research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of mer-tris­­{2,6-di­fluoro-3-[5-(2-fluoro­phen­yl)pyridin-2-yl-κN]pyridin-4-yl-κC4}iridium(III) di­chloro­methane hemisolvate n-hexane hemisolvate

CROSSMARK_Color_square_no_text.svg

aDivision of Science Education & Department of Chemistry, Kangwon National University, Chuncheon 24341, Republic of Korea, and bResearch Institute of Natural Science, Gyeongsang National University, Jinju 52828, Republic of Korea
*Correspondence e-mail: kmpark@gnu.ac.kr, jinhok@kangwon.ac.kr

Edited by P. C. Healy, Griffith University, Australia (Received 20 November 2017; accepted 21 November 2017; online 28 November 2017)

The asymmetric unit of the title compound, [Ir(C17H11F2N2)3]·0.5CH3(CH2)4CH3·0.5CH2Cl2, comprises one IrIII atom, three 2,6-di­fluoro-3-[5-(2-fluoro­phen­yl)pyridin-2-yl]pyridin-4-yl ligands and half each of an n-hexane and a di­chloro­methane solvent mol­ecule located about crystallographic inversion centres. The IrIII atom displays a distorted octa­hedral coordination geometry, having three C,N-chelating 2,6-di­fluoro-3-[5-(2-fluoro­phen­yl)pyridin-2-yl]pyridin-4-yl ligands arranged in a meridional manner. The IrIII ion lies almost in the equatorial plane [deviation = 0.0069 (15) Å]. The average distance [2.041 (3) Å] of Ir—C bonds is slightly shorter than that [2.076 (3) Å] of Ir—N bonds. A variety of intra- and inter­molecular C—H⋯F and C—H⋯π hydrogen bonds, as well as inter­molecular C—F⋯π inter­actions, contribute to the stabilization of the mol­ecular and crystal structures, and result in the formation of a two-dimensional network parallel to the ab plane. No inter­actions between n-hexane solvent mol­ecules and the other components in the title compound are observed.

1. Chemical context

Phospho­rescent iridium(III) complexes are considered to be excellent candidates for triplet emitters in phospho­rescent organic light-emitting diodes (PHOLEDs) because of their high efficiency and high stability (Cho et al., 2016[Cho, H., Joo, C. W., Lee, J., Lee, H., Moon, J., Lee, J.-I., Lee, J. Y., Kang, Y. & Cho, N. S. (2016). Opt. Express, 24, 24161-24168.]). In partic­ular, iridium(III) complexes with C,N-chelating 2,3′-bi­pyridine ligands have recently attracted much attention because of their deep-blue emission and easy tuning emission energy upon ligand substitution (Kim et al., 2017[Kim, M., Oh, S., Kim, J., Park, K.-M. & Kang, Y. (2017). Dyes Pigments, 146, 386-391.]). However, many studies of the crystal structures of bi­pyridine-based iridium(III) derivatives are focused on the different substituents of the C-coordinating pyridine ring (Lee et al., 2014[Lee, J., Oh, H., Kim, J., Park, K.-M., Yook, K. S., Lee, J. Y. & Kang, Y. (2014). J. Mater. Chem. C. 2, 6040-6047.]). Examples of iridium(III) complexes with substituents on the N-coordin­ating pyridine ring are relatively rare compared to those of C-coordination pyridine-functionalized iridium(III) complexes (Lee et al., 2016[Lee, C.-H., Moon, S.-H., Park, K.-M. & Kang, Y. (2016). Acta Cryst. E72, 1768-1770.]; Oh et al., 2013[Oh, H., Park, K.-M., Hwang, H., Oh, S., Lee, J. H., Lu, J. S., Wang, S. & Kang, Y. (2013). Organometallics, 32, 6427-6436.]). Herein, we report the result of our investigation of the crystal structure of an iridium(III) complex with an o-tolyl group on the N-coordin­ating pyridine ring.

2. Structural commentary

The mol­ecular structure of the title compound is shown in Fig. 1[link]. The asymmetric unit consists of one IrIII atom, three 2,6-di­fluoro-3-[5-(2-fluoro­phen­yl)pyridin-2-yl]pyridin-4-yl ligands, and half each of the n-hexane and di­chloro­methane solvent mol­ecules located about crystallographic inversion centres. The IrIII atom is six-coordinated by three C,N-chelating 2,6-di­fluoro-3-[5-(2-fluoro­phen­yl)pyridin-2-yl]pyrid­in-4-yl ligands, forming a distorted octa­hedral coordination sphere due to narrow ligand bite angles, which range from 78.49 (12) to 80.32 (12)° (Table 1[link]). The pyridyl N atoms of the three ligands are arranged in a mer-configuration around the octa­hedral IrIII ion (Fig. 1[link]). The equatorial plane is defined by the N1/C1/N5/C18 atoms, the mean deviation from the least-squares plane being 0.0585 (14) Å. The IrIII ion lies almost in the equatorial plane with a deviation of 0.0069 (15) Å. As listed in Table 1[link], the Ir—C and Ir—N bond lengths in the title compound are within the ranges reported for similar IrIII compounds, for example, mer-[tris­[2′,6′-di­fluoro-2,3′-bipyri­dinato-k2C4′,N]iridium(III)] (Jung et al., 2012[Jung, N., Lee, E., Kim, J., Park, H., Park, K.-M. & Kang, Y. (2012). Bull. Korean Chem. Soc. 33, 183-188.]). The average length [2.041 (3) Å] of the Ir—C bonds is slightly shorter than that [2.076 (3) Å] of the Ir—N bonds because of back bonding between the metal and an anionic C atom of the ligand. Within the ligands, the terminal pyridine rings are tilted slightly by 7.2 (2), 6.74 (19), and 6.29 (18)°, respectively, to the N1-, N3-, and N5-containing central pyridine rings, indicating that effective π conjugations of the two pyridine rings occur in the ligands. The terminal phenyl rings, however, are tilted by 51.79 (13), 46.74 (11), and 40.50 (12)° with respect to N1-, N3-, and N5-containing central pyridine rings, respectively. The mol­ecular structure of the IrIII complex is stabilized by weak intra­molecular C—H⋯F and C—H⋯N hydrogen bonds (Table 2[link], shown as dashed lines in Fig. 1[link]).

[Scheme 1]

Table 1
Selected geometric parameters (Å, °)

Ir1—C35 1.991 (3) Ir1—C1 2.061 (3)
Ir1—N5 2.030 (3) Ir1—C18 2.070 (3)
Ir1—N1 2.056 (3) Ir1—N3 2.143 (3)
       
C35—Ir1—N5 80.32 (12) N1—Ir1—C18 97.10 (12)
C35—Ir1—N1 98.62 (12) C1—Ir1—C18 173.39 (11)
N5—Ir1—N1 174.15 (10) C35—Ir1—N3 170.98 (11)
C35—Ir1—C1 92.12 (12) N5—Ir1—N3 94.39 (10)
N5—Ir1—C1 94.75 (12) N1—Ir1—N3 87.37 (10)
N1—Ir1—C1 79.51 (12) C1—Ir1—N3 95.61 (11)
C35—Ir1—C18 94.00 (13) C18—Ir1—N3 78.49 (12)
N5—Ir1—C18 88.72 (11)    

Table 2
Hydrogen-bond geometry (Å, °)

Cg3, Cg4 and Cg6 are the centroids of the N4/C18–C21, N5/C40–C44, and C45–C50 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C7—H7⋯F2 0.95 2.29 2.895 (5) 121
C24—H24⋯F4 0.95 2.22 2.851 (4) 123
C36—H36⋯F2i 0.95 2.41 3.245 (4) 146
C41—H41⋯F6 0.95 2.32 2.917 (4) 121
C44—H44⋯N3 0.95 2.50 3.112 (4) 122
C46—H46⋯F3ii 0.95 2.50 3.067 (5) 119
C13—H13⋯Cg6iii 0.95 2.98 3.777 (7) 142
C55—H55ACg4ii 0.99 2.96 3.326 (9) 103
C55—H55BCg3ii 0.99 3.00 3.718 (10) 131
C55—H55BCg4ii 0.99 2.78 3.326 (10) 116
Symmetry codes: (i) -x+2, -y+1, -z+1; (ii) -x+1, -y+2, -z+1; (iii) -x+2, -y+2, -z+1.
[Figure 1]
Figure 1
View of the mol­ecular structure of the title compound, showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level; dashed lines represent intra­molecular C—H⋯F and C—H⋯N hydrogen bonds. The n-hexane and di­chloro­methane solvent mol­ecules are not shown for clarity.

3. Supra­molecular features

Inter­molecular C—H⋯F hydrogen bonds (Table 2[link], yellow dashed lines in Fig. 2[link]) between adjacent IrIII complexes lead to the formation of one-dimensional chains propagating along the [110] direction. These chains are further inter­linked by C13—H⋯π inter­actions (Table 2[link], black dashed lines in Fig. 2[link]), resulting in the formation of a two-dimensional supra­molecular network extending parallel to the ab plane. In addition, weak inter­molecular C—F⋯π inter­actions [F2⋯Cg1i = 3.268 (3) Å; F4⋯Cg1iii = 3.411 (3) Å; F4⋯Cg2iii = 3.387 (3) Å; F6⋯Cg5iv = 3.291 (3) Å; Cg1, Cg2, and Cg5 are the centroids of the N1/C6–C10, N3/C23–C27, and N6/C35–C39 rings, respectively; symmetry codes: (i) −x + 2, −y + 1, −z + 1; (iii) −x + 2, −y + 2, −z + 1; (iv) −x + 1, −y + 1, −z + 1] contribute to the stabilization of the crystal structure. Inter­molecular C55—H⋯π inter­actions (Table 2[link]) between the IrIII complexes and the disordered di­chloro­methane solvent mol­ecules also occur in the crystal structure of the title compound (not shown in Fig. 2[link]).

[Figure 2]
Figure 2
The two-dimensional supra­molecular network formed through inter­molecular C—H⋯F hydrogen bonds (yellow dashed lines) and C—H⋯π (black dashed lines) and inter­molecular C—F⋯π inter­actions (red dashed lines). H atoms not involved in inter­molecular inter­actions and the lattice solvent mol­ecules are not shown for clarity.

No inter­actions between the n-hexane solvent mol­ecules and the other components of the title compound are observed.

4. Synthesis and crystallization

The title complex was synthesized according to a previous report (Lee et al., 2017[Lee, C., Kim, J., Choi, J. M., Lee, J.-Y. & Kang, Y. (2017). Dyes Pigments, 137, 378-383.]). Slow evaporation from a di­chloro­methane/hexane solution afforded yellow crystals suitable for X-ray crystallography analysis. 1H NMR(400 MHz, CD2Cl2): δ 8.89 (dd, J = 6.2, 1.4 Hz, 1H), 8.30 (dd, J = 8.8, 1.0 Hz, 1H), 8.27–8.21 (m, 2H), 8.01 (d, J = 2.0 Hz, 1H), 7.91 (d, J = 1.2 Hz, 1H), 7.76–7.70 (m, 3H), 7.59 (d, J = 1.6 Hz, 1H), 7.2–6.95 (m, 12H), 6.31 (t, J = 3.2 Hz, 1H), 5.94 (t, J = 2.4 Hz, 1H), 5.83 (t, J = 2.0 Hz, 1H), 1.94 (s, 3H), 1.93 (s, 3H), 1.79 (s, 3H).

5. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. The di­chloro­methane mol­ecule is disordered over two sets of sites about an inversion centre with equal occupancy. The C—Cl bond lengths were restrained using the DFIX instructions in SHELXL2014/7 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]). The anisotropic displacement ellipsoid of a chloride atom (Cl1) in the disordered di­chloro­methane solvent mol­ecule was very elongated and therefore an ISOR restraint was applied for this atom (McArdle, 1995[McArdle, P. (1995). J. Appl. Cryst. 28, 65.]; Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]). All H atoms were positioned geometrically and refined as riding: C—H = 0.95 Å for Csp2—H, 0.99 Å for methyl­ene C—H, and 0.98 Å for methyl C—H, with Uiso(H) = 1.2–1.5Ueq(C).

Table 3
Experimental details

Crystal data
Chemical formula [Ir(C17H11F2N2)3]·0.5C6H14·0.5CH2Cl2
Mr 1121.58
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 173
a, b, c (Å) 12.5753 (2), 14.4054 (3), 14.8668 (3)
α, β, γ (°) 117.0678 (5), 101.9336 (6), 97.2102 (6)
V3) 2270.58 (8)
Z 2
Radiation type Mo Kα
μ (mm−1) 3.07
Crystal size (mm) 0.42 × 0.23 × 0.21
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2014[Bruker (2014). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.532, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 40374, 11187, 10233
Rint 0.035
(sin θ/λ)max−1) 0.666
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.030, 0.080, 1.04
No. of reflections 11187
No. of parameters 625
No. of restraints 16
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 2.38, −2.06
Computer programs: APEX2 and SAINT (Bruker, 2014[Bruker (2014). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 and SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), DIAMOND (Brandenburg, 2010[Brandenburg, K. (2010). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2014); cell refinement: SAINT (Bruker, 2014); data reduction: SAINT (Bruker, 2014); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: DIAMOND (Brandenburg, 2010); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and publCIF (Westrip, 2010).

mer-Tris{2,6-difluoro-3-[5-(2-fluorophenyl)pyridin-2-yl-κN]pyridin-4-yl-κC4}iridium(III) dichloromethane hemisolvate n-hexane hemisolvate top
Crystal data top
[Ir(C17H11F2N2)3]·0.5C6H14·0.5CH2Cl2Z = 2
Mr = 1121.58F(000) = 1116
Triclinic, P1Dx = 1.640 Mg m3
a = 12.5753 (2) ÅMo Kα radiation, λ = 0.71073 Å
b = 14.4054 (3) ÅCell parameters from 9893 reflections
c = 14.8668 (3) Åθ = 2.3–28.2°
α = 117.0678 (5)°µ = 3.07 mm1
β = 101.9336 (6)°T = 173 K
γ = 97.2102 (6)°Block, yellow
V = 2270.58 (8) Å30.42 × 0.23 × 0.21 mm
Data collection top
Bruker APEXII CCD
diffractometer
10233 reflections with I > 2σ(I)
φ and ω scansRint = 0.035
Absorption correction: multi-scan
(SADABS; Bruker, 2014)
θmax = 28.3°, θmin = 1.6°
Tmin = 0.532, Tmax = 0.746h = 1616
40374 measured reflectionsk = 1919
11187 independent reflectionsl = 1819
Refinement top
Refinement on F216 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.030H-atom parameters constrained
wR(F2) = 0.080 w = 1/[σ2(Fo2) + (0.047P)2 + 1.7767P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.003
11187 reflectionsΔρmax = 2.38 e Å3
625 parametersΔρmin = 2.06 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Ir10.80627 (2)0.75047 (2)0.53831 (2)0.01827 (4)
F10.8673 (2)0.6415 (2)0.8511 (2)0.0543 (7)
F21.12093 (19)0.59363 (19)0.6739 (2)0.0429 (6)
N10.9274 (2)0.6888 (2)0.4727 (2)0.0208 (5)
N20.9932 (3)0.6203 (2)0.7616 (3)0.0340 (7)
C10.8725 (2)0.6929 (2)0.6358 (3)0.0212 (6)
C20.8363 (3)0.6866 (3)0.7161 (3)0.0276 (7)
H20.77020.70720.73040.033*
C30.8993 (3)0.6498 (3)0.7734 (3)0.0341 (8)
C41.0248 (3)0.6251 (3)0.6851 (3)0.0298 (7)
C50.9706 (3)0.6581 (2)0.6176 (3)0.0232 (6)
C61.0025 (2)0.6582 (2)0.5291 (3)0.0229 (6)
C71.0955 (3)0.6311 (3)0.4960 (3)0.0303 (7)
H71.14950.61270.53560.036*
C81.1101 (3)0.6307 (3)0.4064 (3)0.0330 (8)
H81.17490.61360.38590.040*
C91.0306 (3)0.6551 (3)0.3459 (3)0.0300 (7)
C100.9416 (3)0.6851 (2)0.3839 (3)0.0252 (7)
H100.88730.70410.34500.030*
C111.0395 (3)0.6562 (3)0.2480 (3)0.0339 (8)
C121.1385 (4)0.7141 (4)0.2506 (4)0.0489 (11)
H121.20070.74770.31300.059*
C131.1479 (5)0.7235 (4)0.1634 (5)0.0611 (14)
H131.21590.76340.16620.073*
C141.0573 (5)0.6742 (4)0.0724 (4)0.0597 (14)
H141.06250.68160.01310.072*
C150.9605 (5)0.6148 (4)0.0677 (4)0.0510 (11)
H150.89960.58010.00420.061*
C160.9490 (4)0.6041 (3)0.1545 (3)0.0388 (9)
C170.8413 (4)0.5336 (4)0.1405 (4)0.0510 (11)
H17A0.85640.49940.18400.077*
H17B0.80900.47800.06590.077*
H17C0.78820.57750.16250.077*
F30.5772 (3)0.7962 (2)0.2111 (2)0.0757 (10)
F40.8327 (2)1.08740 (18)0.4761 (2)0.0466 (6)
N30.9257 (2)0.9044 (2)0.6254 (2)0.0202 (5)
N40.7040 (3)0.9417 (3)0.3469 (3)0.0402 (8)
C180.7582 (3)0.8195 (3)0.4460 (3)0.0242 (6)
C190.6756 (3)0.7747 (3)0.3490 (3)0.0350 (8)
H190.63490.70130.31360.042*
C200.6547 (4)0.8392 (4)0.3060 (3)0.0440 (10)
C210.7826 (3)0.9830 (3)0.4368 (3)0.0321 (8)
C220.8172 (3)0.9295 (3)0.4913 (3)0.0236 (6)
C230.9103 (3)0.9743 (2)0.5882 (3)0.0229 (6)
C240.9824 (3)1.0773 (3)0.6421 (3)0.0299 (7)
H240.97101.12700.61790.036*
C251.0702 (3)1.1068 (3)0.7304 (3)0.0307 (7)
H251.11891.17710.76670.037*
C261.0887 (3)1.0351 (3)0.7673 (3)0.0241 (6)
C271.0117 (2)0.9351 (2)0.7118 (3)0.0212 (6)
H271.02040.88540.73650.025*
C281.1851 (3)1.0651 (3)0.8603 (3)0.0259 (7)
C291.2073 (3)1.1663 (3)0.9495 (3)0.0377 (8)
H291.15861.21180.95000.045*
C301.2990 (4)1.2017 (3)1.0375 (3)0.0457 (10)
H301.31321.27091.09760.055*
C311.3691 (3)1.1359 (4)1.0369 (3)0.0459 (11)
H311.43271.15991.09640.055*
C321.3476 (3)1.0351 (3)0.9502 (3)0.0380 (9)
H321.39650.99030.95160.046*
C331.2560 (3)0.9967 (3)0.8603 (3)0.0293 (7)
C341.2406 (3)0.8875 (3)0.7682 (3)0.0349 (8)
H34A1.22960.89220.70330.052*
H34B1.17480.83770.76130.052*
H34C1.30750.86110.77960.052*
F50.5676 (2)0.34823 (18)0.2318 (2)0.0532 (7)
F60.38409 (17)0.55554 (19)0.4386 (2)0.0466 (6)
N50.6894 (2)0.8035 (2)0.6117 (2)0.0210 (5)
N60.4774 (3)0.4534 (3)0.3367 (3)0.0386 (8)
C350.6786 (3)0.6197 (3)0.4518 (3)0.0232 (6)
C360.6739 (3)0.5210 (3)0.3648 (3)0.0298 (7)
H360.73830.50750.34180.036*
C370.5732 (3)0.4448 (3)0.3142 (3)0.0356 (8)
C380.4829 (3)0.5465 (3)0.4172 (3)0.0324 (8)
C390.5777 (3)0.6319 (3)0.4795 (3)0.0255 (7)
C400.5854 (3)0.7342 (3)0.5712 (3)0.0246 (6)
C410.5035 (3)0.7659 (3)0.6217 (3)0.0325 (8)
H410.42990.71990.59290.039*
C420.5293 (3)0.8633 (3)0.7127 (3)0.0339 (8)
H420.47340.88360.74690.041*
C430.6366 (3)0.9335 (3)0.7561 (3)0.0256 (7)
C440.7122 (3)0.8998 (3)0.6997 (3)0.0243 (6)
H440.78420.94730.72450.029*
C450.6669 (3)1.0390 (3)0.8546 (3)0.0288 (7)
C460.5870 (3)1.0993 (3)0.8704 (3)0.0356 (8)
H460.51671.07260.81730.043*
C470.6081 (4)1.1971 (3)0.9618 (3)0.0428 (9)
H470.55251.23670.97130.051*
C480.7093 (4)1.2364 (3)1.0383 (3)0.0456 (10)
H480.72471.30381.10090.055*
C490.7893 (3)1.1773 (3)1.0239 (3)0.0385 (9)
H490.85921.20551.07780.046*
C500.7712 (3)1.0787 (3)0.9339 (3)0.0311 (7)
C510.8620 (3)1.0185 (4)0.9291 (3)0.0417 (9)
H51A0.82750.94090.89160.063*
H51B0.90711.04101.00110.063*
H51C0.91041.03470.89150.063*
C520.3642 (9)0.5534 (10)0.1629 (11)0.164 (5)
H52A0.32440.51250.18890.246*
H52B0.42330.61410.22230.246*
H52C0.31110.58060.12890.246*
C530.4179 (10)0.4784 (9)0.0806 (10)0.143 (4)
H53A0.46970.44980.11530.171*
H53B0.35760.41640.02200.171*
C540.4771 (10)0.5289 (7)0.0381 (9)0.140 (4)
H54A0.42550.56190.00910.168*
H54C0.53860.58870.09770.168*
C550.4858 (8)1.0429 (5)0.4679 (6)0.070 (3)0.5
H55A0.52581.05350.42120.084*0.5
H55B0.42811.08440.47470.084*0.5
Cl10.4193 (4)0.9067 (4)0.4086 (4)0.245 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ir10.01779 (6)0.01590 (6)0.02123 (7)0.00411 (4)0.00436 (4)0.00994 (5)
F10.0766 (18)0.0687 (17)0.0456 (15)0.0301 (14)0.0258 (14)0.0449 (14)
F20.0406 (12)0.0478 (13)0.0472 (14)0.0263 (10)0.0083 (10)0.0272 (12)
N10.0205 (12)0.0147 (12)0.0255 (14)0.0042 (9)0.0059 (10)0.0090 (11)
N20.0455 (17)0.0254 (15)0.0286 (16)0.0110 (13)0.0018 (14)0.0147 (13)
C10.0210 (13)0.0137 (13)0.0243 (16)0.0001 (11)0.0012 (12)0.0092 (12)
C20.0326 (17)0.0247 (16)0.0260 (17)0.0048 (13)0.0065 (14)0.0144 (15)
C30.049 (2)0.0285 (18)0.0264 (18)0.0083 (16)0.0070 (16)0.0173 (16)
C40.0316 (17)0.0196 (15)0.0303 (18)0.0082 (13)0.0005 (14)0.0096 (14)
C50.0233 (14)0.0149 (14)0.0267 (16)0.0040 (11)0.0009 (12)0.0096 (13)
C60.0216 (14)0.0151 (14)0.0260 (16)0.0038 (11)0.0032 (12)0.0071 (13)
C70.0259 (15)0.0233 (16)0.036 (2)0.0095 (13)0.0059 (14)0.0102 (15)
C80.0266 (16)0.0265 (17)0.041 (2)0.0090 (13)0.0154 (15)0.0103 (16)
C90.0368 (18)0.0184 (15)0.0346 (19)0.0066 (13)0.0173 (15)0.0103 (15)
C100.0331 (16)0.0166 (14)0.0278 (17)0.0061 (12)0.0122 (14)0.0114 (13)
C110.050 (2)0.0235 (16)0.040 (2)0.0162 (15)0.0278 (18)0.0172 (16)
C120.057 (3)0.042 (2)0.053 (3)0.009 (2)0.032 (2)0.022 (2)
C130.071 (3)0.057 (3)0.083 (4)0.018 (3)0.053 (3)0.044 (3)
C140.092 (4)0.056 (3)0.061 (3)0.035 (3)0.051 (3)0.038 (3)
C150.079 (3)0.048 (3)0.047 (3)0.029 (2)0.034 (2)0.030 (2)
C160.057 (2)0.0300 (19)0.040 (2)0.0194 (17)0.0244 (19)0.0198 (18)
C170.062 (3)0.052 (3)0.040 (2)0.010 (2)0.013 (2)0.026 (2)
F30.092 (2)0.0570 (17)0.0537 (18)0.0057 (16)0.0304 (16)0.0328 (15)
F40.0643 (15)0.0293 (11)0.0506 (15)0.0084 (10)0.0053 (12)0.0290 (11)
N30.0202 (11)0.0174 (12)0.0256 (14)0.0064 (9)0.0090 (10)0.0115 (11)
N40.0490 (19)0.0394 (18)0.0415 (19)0.0159 (15)0.0069 (16)0.0291 (17)
C180.0242 (15)0.0263 (16)0.0272 (17)0.0100 (12)0.0090 (13)0.0159 (14)
C190.0382 (19)0.0275 (18)0.0309 (19)0.0045 (14)0.0030 (15)0.0142 (16)
C200.051 (2)0.044 (2)0.034 (2)0.0133 (18)0.0040 (18)0.0230 (19)
C210.0415 (19)0.0271 (17)0.036 (2)0.0128 (15)0.0114 (16)0.0215 (16)
C220.0267 (15)0.0240 (15)0.0264 (17)0.0110 (12)0.0096 (13)0.0156 (14)
C230.0246 (14)0.0194 (14)0.0286 (17)0.0084 (12)0.0109 (13)0.0132 (14)
C240.0330 (17)0.0217 (16)0.039 (2)0.0084 (13)0.0110 (15)0.0181 (16)
C250.0341 (17)0.0158 (15)0.035 (2)0.0017 (13)0.0069 (15)0.0095 (15)
C260.0235 (14)0.0197 (15)0.0266 (17)0.0031 (12)0.0092 (13)0.0093 (14)
C270.0184 (13)0.0195 (14)0.0249 (16)0.0033 (11)0.0063 (12)0.0108 (13)
C280.0231 (14)0.0242 (16)0.0265 (17)0.0021 (12)0.0050 (13)0.0125 (14)
C290.041 (2)0.0283 (18)0.033 (2)0.0028 (15)0.0063 (16)0.0110 (17)
C300.049 (2)0.037 (2)0.030 (2)0.0120 (18)0.0022 (18)0.0100 (18)
C310.037 (2)0.052 (3)0.038 (2)0.0142 (18)0.0050 (17)0.027 (2)
C320.0257 (16)0.044 (2)0.042 (2)0.0016 (15)0.0002 (16)0.027 (2)
C330.0223 (15)0.0310 (18)0.0323 (19)0.0002 (13)0.0052 (14)0.0167 (16)
C340.0271 (16)0.0335 (19)0.041 (2)0.0092 (14)0.0068 (15)0.0174 (18)
F50.0495 (14)0.0276 (12)0.0478 (15)0.0026 (10)0.0112 (12)0.0048 (11)
F60.0240 (10)0.0421 (13)0.0539 (15)0.0029 (9)0.0100 (10)0.0113 (12)
N50.0172 (11)0.0211 (13)0.0258 (14)0.0053 (9)0.0044 (10)0.0131 (11)
N60.0332 (16)0.0273 (16)0.0378 (18)0.0041 (12)0.0028 (14)0.0082 (14)
C350.0220 (14)0.0212 (15)0.0263 (16)0.0028 (11)0.0032 (12)0.0139 (14)
C360.0281 (16)0.0230 (16)0.0315 (18)0.0040 (13)0.0058 (14)0.0098 (15)
C370.0369 (19)0.0219 (17)0.034 (2)0.0007 (14)0.0062 (16)0.0063 (16)
C380.0230 (15)0.0324 (18)0.038 (2)0.0016 (13)0.0072 (14)0.0162 (17)
C390.0247 (15)0.0232 (16)0.0270 (17)0.0042 (12)0.0065 (13)0.0120 (14)
C400.0197 (14)0.0234 (15)0.0288 (17)0.0038 (12)0.0054 (13)0.0124 (14)
C410.0215 (15)0.0345 (19)0.036 (2)0.0012 (13)0.0090 (14)0.0140 (17)
C420.0262 (16)0.038 (2)0.038 (2)0.0101 (14)0.0149 (15)0.0172 (18)
C430.0255 (15)0.0276 (16)0.0273 (17)0.0091 (13)0.0081 (13)0.0157 (15)
C440.0226 (14)0.0244 (16)0.0284 (17)0.0069 (12)0.0090 (13)0.0143 (14)
C450.0320 (16)0.0278 (17)0.0304 (18)0.0093 (13)0.0150 (14)0.0146 (15)
C460.0383 (19)0.037 (2)0.036 (2)0.0157 (16)0.0150 (16)0.0181 (17)
C470.054 (2)0.039 (2)0.042 (2)0.0218 (19)0.026 (2)0.0185 (19)
C480.066 (3)0.030 (2)0.034 (2)0.0056 (19)0.024 (2)0.0084 (18)
C490.040 (2)0.037 (2)0.0301 (19)0.0029 (16)0.0104 (16)0.0135 (17)
C500.0311 (17)0.0330 (18)0.0300 (18)0.0037 (14)0.0116 (15)0.0164 (16)
C510.0281 (18)0.056 (3)0.036 (2)0.0114 (17)0.0069 (16)0.019 (2)
C520.114 (8)0.181 (12)0.207 (14)0.014 (8)0.007 (8)0.126 (11)
C530.183 (11)0.123 (8)0.161 (11)0.051 (8)0.048 (9)0.100 (8)
C540.172 (10)0.068 (6)0.172 (12)0.019 (6)0.064 (8)0.050 (7)
C550.070 (3)0.071 (3)0.071 (3)0.020 (2)0.023 (2)0.035 (2)
Cl10.210 (2)0.257 (3)0.244 (3)0.0489 (18)0.0950 (19)0.0951 (18)
Geometric parameters (Å, º) top
Ir1—C351.991 (3)C29—C301.387 (6)
Ir1—N52.030 (3)C29—H290.9500
Ir1—N12.056 (3)C30—C311.372 (7)
Ir1—C12.061 (3)C30—H300.9500
Ir1—C182.070 (3)C31—C321.378 (6)
Ir1—N32.143 (3)C31—H310.9500
F1—C31.349 (4)C32—C331.396 (5)
F2—C41.359 (4)C32—H320.9500
N1—C101.346 (4)C33—C341.496 (5)
N1—C61.378 (4)C34—H34A0.9800
N2—C41.307 (5)C34—H34B0.9800
N2—C31.323 (5)C34—H34C0.9800
C1—C21.397 (5)F5—C371.352 (4)
C1—C51.421 (4)F6—C381.352 (4)
C2—C31.369 (5)N5—C441.346 (4)
C2—H20.9500N5—C401.367 (4)
C4—C51.389 (5)N6—C381.310 (5)
C5—C61.453 (5)N6—C371.322 (5)
C6—C71.393 (5)C35—C361.405 (5)
C7—C81.378 (5)C35—C391.420 (4)
C7—H70.9500C36—C371.371 (5)
C8—C91.392 (5)C36—H360.9500
C8—H80.9500C38—C391.389 (5)
C9—C101.386 (5)C39—C401.456 (5)
C9—C111.490 (5)C40—C411.400 (5)
C10—H100.9500C41—C421.372 (5)
C11—C121.392 (5)C41—H410.9500
C11—C161.404 (6)C42—C431.401 (5)
C12—C131.390 (7)C42—H420.9500
C12—H120.9500C43—C441.384 (5)
C13—C141.385 (8)C43—C451.483 (5)
C13—H130.9500C44—H440.9500
C14—C151.366 (7)C45—C461.396 (5)
C14—H140.9500C45—C501.413 (5)
C15—C161.401 (6)C46—C471.384 (6)
C15—H150.9500C46—H460.9500
C16—C171.502 (6)C47—C481.367 (6)
C17—H17A0.9800C47—H470.9500
C17—H17B0.9800C48—C491.385 (6)
C17—H17C0.9800C48—H480.9500
F3—C201.345 (5)C49—C501.386 (5)
F4—C211.346 (4)C49—H490.9500
N3—C271.343 (4)C50—C511.513 (5)
N3—C231.367 (4)C51—H51A0.9800
N4—C211.305 (5)C51—H51B0.9800
N4—C201.316 (5)C51—H51C0.9800
C18—C191.392 (5)C52—C531.562 (14)
C18—C221.429 (4)C52—H52A0.9800
C19—C201.369 (5)C52—H52B0.9800
C19—H190.9500C52—H52C0.9800
C21—C221.394 (5)C53—C541.400 (13)
C22—C231.460 (5)C53—H53A0.9900
C23—C241.395 (4)C53—H53B0.9900
C24—C251.377 (5)C54—C54i1.358 (18)
C24—H240.9500C54—H54A0.9900
C25—C261.396 (5)C54—H54C0.9900
C25—H250.9500C55—Cl1ii1.727 (3)
C26—C271.389 (4)C55—Cl11.741 (3)
C26—C281.483 (5)C55—H55A0.9900
C27—H270.9500C55—H55B0.9900
C28—C291.395 (5)Cl1—C55ii1.727 (4)
C28—C331.410 (5)
C35—Ir1—N580.32 (12)C29—C28—C33119.4 (3)
C35—Ir1—N198.62 (12)C29—C28—C26118.1 (3)
N5—Ir1—N1174.15 (10)C33—C28—C26122.4 (3)
C35—Ir1—C192.12 (12)C30—C29—C28121.3 (4)
N5—Ir1—C194.75 (12)C30—C29—H29119.4
N1—Ir1—C179.51 (12)C28—C29—H29119.4
C35—Ir1—C1894.00 (13)C31—C30—C29119.3 (4)
N5—Ir1—C1888.72 (11)C31—C30—H30120.3
N1—Ir1—C1897.10 (12)C29—C30—H30120.3
C1—Ir1—C18173.39 (11)C30—C31—C32120.2 (4)
C35—Ir1—N3170.98 (11)C30—C31—H31119.9
N5—Ir1—N394.39 (10)C32—C31—H31119.9
N1—Ir1—N387.37 (10)C31—C32—C33122.0 (4)
C1—Ir1—N395.61 (11)C31—C32—H32119.0
C18—Ir1—N378.49 (12)C33—C32—H32119.0
C10—N1—C6119.6 (3)C32—C33—C28117.7 (3)
C10—N1—Ir1123.6 (2)C32—C33—C34118.6 (3)
C6—N1—Ir1116.6 (2)C28—C33—C34123.6 (3)
C4—N2—C3114.9 (3)C33—C34—H34A109.5
C2—C1—C5117.7 (3)C33—C34—H34B109.5
C2—C1—Ir1129.4 (2)H34A—C34—H34B109.5
C5—C1—Ir1112.8 (2)C33—C34—H34C109.5
C3—C2—C1117.8 (3)H34A—C34—H34C109.5
C3—C2—H2121.1H34B—C34—H34C109.5
C1—C2—H2121.1C44—N5—C40120.0 (3)
N2—C3—F1113.6 (3)C44—N5—Ir1122.9 (2)
N2—C3—C2126.4 (4)C40—N5—Ir1117.0 (2)
F1—C3—C2120.0 (4)C38—N6—C37114.1 (3)
N2—C4—F2113.9 (3)C36—C35—C39116.7 (3)
N2—C4—C5126.7 (3)C36—C35—Ir1128.7 (2)
F2—C4—C5119.4 (3)C39—C35—Ir1114.4 (2)
C4—C5—C1116.4 (3)C37—C36—C35117.6 (3)
C4—C5—C6126.8 (3)C37—C36—H36121.2
C1—C5—C6116.8 (3)C35—C36—H36121.2
N1—C6—C7118.6 (3)N6—C37—F5113.9 (3)
N1—C6—C5112.9 (3)N6—C37—C36127.4 (4)
C7—C6—C5128.5 (3)F5—C37—C36118.6 (3)
C8—C7—C6120.9 (3)N6—C38—F6113.8 (3)
C8—C7—H7119.6N6—C38—C39126.6 (3)
C6—C7—H7119.6F6—C38—C39119.5 (3)
C7—C8—C9120.5 (3)C38—C39—C35117.4 (3)
C7—C8—H8119.8C38—C39—C40127.0 (3)
C9—C8—H8119.8C35—C39—C40115.6 (3)
C10—C9—C8116.5 (3)N5—C40—C41118.9 (3)
C10—C9—C11119.3 (3)N5—C40—C39112.5 (3)
C8—C9—C11124.1 (3)C41—C40—C39128.6 (3)
N1—C10—C9123.8 (3)C42—C41—C40120.1 (3)
N1—C10—H10118.1C42—C41—H41120.0
C9—C10—H10118.1C40—C41—H41120.0
C12—C11—C16119.2 (4)C41—C42—C43121.2 (3)
C12—C11—C9119.0 (4)C41—C42—H42119.4
C16—C11—C9121.7 (3)C43—C42—H42119.4
C13—C12—C11121.1 (5)C44—C43—C42115.9 (3)
C13—C12—H12119.5C44—C43—C45121.8 (3)
C11—C12—H12119.5C42—C43—C45122.3 (3)
C14—C13—C12119.4 (4)N5—C44—C43123.7 (3)
C14—C13—H13120.3N5—C44—H44118.1
C12—C13—H13120.3C43—C44—H44118.1
C15—C14—C13120.3 (5)C46—C45—C50119.1 (3)
C15—C14—H14119.9C46—C45—C43118.1 (3)
C13—C14—H14119.9C50—C45—C43122.7 (3)
C14—C15—C16121.4 (5)C47—C46—C45121.4 (4)
C14—C15—H15119.3C47—C46—H46119.3
C16—C15—H15119.3C45—C46—H46119.3
C15—C16—C11118.7 (4)C48—C47—C46119.7 (4)
C15—C16—C17117.6 (4)C48—C47—H47120.2
C11—C16—C17123.6 (4)C46—C47—H47120.2
C16—C17—H17A109.5C47—C48—C49119.6 (4)
C16—C17—H17B109.5C47—C48—H48120.2
H17A—C17—H17B109.5C49—C48—H48120.2
C16—C17—H17C109.5C48—C49—C50122.5 (4)
H17A—C17—H17C109.5C48—C49—H49118.8
H17B—C17—H17C109.5C50—C49—H49118.8
C27—N3—C23119.4 (3)C49—C50—C45117.7 (3)
C27—N3—Ir1124.7 (2)C49—C50—C51118.0 (3)
C23—N3—Ir1115.9 (2)C45—C50—C51124.3 (3)
C21—N4—C20114.6 (3)C50—C51—H51A109.5
C19—C18—C22116.7 (3)C50—C51—H51B109.5
C19—C18—Ir1129.1 (3)H51A—C51—H51B109.5
C22—C18—Ir1114.1 (2)C50—C51—H51C109.5
C20—C19—C18118.2 (3)H51A—C51—H51C109.5
C20—C19—H19120.9H51B—C51—H51C109.5
C18—C19—H19120.9C53—C52—H52A109.5
N4—C20—F3114.1 (3)C53—C52—H52B109.5
N4—C20—C19127.1 (4)H52A—C52—H52B109.5
F3—C20—C19118.8 (4)C53—C52—H52C109.5
N4—C21—F4113.4 (3)H52A—C52—H52C109.5
N4—C21—C22126.5 (3)H52B—C52—H52C109.5
F4—C21—C22120.1 (3)C54—C53—C52114.3 (9)
C21—C22—C18116.9 (3)C54—C53—H53A108.7
C21—C22—C23126.1 (3)C52—C53—H53A108.7
C18—C22—C23117.0 (3)C54—C53—H53B108.7
N3—C23—C24119.5 (3)C52—C53—H53B108.7
N3—C23—C22114.0 (3)H53A—C53—H53B107.6
C24—C23—C22126.4 (3)C54i—C54—C53120.0 (12)
C25—C24—C23119.9 (3)C54i—C54—H54A107.3
C25—C24—H24120.0C53—C54—H54A107.3
C23—C24—H24120.0C54i—C54—H54C107.3
C24—C25—C26121.1 (3)C53—C54—H54C107.3
C24—C25—H25119.5H54A—C54—H54C106.9
C26—C25—H25119.5Cl1ii—C55—Cl1113.6 (6)
C27—C26—C25115.9 (3)Cl1ii—C55—H55A108.8
C27—C26—C28122.8 (3)Cl1—C55—H55A108.8
C25—C26—C28121.4 (3)Cl1ii—C55—H55B108.8
N3—C27—C26124.1 (3)Cl1—C55—H55B108.8
N3—C27—H27117.9H55A—C55—H55B107.7
C26—C27—H27117.9C55ii—Cl1—C5566.4 (6)
C5—C1—C2—C31.5 (5)C22—C23—C24—C25177.0 (3)
Ir1—C1—C2—C3176.6 (3)C23—C24—C25—C260.1 (5)
C4—N2—C3—F1178.4 (3)C24—C25—C26—C272.0 (5)
C4—N2—C3—C21.9 (6)C24—C25—C26—C28178.1 (3)
C1—C2—C3—N20.9 (6)C23—N3—C27—C260.5 (5)
C1—C2—C3—F1179.5 (3)Ir1—N3—C27—C26179.8 (2)
C3—N2—C4—F2179.5 (3)C25—C26—C27—N32.2 (5)
C3—N2—C4—C50.4 (5)C28—C26—C27—N3177.8 (3)
N2—C4—C5—C11.9 (5)C27—C26—C28—C29134.7 (4)
F2—C4—C5—C1178.2 (3)C25—C26—C28—C2945.2 (5)
N2—C4—C5—C6176.6 (3)C27—C26—C28—C3347.1 (5)
F2—C4—C5—C63.4 (5)C25—C26—C28—C33133.0 (4)
C2—C1—C5—C42.7 (4)C33—C28—C29—C301.2 (6)
Ir1—C1—C5—C4175.7 (2)C26—C28—C29—C30177.0 (3)
C2—C1—C5—C6175.8 (3)C28—C29—C30—C310.2 (6)
Ir1—C1—C5—C65.7 (3)C29—C30—C31—C320.8 (6)
C10—N1—C6—C74.3 (4)C30—C31—C32—C330.8 (6)
Ir1—N1—C6—C7170.7 (2)C31—C32—C33—C280.2 (6)
C10—N1—C6—C5175.1 (3)C31—C32—C33—C34178.2 (4)
Ir1—N1—C6—C59.9 (3)C29—C28—C33—C321.2 (5)
C4—C5—C6—N1175.8 (3)C26—C28—C33—C32176.9 (3)
C1—C5—C6—N12.6 (4)C29—C28—C33—C34179.0 (3)
C4—C5—C6—C73.5 (5)C26—C28—C33—C340.9 (5)
C1—C5—C6—C7178.1 (3)C39—C35—C36—C370.2 (5)
N1—C6—C7—C82.5 (5)Ir1—C35—C36—C37176.3 (3)
C5—C6—C7—C8176.8 (3)C38—N6—C37—F5179.3 (3)
C6—C7—C8—C91.4 (5)C38—N6—C37—C360.3 (6)
C7—C8—C9—C103.5 (5)C35—C36—C37—N61.1 (6)
C7—C8—C9—C11179.8 (3)C35—C36—C37—F5178.5 (3)
C6—N1—C10—C92.2 (5)C37—N6—C38—F6178.9 (3)
Ir1—N1—C10—C9172.4 (2)C37—N6—C38—C391.6 (6)
C8—C9—C10—N11.7 (5)N6—C38—C39—C352.4 (6)
C11—C9—C10—N1178.6 (3)F6—C38—C39—C35178.1 (3)
C10—C9—C11—C12126.0 (4)N6—C38—C39—C40177.8 (4)
C8—C9—C11—C1250.7 (5)F6—C38—C39—C401.8 (6)
C10—C9—C11—C1651.4 (5)C36—C35—C39—C381.3 (5)
C8—C9—C11—C16131.9 (4)Ir1—C35—C39—C38175.4 (3)
C16—C11—C12—C131.8 (6)C36—C35—C39—C40178.8 (3)
C9—C11—C12—C13175.6 (4)Ir1—C35—C39—C404.5 (4)
C11—C12—C13—C140.2 (7)C44—N5—C40—C411.0 (5)
C12—C13—C14—C151.5 (7)Ir1—N5—C40—C41177.7 (3)
C13—C14—C15—C161.5 (7)C44—N5—C40—C39177.0 (3)
C14—C15—C16—C110.2 (6)Ir1—N5—C40—C390.3 (4)
C14—C15—C16—C17177.5 (4)C38—C39—C40—N5176.8 (3)
C12—C11—C16—C151.8 (5)C35—C39—C40—N53.1 (4)
C9—C11—C16—C15175.5 (3)C38—C39—C40—C415.5 (6)
C12—C11—C16—C17175.8 (4)C35—C39—C40—C41174.6 (3)
C9—C11—C16—C176.9 (6)N5—C40—C41—C422.6 (5)
C22—C18—C19—C201.9 (5)C39—C40—C41—C42175.0 (4)
Ir1—C18—C19—C20176.1 (3)C40—C41—C42—C431.0 (6)
C21—N4—C20—F3177.2 (4)C41—C42—C43—C442.1 (5)
C21—N4—C20—C191.7 (7)C41—C42—C43—C45179.7 (3)
C18—C19—C20—N40.6 (7)C40—N5—C44—C432.3 (5)
C18—C19—C20—F3178.3 (4)Ir1—N5—C44—C43174.2 (2)
C20—N4—C21—F4179.1 (4)C42—C43—C44—N53.8 (5)
C20—N4—C21—C220.2 (6)C45—C43—C44—N5178.0 (3)
N4—C21—C22—C182.2 (6)C44—C43—C45—C46139.1 (4)
F4—C21—C22—C18178.5 (3)C42—C43—C45—C4639.0 (5)
N4—C21—C22—C23175.5 (4)C44—C43—C45—C5043.0 (5)
F4—C21—C22—C233.7 (6)C42—C43—C45—C50138.8 (4)
C19—C18—C22—C213.2 (5)C50—C45—C46—C470.2 (6)
Ir1—C18—C22—C21175.2 (3)C43—C45—C46—C47178.2 (4)
C19—C18—C22—C23174.8 (3)C45—C46—C47—C480.4 (6)
Ir1—C18—C22—C236.8 (4)C46—C47—C48—C490.6 (6)
C27—N3—C23—C241.6 (5)C47—C48—C49—C500.2 (6)
Ir1—N3—C23—C24178.2 (2)C48—C49—C50—C450.5 (6)
C27—N3—C23—C22177.4 (3)C48—C49—C50—C51176.9 (4)
Ir1—N3—C23—C222.9 (3)C46—C45—C50—C490.7 (5)
C21—C22—C23—N3179.7 (3)C43—C45—C50—C49178.5 (3)
C18—C22—C23—N32.5 (4)C46—C45—C50—C51176.5 (4)
C21—C22—C23—C241.5 (6)C43—C45—C50—C511.3 (6)
C18—C22—C23—C24176.3 (3)C52—C53—C54—C54i176.7 (15)
N3—C23—C24—C251.8 (5)Cl1ii—C55—Cl1—C55ii0.000 (1)
Symmetry codes: (i) x+1, y+1, z; (ii) x+1, y+2, z+1.
Hydrogen-bond geometry (Å, º) top
Cg3, Cg4 and Cg6 are the centroids of the N4/C18–C21, N5/C40–C44, and C45–C50 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C7—H7···F20.952.292.895 (5)121
C24—H24···F40.952.222.851 (4)123
C36—H36···F2iii0.952.413.245 (4)146
C41—H41···F60.952.322.917 (4)121
C44—H44···N30.952.503.112 (4)122
C46—H46···F3ii0.952.503.067 (5)119
C13—H13···Cg6iv0.952.983.777 (7)142
C55—H55A···Cg4ii0.992.963.326 (9)103
C55—H55B···Cg3ii0.993.003.718 (10)131
C55—H55B···Cg4ii0.992.783.326 (10)116
Symmetry codes: (ii) x+1, y+2, z+1; (iii) x+2, y+1, z+1; (iv) x+2, y+2, z+1.
 

Funding information

This study was supported by a 2017 Research Grant from Kangwon National University (No. 520170523).

References

First citationBrandenburg, K. (2010). DIAMOND. Crystal Impact GbR, Bonn, Germany.
First citationBruker (2014). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
First citationCho, H., Joo, C. W., Lee, J., Lee, H., Moon, J., Lee, J.-I., Lee, J. Y., Kang, Y. & Cho, N. S. (2016). Opt. Express, 24, 24161–24168.  Web of Science CrossRef PubMed
First citationJung, N., Lee, E., Kim, J., Park, H., Park, K.-M. & Kang, Y. (2012). Bull. Korean Chem. Soc. 33, 183–188.  Web of Science CSD CrossRef CAS
First citationKim, M., Oh, S., Kim, J., Park, K.-M. & Kang, Y. (2017). Dyes Pigments, 146, 386–391.  Web of Science CSD CrossRef CAS
First citationLee, C., Kim, J., Choi, J. M., Lee, J.-Y. & Kang, Y. (2017). Dyes Pigments, 137, 378–383.  Web of Science CrossRef CAS
First citationLee, C.-H., Moon, S.-H., Park, K.-M. & Kang, Y. (2016). Acta Cryst. E72, 1768–1770.  Web of Science CSD CrossRef IUCr Journals
First citationLee, J., Oh, H., Kim, J., Park, K.-M., Yook, K. S., Lee, J. Y. & Kang, Y. (2014). J. Mater. Chem. C. 2, 6040–6047.  Web of Science CSD CrossRef CAS
First citationMcArdle, P. (1995). J. Appl. Cryst. 28, 65.  CrossRef IUCr Journals
First citationOh, H., Park, K.-M., Hwang, H., Oh, S., Lee, J. H., Lu, J. S., Wang, S. & Kang, Y. (2013). Organometallics, 32, 6427–6436.  Web of Science CSD CrossRef CAS
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds