (13)0.0025 (11)
C110.0764 (17)0.0832 (17)0.0727 (15)0.0238 (14)0.0253 (13)0.0205 (13)
C050.101 (2)0.0779 (17)0.0570 (14)0.0130 (15)0.0099 (14)0.0058 (13)
C230.139 (3)0.0707 (19)0.104 (2)0.019 (2)0.059 (2)0.0058 (17)
C240.152 (3)0.0720 (18)0.0573 (16)0.003 (2)0.0266 (19)0.0070 (12)
C220.0779 (18)0.0636 (16)0.117 (2)0.0139 (14)0.0294 (17)0.0180 (16)
C020.0831 (17)0.0751 (16)0.0597 (14)0.0140 (13)0.0076 (13)0.0076 (12)
C040.148 (3)0.0734 (18)0.0551 (15)0.0068 (19)0.0095 (18)0.0149 (13)
C030.123 (3)0.089 (2)0.0710 (17)0.0214 (18)0.0143 (17)0.0227 (15)
C260.0682 (17)0.0958 (18)0.0897 (17)0.0094 (14)0.0019 (13)0.0020 (15)
Geometric parameters (Å, º) top
P—C011.825 (2)C12—H120.93
P—C071.832 (2)C21—C221.379 (3)
P—C131.8400 (18)C21—H210.93
N—C201.375 (2)C17—H170.93
N—C261.437 (3)C14—C151.378 (3)
N—C191.443 (2)C14—H140.93
C13—C141.390 (3)C10—C111.367 (3)
C13—C181.401 (2)C10—H100.93
C01—C061.377 (3)C15—H150.93
C01—C021.387 (3)C25—C241.380 (3)
C18—C171.384 (2)C25—H250.93
C18—C191.521 (3)C11—H110.93
C07—C081.387 (2)C05—C041.378 (3)
C07—C121.387 (3)C05—H050.93
C08—C091.374 (3)C23—C241.354 (4)
C08—H080.93C23—C221.360 (4)
C20—C211.388 (3)C23—H230.93
C20—C251.390 (3)C24—H240.93
C16—C151.373 (3)C22—H220.93
C16—C171.376 (3)C02—C031.375 (3)
C16—H160.93C02—H020.93
C09—C101.373 (3)C04—C031.351 (3)
C09—H090.93C04—H040.93
C19—H19A0.97C03—H030.93
C19—H19B0.97C26—H26A0.96
C06—C051.401 (3)C26—H26B0.96
C06—H060.93C26—H26C0.96
C12—C111.377 (3)
C01—P—C07103.35 (9)C16—C17—C18121.32 (19)
C01—P—C13102.60 (9)C16—C17—H17119.3
C07—P—C13101.96 (8)C18—C17—H17119.3
C20—N—C26120.83 (17)C15—C14—C13121.58 (19)
C20—N—C19121.42 (17)C15—C14—H14119.2
C26—N—C19117.69 (18)C13—C14—H14119.2
C14—C13—C18118.51 (17)C11—C10—C09119.7 (2)
C14—C13—P122.74 (14)C11—C10—H10120.2
C18—C13—P118.68 (14)C09—C10—H10120.2
C06—C01—C02118.00 (19)C16—C15—C14119.5 (2)
C06—C01—P125.37 (16)C16—C15—H15120.2
C02—C01—P116.60 (17)C14—C15—H15120.2
C17—C18—C13119.14 (18)C24—C25—C20120.4 (2)
C17—C18—C19120.95 (18)C24—C25—H25119.8
C13—C18—C19119.91 (16)C20—C25—H25119.8
C08—C07—C12117.26 (18)C10—C11—C12120.4 (2)
C08—C07—P118.12 (15)C10—C11—H11119.8
C12—C07—P124.58 (15)C12—C11—H11119.8
C09—C08—C07121.65 (19)C04—C05—C06119.4 (2)
C09—C08—H08119.2C04—C05—H05120.3
C07—C08—H08119.2C06—C05—H05120.3
N—C20—C21121.56 (18)C24—C23—C22119.1 (3)
N—C20—C25121.3 (2)C24—C23—H23120.5
C21—C20—C25117.1 (2)C22—C23—H23120.5
C15—C16—C17119.91 (19)C23—C24—C25121.5 (3)
C15—C16—H16120C23—C24—H24119.2
C17—C16—H16120C25—C24—H24119.2
C10—C09—C08119.9 (2)C23—C22—C21120.7 (3)
C10—C09—H09120.1C23—C22—H22119.7
C08—C09—H09120.1C21—C22—H22119.7
N—C19—C18115.71 (17)C03—C02—C01121.5 (2)
N—C19—H19A108.4C03—C02—H02119.3
C18—C19—H19A108.4C01—C02—H02119.3
N—C19—H19B108.4C03—C04—C05120.5 (2)
C18—C19—H19B108.4C03—C04—H04119.8
H19A—C19—H19B107.4C05—C04—H04119.8
C01—C06—C05120.5 (2)C04—C03—C02120.1 (3)
C01—C06—H06119.7C04—C03—H03120
C05—C06—H06119.7C02—C03—H03120
C11—C12—C07121.12 (19)N—C26—H26A109.5
C11—C12—H12119.4N—C26—H26B109.5
C07—C12—H12119.4H26A—C26—H26B109.5
C22—C21—C20121.2 (2)N—C26—H26C109.5
C22—C21—H21119.4H26A—C26—H26C109.5
C20—C21—H21119.4H26B—C26—H26C109.5
C01—P—C13—C147.36 (18)P—C01—C06—C05178.69 (15)
C07—P—C13—C1499.44 (16)C08—C07—C12—C110.1 (3)
C01—P—C13—C18169.70 (15)P—C07—C12—C11177.69 (17)
C07—P—C13—C1883.50 (15)N—C20—C21—C22179.69 (19)
C07—P—C01—C0614.65 (19)C25—C20—C21—C220.7 (3)
C13—P—C01—C0691.09 (18)C15—C16—C17—C181.4 (3)
C07—P—C01—C02163.58 (15)C13—C18—C17—C160.4 (3)
C13—P—C01—C0290.68 (16)C19—C18—C17—C16179.45 (19)
C14—C13—C18—C170.9 (3)C18—C13—C14—C151.1 (3)
P—C13—C18—C17176.29 (15)P—C13—C14—C15175.94 (15)
C14—C13—C18—C19179.28 (17)C08—C09—C10—C110.9 (3)
P—C13—C18—C193.5 (2)C17—C16—C15—C141.2 (3)
C01—P—C07—C0893.64 (15)C13—C14—C15—C160.1 (3)
C13—P—C07—C08160.13 (15)N—C20—C25—C24179.7 (2)
C01—P—C07—C1288.77 (18)C21—C20—C25—C240.7 (3)
C13—P—C07—C1217.45 (19)C09—C10—C11—C120.9 (4)
C12—C07—C08—C090.1 (3)C07—C12—C11—C100.5 (4)
P—C07—C08—C09177.82 (15)C01—C06—C05—C040.5 (3)
C26—N—C20—C21171.3 (2)C22—C23—C24—C250.1 (4)
C19—N—C20—C2111.6 (3)C20—C25—C24—C230.4 (4)
C26—N—C20—C258.3 (3)C24—C23—C22—C210.2 (4)
C19—N—C20—C25168.86 (18)C20—C21—C22—C230.5 (3)
C07—C08—C09—C100.4 (3)C06—C01—C02—C031.4 (3)
C20—N—C19—C1886.9 (2)P—C01—C02—C03179.73 (18)
C26—N—C19—C1895.8 (2)C06—C05—C04—C030.7 (4)
C17—C18—C19—N8.5 (3)C05—C04—C03—C020.1 (4)
C13—C18—C19—N171.65 (17)C01—C02—C03—C041.2 (4)
C02—C01—C06—C050.5 (3)

Experimental details

(I)(II)
Crystal data
Chemical formulaC25H22NPC26H24NP
Mr367.41381.43
Crystal system, space groupMonoclinic, C2/cMonoclinic, C2/c
Temperature (K)293293
a, b, c (Å)22.174 (4), 7.9968 (16), 22.519 (5)23.518 (5), 8.2811 (17), 21.892 (4)
β (°) 94.50 (3) 93.04 (3)
V3)3980.7 (14)4257.6 (15)
Z88
Radiation typeMo KαMo Kα
µ (mm1)0.150.14
Crystal size (mm)0.38 × 0.24 × 0.040.34 × 0.24 × 0.12
Data collection
DiffractometerBruker SMART 1K CCD area-detector
diffractometer
Bruker SMART 1K CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 1998)
Multi-scan
(SADABS; Bruker, 1998)
Tmin, Tmax0.95, 0.970.94, 0.97
No. of measured, independent and
observed [I > 2σ(I)] reflections
16110, 4943, 2201 14295, 5216, 2474
Rint0.0750.051
(sin θ/λ)max1)0.6680.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.103, 0.86 0.046, 0.114, 0.91
No. of reflections49435216
No. of parameters248253
H-atom treatmentH atoms treated by a mixture of independent and constrained refinementH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.15, 0.190.18, 0.16

Computer programs: SMART-NT (Bruker, 1998), SAINT-Plus (Bruker, 1999), SAINT-Plus and XPREP (Bruker, 1999), SIR2002 (Burla et al., 2003), SIR2002 (Altomare et al., 2003), SHELXL97 (Sheldrick, 1997), DIAMOND (Brandenburg & Berndt, 2001), WinGX (Farrugia, 1999).

Selected geometric parameters (Å, º) for (I) top
P—C011.829 (2)N—C201.383 (2)
P—C071.830 (2)N—C191.450 (2)
P—C131.8378 (19)
C01—P—C07101.66 (9)C07—P—C13102.09 (8)
C01—P—C13102.61 (9)C20—N—C19121.23 (18)
C20—N—C19—C1883.4 (2)
Selected geometric parameters (Å, º) for (II) top
P—C011.825 (2)N—C201.375 (2)
P—C071.832 (2)N—C261.437 (3)
P—C131.8400 (18)N—C191.443 (2)
C20—N—C19—C1886.9 (2)
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds