research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of 1-[2-(4-nitro­phen­yl)-4,5-di­phenyl-1H-imidazol-1-yl]propan-2-ol

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, University of Otago, PO Box 56, Dunedin, New Zealand, bFaculty of Science and Engineering, Health Care Division, Manchester Metropolitan University, Manchester M1 5GD, England, cChemistry Department, Faculty of Science, Minia University, 61519 El-Minia, Egypt, dPharmaceutical Chemistry Department, Faculty of Pharmacy, Al Azhar University, 71515 Assiut, Egypt, eChemistry Department, Faculty of Science, Sohag University, Sohag, Egypt, and fKirkuk University, College of Education, Department of Chemistry, Kirkuk, Iraq
*Correspondence e-mail: shaabankamel@yahoo.com

Edited by P. C. Healy, Griffith University, Australia (Received 21 July 2017; accepted 26 July 2017; online 30 August 2017)

The title compound, C24H21N3O3, crystallizes with two unique but closely r.m.s. overlay fit = 0.215 Å) comparable mol­ecules (1 and 2) in the asymmetric unit of the triclinic unit cell. In molecule 1, the dihedral angles between the central imidazlole ring and the benzene-ring substituents are 42.51 (9), 45.41 (9) and 56.92 (8)°, respectively. Comparable data for molecule 2 are 39.36 (10), 34.45 (11) and 60.34 (8)°, respectively. The rings at the 2-positions carry p-nitro substituents that subtend dihedral angles of 12.9 (4)° in mol­ecule 1 and 11.7 (4)° in mol­ecule 2 to their respective benzene ring planes. The imidazole rings also have propan-2-ol substituents on the 1-N atoms, which adopt extended conformations for the N—C—C—C chains. In the crystal, classical O—H⋯N hydrogen bonds combine with C—H⋯O, C—H⋯N and C—H⋯π(ring) hydrogen bonds and stack the molecules along the a-axis direction.

1. Chemical context

Imidazole compounds form the core of the structures of some well-known components of human organisms including the amino acid histidine, vitamin-B12, a component of the DNA base structure and the purines, histamine and biotin. It is also present in the structure of many natural or synthetic drug mol­ecules, for example cimetidine, azomycin and metronidazole (Kleeman et al., 1999[Kleeman, A., Engel, J., Kutscher, B. & Reichert, D. (1999). Pharmaceutical Substances, 3rd ed. 2286 pp. Stuttgart/New York: Thieme.]). Imidazole derivatives display an extensive range of biological activities and are thus used as anti­bacterial (Vijesh et al., 2011[Vijesh, A. M., Isloor, A. M., Telkar, S., Peethambar, S. K., Rai, S. & Isloor, N. (2011). Eur. J. Med. Chem. 46, 3531-3536.]; Lu, et al., 2012[Lu, X., Liu, X., Wan, B., Franzblau, S. G., Chen, L., Zhou, C. & You, Q. (2012). Eur. J. Med. Chem. 49, 164-171.]), anti­cancer (Yang et al., 2012[Yang, X., Wan, W., Deng, X., Li, Y., Yang, L., Li, L. & Zhang, H. (2012). Bioorg. Med. Chem. Lett. 22, 2726-2729.]; Alkahtani et al., 2012[Alkahtani, H. M., Abbas, A. Y. & Wang, S. (2012). Bioorg. Med. Chem. Lett. 22, 1317-1321.]), anti-tubercular (Lu, et al., 2012[Lu, X., Liu, X., Wan, B., Franzblau, S. G., Chen, L., Zhou, C. & You, Q. (2012). Eur. J. Med. Chem. 49, 164-171.]; Lee et al., 2011[Lee, S., Kim, S., Yun, M., Lee, Y., Cho, S., Oh, T. & Kim, P. (2011). Bioorg. Med. Chem. Lett. 21, 1515-1518.]), analgesic (Kankala et al., 2013[Kankala, S., Kankala, R. K., Gundepaka, P., Thota, N., Nerella, S., Gangula, M. R., Guguloth, H., Kagga, M., Vadde, R. & Vasam, C. S. (2013). Bioorg. Med. Chem. Lett. 23, 1306-1309.]; Gaba et al., 2010[Gaba, M., Singh, D., Singh, S., Sharma, V. & Gaba, P. (2010). Eur. J. Med. Chem. 45, 2245-2249.]) and anti-HIV agents (Zhan et al., 2009[Zhan, P., Liu, X., Zhu, J., Fang, Z., Li, Z., Pannecouque, C. & de Clercq, E. (2009). Bioorg. Med. Chem. 17, 5775-5781.]). As part of an ongoing study of the synthesis of imidazole-based amino aliphatic alcohols, e.g. amino ethanol and amino isopropanol (Akkurt et al., 2015[Akkurt, M., Jasinski, J. P., Mohamed, S. K., Marzouk, A. A. & Albayati, M. R. (2015). Acta Cryst. E71, o299-o300.]; Mohamed et al., 2013a[Mohamed, S. K., Akkurt, M., Marzouk, A. A., Abbasov, V. M. & Gurbanov, A. V. (2013a). Acta Cryst. E69, o474-o475.],b[Mohamed, S. K., Akkurt, M., Singh, K., Marzouk, A. A. & Abdelhamid, A. A. (2013b). Acta Cryst. E69, o1243.]; Jasinski et al., 2015[Jasinski, J. P., Mohamed, S. K., Akkurt, M., Abdelhamid, A. A. & Albayati, M. R. (2015). Acta Cryst. E71, o77-o78.]), we report here the synthesis and crystal structure of the title compound.

2. Structural commentary

The title compound, (I)[link], crystallizes with two unique mol­ecules, 1 and 2, in the asymmetric unit. In the numbering scheme these mol­ecules are differentiated by leading 1 and 2 digits, respectively, Fig. 1[link].

[Figure 1]
Figure 1
The asymmetric unit of (I)[link], with displacement ellipsoids drawn at the 50% probability level. Hydrogen bonds between the two unique molecules are shown as yellow dashed lines.

The unique mol­ecules form dimers in the asymmetric unit through O212—H210⋯N13 and C253—H253⋯O13 hydrogen bonds that enclose R22(18) rings, Fig. 1[link]. The two mol­ecules are closely similar and an overlay, Fig. 2[link] (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]), shows an r.m.s. deviation of 0.215 Å with relatively minor variations of the inclinations of the various substituents to the central imidazole rings.

[Scheme 1]
[Figure 2]
Figure 2
An overlay (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]) of the two mol­ecules. Mol­ecule 1 is drawn in yellow with mol­ecule 2 in blue.

The structure consists of a basic lophine, 2,4,5-triphenyl-1H-imidazole, skeleton (Yanover & Kaftory, 2009[Yanover, D. & Kaftory, M. (2009). Acta Cryst. E65, o711.]), with iso­propanol substituents on the N11 and N21 atoms of the central imidazole rings. The N–C3chains of these substituents are planar, with an N1—C11—C12—C13 torsion angle of 173.09 (19)° in molecule 1 and 171.0 (2)° in molecule 2; these planes are inclined to the imidazole ring planes by 74.96 (12) and 74.78 (12)°. respectively. The benzene rings are inclined to the imidazole ring plane at angles of 42.51 (9) and 39.36 (10)° for C121–C126 and C221–C226, 45.41 (9) and 34.45 (11)° for C141–C146 and C241–C246 and 56.92 (8) and 60.34 (8) for C151–C156 and C251–C256, values that further attest to the close similarities between the structures of the two unique mol­ecules. Bond lengths and angles in the two mol­ecules are also similar and compare well with those found in comparable mol­ecules with iso­propanol substituents at the 1-position (Jasinski et al., 2015[Jasinski, J. P., Mohamed, S. K., Akkurt, M., Abdelhamid, A. A. & Albayati, M. R. (2015). Acta Cryst. E71, o77-o78.]; Mohamed et al., 2017[Mohamed, S. K., Marzouk, A. A., Albayati, M. R., Abdelhamid, A. A. & Simpson, J. (2017). Acta Cryst. E73, 59-62.]; Akkurt et al., 2015[Akkurt, M., Jasinski, J. P., Mohamed, S. K., Marzouk, A. A. & Albayati, M. R. (2015). Acta Cryst. E71, o299-o300.]).

3. Supra­molecular features

In the crystal, classical O112—H11O⋯N23 and O212—H21O⋯N13 hydrogen bonds, Table 1[link], bolstered by weaker C155—H155⋯O22, C242—H242⋯O112 and C253—H253⋯O13 hydrogen bonds link type 1 and type 2 mol­ecules alternately in a head-to-tail fashion into C(8) chains along the b-axis direction, Fig. 3[link]. Chains of alternate mol­ecules also form along c, in this case head-to-head, due to C153—H153⋯Cg5 and C255—H255⋯Cg1 contacts (Cg1 and Cg5 are the centroids of the N11/C12/N13/C14/C15 and N21/C22/N23/C24/C25 rings, respectively) combined with C152—H152⋯O212, C153—H153⋯N21 and C256—H256⋯O112 hydrogen bonds, Fig. 4[link]. Chains exclusively of type 2 mol­ecules form along the third axial direction via C243—H243⋯O23 hydrogen bonds, forming C(13) chains along a, Fig. 5[link]. C145—H145⋯O22 hydrogen bonds link type 1 mol­ecules to these chains, stacking the mol­ecules along a. Overall, these numerous contacts generate layers of molecules of (I)[link] stacked along the a-axis direction, Fig. 6[link].

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 and Cg5 are the centroids of the N11/C12/N13/C14/C15 and N21/C22/N23/C24/C25 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
O212—H21O⋯N13 0.89 (4) 1.90 (4) 2.773 (2) 168 (3)
C253—H253⋯O13 0.95 2.69 3.491 (4) 143
O112—H11O⋯N23i 0.88 (4) 1.94 (4) 2.798 (2) 165 (3)
C155—H155⋯O22i 0.95 2.57 3.244 (3) 128
C152—H152⋯O212ii 0.95 2.66 3.263 (3) 122
C153—H153⋯N21ii 0.95 2.74 3.682 (3) 170
C243—H243⋯O23iii 0.95 2.59 3.542 (4) 176
C242—H242⋯O112iv 0.95 2.71 3.338 (3) 124
C256—H256⋯O112v 0.95 2.57 3.208 (3) 125
C145—H145⋯O22vi 0.95 2.58 3.439 (3) 151
C153—H153⋯Cg5ii 0.95 2.61 3.469 (2) 151
C255—H255⋯Cg1v 0.95 2.66 3.544 (3) 154
Symmetry codes: (i) x, y-1, z; (ii) -x+1, -y+1, -z+1; (iii) x-1, y, z; (iv) x, y+1, z; (v) -x+1, -y+1, -z+2; (vi) -x+2, -y+2, -z+1.
[Figure 3]
Figure 3
Zigzag chains of mol­ecules of (I)[link] along b. In this and subsequent Figures, hydrogen bonds are drawn as dashed lines.
[Figure 4]
Figure 4
Chains of mol­ecules of (I)[link] along c. C—H⋯π(ring) contacts are drawn as dotted green lines with ring centroids shown as coloured spheres.
[Figure 5]
Figure 5
Chains of type 2 mol­ecules of (I)[link] along a linked to type 2 mol­ecules, forming sheets in the ac plane.
[Figure 6]
Figure 6
Overall packing of (I)[link] viewed along the a-axis direction.

4. Database survey

The Cambridge Structural Database (Version 5.38 with three updates; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) shows that mol­ecules with the lophine skeleton and a CH2 substituent on N1 are reasonably common with 43 entries. However, restricting the search to compounds with iso­propanol substituents on N1 reduces the hits to three reports of our work to produce compounds with 4-benzoic acid (Jasinski et al., 2015[Jasinski, J. P., Mohamed, S. K., Akkurt, M., Abdelhamid, A. A. & Albayati, M. R. (2015). Acta Cryst. E71, o77-o78.]) and 4-chloro- (Mohamed et al., 2017[Mohamed, S. K., Marzouk, A. A., Albayati, M. R., Abdelhamid, A. A. & Simpson, J. (2017). Acta Cryst. E73, 59-62.]) and 2,5-di­chloro-substituents (Akkurt et al., 2015[Akkurt, M., Jasinski, J. P., Mohamed, S. K., Marzouk, A. A. & Albayati, M. R. (2015). Acta Cryst. E71, o299-o300.]) at the 2-position of the imidazole ring. A more recent paper, detailing the use of ionic liquids as catalysts for the preparations of similar compounds, also reports analogues with an unsubstituted phenyl ring and a 2,5-dimeth­oxy substituted benzene ring at the 2-positions (Marzouk et al. 2017[Marzouk, A. A., Abdelhamid, A. A., Mohamed, S. K. & Simpson, J. (2017). Z. Naturforsch. Teil B, 72, 23-33.]). Other closely related derivatives have ethanol (Mohamed et al., 2013a[Mohamed, S. K., Akkurt, M., Marzouk, A. A., Abbasov, V. M. & Gurbanov, A. V. (2013a). Acta Cryst. E69, o474-o475.]) and n-propanol substituents on the N1 atom (Mohamed et al., 2015[Mohamed, S. K., Simpson, J., Marzouk, A. A., Talybov, A. H., Abdelhamid, A. A., Abdullayev, Y. A. & Abbasov, V. M. (2015). Z. Naturforsch. Teil B, 70, 809-817.]).

5. Synthesis and crystallization

The title compound was prepared according to our previously reported method (Marzouk et al., 2017[Marzouk, A. A., Abdelhamid, A. A., Mohamed, S. K. & Simpson, J. (2017). Z. Naturforsch. Teil B, 72, 23-33.]). Crystals suitable for X-ray analysis were obtained by the slow evaporation method using ethanol as a solvent. M.p. 451–453 K, yield, 87%.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The hydrogen atoms of the OH groups on O112 and O212 were located in a difference-Fourier map and their coordinates refined with Uiso = 1.5Ueq (O). All other atoms were refined using a riding model with d(C—H) = 0.95 Å for aromatic, 1.00 Å for methine and 0.98 Å for CH2 atoms, all with Uiso(H) = 1.2Ueq(C). For methyl H atoms d(C—H) = 0.98 Å and Uiso(H) = 1.5Ueq(C). One low angle reflection with Fo << Fc that may have been affected by the beamstop was omitted from the final refinement cycles.

Table 2
Experimental details

Crystal data
Chemical formula C24H21N3O3
Mr 399.44
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 100
a, b, c (Å) 12.3070 (4), 13.2871 (4), 13.8499 (3)
α, β, γ (°) 90.907 (2), 100.748 (2), 109.938 (3)
V3) 2083.95 (11)
Z 4
Radiation type Cu Kα
μ (mm−1) 0.69
Crystal size (mm) 0.52 × 0.48 × 0.24
 
Data collection
Diffractometer Agilent SuperNova, Dual, Cu at zero, Atlas
Absorption correction Multi-scan (CrysAlis PRO; Agilent, 2014[Agilent (2014). CrysAlis PRO. Agilent Technologies, Yarnton, England.])
Tmin, Tmax 0.728, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 42589, 8686, 7364
Rint 0.090
(sin θ/λ)max−1) 0.630
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.072, 0.216, 1.09
No. of reflections 8686
No. of parameters 549
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.58, −0.39
Computer programs: CrysAlis PRO (Agilent, 2014[Agilent (2014). CrysAlis PRO. Agilent Technologies, Yarnton, England.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2014 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and TITAN (Hunter & Simpson, 1999[Hunter, K. A. & Simpson, J. (1999). TITAN2000. University of Otago, New Zealand.]), Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]), enCIFer (Allen et al., 2004[Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335-338.]), PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]), publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]) and WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

Supporting information


Computing details top

Data collection: CrysAlis PRO (Agilent, 2014); cell refinement: CrysAlis PRO (Agilent, 2014); data reduction: CrysAlis PRO (Agilent, 2014); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b) and TITAN (Hunter & Simpson, 1999); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015b), enCIFer (Allen et al., 2004), PLATON (Spek, 2009), publCIF (Westrip, 2010) and WinGX (Farrugia, 2012).

1-[2-(4-Nitrophenyl)-4,5-diphenyl-1H-imidazol-1-yl]propan-2-ol top
Crystal data top
C24H21N3O3Z = 4
Mr = 399.44F(000) = 840
Triclinic, P1Dx = 1.273 Mg m3
a = 12.3070 (4) ÅCu Kα radiation, λ = 1.54184 Å
b = 13.2871 (4) ÅCell parameters from 19318 reflections
c = 13.8499 (3) Åθ = 3.3–76.2°
α = 90.907 (2)°µ = 0.69 mm1
β = 100.748 (2)°T = 100 K
γ = 109.938 (3)°Block, yellow
V = 2083.95 (11) Å30.52 × 0.48 × 0.24 mm
Data collection top
Agilent SuperNova, Dual, Cu at zero, Atlas
diffractometer
8686 independent reflections
Radiation source: SuperNova (Cu) X-ray Source7364 reflections with I > 2σ(I)
Detector resolution: 5.1725 pixels mm-1Rint = 0.090
ω scansθmax = 76.4°, θmin = 3.3°
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2014)
h = 1515
Tmin = 0.728, Tmax = 1.000k = 1616
42589 measured reflectionsl = 1717
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.072H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.216 w = 1/[σ2(Fo2) + (0.1211P)2 + 1.8979P]
where P = (Fo2 + 2Fc2)/3
S = 1.09(Δ/σ)max < 0.001
8686 reflectionsΔρmax = 0.58 e Å3
549 parametersΔρmin = 0.39 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. One low angle reflection with Fo <<< Fc that may have been affected by the beamstop was omitted from the final refinement cycles.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N110.47399 (16)0.32171 (14)0.60492 (13)0.0183 (4)
C1110.39745 (19)0.21294 (16)0.56313 (16)0.0194 (4)
H11A0.38900.20910.49050.023*
H11B0.31810.19810.57790.023*
C1120.4456 (2)0.12685 (17)0.60368 (16)0.0208 (4)
H1120.52890.14580.59510.025*
O1120.44400 (15)0.12926 (13)0.70570 (11)0.0224 (3)
H11O0.451 (3)0.071 (3)0.731 (2)0.034*
C1130.3715 (2)0.01767 (19)0.54911 (19)0.0293 (5)
H11C0.39800.03780.58050.044*
H11D0.38040.01830.48020.044*
H11E0.28830.00220.55140.044*
C120.45419 (19)0.38744 (16)0.67156 (16)0.0180 (4)
C1210.35006 (19)0.36587 (17)0.71663 (16)0.0199 (4)
C1220.2969 (2)0.26889 (17)0.75549 (17)0.0218 (4)
H1220.32660.21200.75200.026*
C1230.2005 (2)0.25551 (18)0.79922 (18)0.0247 (5)
H1230.16500.19030.82690.030*
C1240.1573 (2)0.33862 (19)0.80183 (18)0.0259 (5)
N1240.0529 (2)0.32242 (18)0.84456 (19)0.0351 (5)
O120.0194 (2)0.24368 (19)0.89045 (18)0.0479 (6)
O130.00229 (19)0.38771 (18)0.8305 (2)0.0506 (6)
C1250.2084 (2)0.43608 (19)0.76456 (19)0.0268 (5)
H1250.17700.49200.76700.032*
C1260.3061 (2)0.44945 (18)0.72384 (18)0.0239 (5)
H1260.34420.51650.70030.029*
N130.54166 (16)0.48177 (14)0.68955 (13)0.0191 (4)
C140.62122 (19)0.47744 (17)0.63342 (16)0.0192 (4)
C1410.7291 (2)0.57016 (17)0.63058 (17)0.0212 (4)
C1420.8016 (2)0.62895 (18)0.71690 (18)0.0259 (5)
H1420.78160.61020.77880.031*
C1430.9035 (2)0.7153 (2)0.7129 (2)0.0315 (5)
H1430.95330.75470.77210.038*
C1440.9328 (2)0.74408 (19)0.6222 (2)0.0307 (5)
H1441.00240.80300.61960.037*
C1450.8599 (2)0.6864 (2)0.5359 (2)0.0297 (5)
H1450.87890.70610.47380.036*
C1460.7589 (2)0.59978 (19)0.54048 (18)0.0250 (5)
H1460.70960.56010.48120.030*
C150.58139 (19)0.37866 (17)0.58023 (16)0.0192 (4)
C1510.6379 (2)0.33771 (17)0.51106 (16)0.0200 (4)
C1520.5831 (2)0.30527 (17)0.41259 (16)0.0214 (4)
H1520.50490.30410.38950.026*
C1530.6425 (2)0.27454 (18)0.34782 (18)0.0254 (5)
H1530.60400.25120.28110.030*
C1540.7571 (2)0.2778 (2)0.37998 (19)0.0291 (5)
H1540.79750.25750.33540.035*
C1550.8127 (2)0.3108 (2)0.4775 (2)0.0308 (5)
H1550.89150.31340.49980.037*
C1560.7531 (2)0.34025 (19)0.54298 (17)0.0254 (5)
H1560.79150.36220.61000.030*
N210.53514 (16)0.84449 (14)0.89788 (13)0.0178 (4)
C2110.6129 (2)0.78650 (17)0.94029 (16)0.0211 (4)
H21A0.61960.78901.01270.025*
H21B0.69280.82310.92710.025*
C2120.5678 (2)0.66925 (18)0.89808 (16)0.0218 (4)
H2120.48330.63500.90340.026*
O2120.57451 (15)0.67128 (13)0.79728 (12)0.0247 (4)
H21O0.559 (3)0.606 (3)0.769 (3)0.037*
C2130.6397 (3)0.6084 (2)0.9554 (2)0.0331 (6)
H21C0.61280.53460.92520.050*
H21D0.62940.60731.02390.050*
H21E0.72340.64420.95400.050*
C220.55613 (19)0.92431 (16)0.83472 (16)0.0186 (4)
C2210.65812 (19)0.96701 (17)0.78737 (16)0.0193 (4)
C2220.6966 (2)1.07800 (18)0.77616 (17)0.0220 (4)
H2220.66121.12160.80400.026*
C2230.7853 (2)1.12438 (19)0.72527 (18)0.0242 (5)
H2230.81191.19940.71840.029*
C2240.8346 (2)1.05887 (19)0.68452 (17)0.0236 (5)
N2240.92519 (18)1.10743 (18)0.62720 (16)0.0287 (4)
O220.96751 (17)1.20609 (16)0.63188 (15)0.0366 (4)
O230.9549 (2)1.04823 (19)0.57759 (18)0.0479 (6)
C2250.7994 (2)0.94926 (19)0.69411 (17)0.0235 (5)
H2250.83480.90630.66530.028*
C2260.7115 (2)0.90354 (18)0.74671 (17)0.0224 (4)
H2260.68740.82880.75510.027*
N230.46808 (16)0.96207 (14)0.81808 (14)0.0192 (4)
C240.38696 (19)0.90515 (17)0.87159 (16)0.0198 (4)
C2410.27705 (19)0.92635 (17)0.87218 (17)0.0203 (4)
C2420.2189 (2)0.95697 (18)0.78775 (17)0.0225 (4)
H2420.25000.96400.72940.027*
C2430.1155 (2)0.97731 (18)0.7888 (2)0.0265 (5)
H2430.07640.99800.73090.032*
C2440.0689 (2)0.96790 (19)0.8728 (2)0.0299 (5)
H2440.00180.98190.87280.036*
C2450.1262 (2)0.9377 (2)0.9576 (2)0.0298 (5)
H2450.09460.93101.01570.036*
C2460.2299 (2)0.91744 (19)0.95732 (18)0.0258 (5)
H2460.26900.89741.01550.031*
C250.42676 (19)0.83105 (17)0.92131 (16)0.0188 (4)
C2510.3663 (2)0.74902 (17)0.98272 (16)0.0197 (4)
C2520.2548 (2)0.67459 (19)0.94172 (18)0.0255 (5)
H2520.22270.67370.87370.031*
C2530.1905 (2)0.6023 (2)0.9986 (2)0.0310 (5)
H2530.11470.55220.96970.037*
C2540.2371 (2)0.6029 (2)1.0986 (2)0.0306 (5)
H2540.19300.55371.13810.037*
C2550.3483 (2)0.6756 (2)1.13974 (18)0.0271 (5)
H2550.38070.67551.20760.032*
C2560.4129 (2)0.74873 (18)1.08274 (17)0.0226 (4)
H2560.48880.79861.11180.027*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N110.0253 (9)0.0140 (8)0.0201 (9)0.0118 (7)0.0059 (7)0.0034 (7)
C1110.0244 (10)0.0148 (9)0.0207 (10)0.0093 (8)0.0038 (8)0.0015 (8)
C1120.0305 (11)0.0165 (10)0.0200 (10)0.0135 (8)0.0061 (8)0.0021 (8)
O1120.0357 (9)0.0183 (7)0.0199 (8)0.0173 (7)0.0061 (6)0.0033 (6)
C1130.0416 (13)0.0169 (11)0.0304 (12)0.0128 (10)0.0050 (10)0.0001 (9)
C120.0248 (10)0.0135 (9)0.0193 (10)0.0109 (8)0.0052 (8)0.0018 (7)
C1210.0233 (10)0.0173 (10)0.0218 (10)0.0106 (8)0.0048 (8)0.0005 (8)
C1220.0272 (11)0.0151 (10)0.0270 (11)0.0113 (8)0.0080 (9)0.0017 (8)
C1230.0284 (11)0.0194 (10)0.0277 (11)0.0082 (9)0.0091 (9)0.0015 (9)
C1240.0248 (11)0.0242 (11)0.0312 (12)0.0099 (9)0.0101 (9)0.0026 (9)
N1240.0310 (11)0.0307 (11)0.0463 (13)0.0090 (9)0.0183 (10)0.0043 (10)
O120.0452 (12)0.0458 (12)0.0606 (14)0.0141 (10)0.0324 (11)0.0132 (10)
O130.0404 (11)0.0397 (12)0.0850 (18)0.0215 (9)0.0314 (11)0.0010 (11)
C1250.0303 (12)0.0203 (11)0.0356 (13)0.0145 (9)0.0104 (10)0.0013 (9)
C1260.0305 (11)0.0164 (10)0.0288 (11)0.0118 (9)0.0088 (9)0.0025 (8)
N130.0259 (9)0.0143 (8)0.0212 (9)0.0107 (7)0.0080 (7)0.0025 (7)
C140.0257 (10)0.0165 (10)0.0198 (10)0.0123 (8)0.0060 (8)0.0031 (8)
C1410.0259 (10)0.0155 (10)0.0277 (11)0.0123 (8)0.0087 (9)0.0036 (8)
C1420.0323 (12)0.0196 (11)0.0281 (12)0.0108 (9)0.0089 (9)0.0009 (9)
C1430.0321 (12)0.0222 (11)0.0398 (14)0.0090 (10)0.0080 (11)0.0041 (10)
C1440.0280 (12)0.0204 (11)0.0485 (15)0.0096 (9)0.0172 (11)0.0038 (10)
C1450.0340 (12)0.0254 (12)0.0382 (13)0.0150 (10)0.0187 (11)0.0098 (10)
C1460.0308 (11)0.0220 (11)0.0270 (11)0.0129 (9)0.0098 (9)0.0046 (9)
C150.0249 (10)0.0163 (10)0.0203 (10)0.0119 (8)0.0051 (8)0.0043 (8)
C1510.0283 (11)0.0144 (9)0.0234 (10)0.0133 (8)0.0088 (9)0.0048 (8)
C1520.0275 (11)0.0167 (10)0.0229 (11)0.0110 (8)0.0059 (9)0.0028 (8)
C1530.0375 (12)0.0181 (10)0.0243 (11)0.0133 (9)0.0087 (9)0.0004 (8)
C1540.0421 (14)0.0264 (12)0.0300 (12)0.0218 (10)0.0156 (10)0.0025 (9)
C1550.0335 (12)0.0344 (13)0.0355 (13)0.0240 (11)0.0101 (10)0.0058 (10)
C1560.0314 (12)0.0273 (11)0.0237 (11)0.0186 (9)0.0049 (9)0.0040 (9)
N210.0241 (9)0.0145 (8)0.0189 (8)0.0117 (7)0.0048 (7)0.0007 (7)
C2110.0283 (11)0.0187 (10)0.0216 (10)0.0163 (9)0.0027 (8)0.0011 (8)
C2120.0310 (11)0.0184 (10)0.0215 (10)0.0146 (9)0.0067 (9)0.0025 (8)
O2120.0402 (9)0.0160 (7)0.0231 (8)0.0148 (7)0.0092 (7)0.0009 (6)
C2130.0511 (15)0.0275 (12)0.0315 (13)0.0284 (12)0.0065 (11)0.0046 (10)
C220.0260 (10)0.0125 (9)0.0204 (10)0.0108 (8)0.0049 (8)0.0001 (7)
C2210.0218 (10)0.0197 (10)0.0199 (10)0.0122 (8)0.0032 (8)0.0010 (8)
C2220.0260 (11)0.0201 (10)0.0241 (11)0.0132 (8)0.0055 (8)0.0019 (8)
C2230.0265 (11)0.0207 (10)0.0280 (11)0.0115 (9)0.0054 (9)0.0055 (9)
C2240.0228 (10)0.0279 (12)0.0240 (11)0.0137 (9)0.0048 (8)0.0060 (9)
N2240.0281 (10)0.0347 (11)0.0289 (10)0.0159 (9)0.0093 (8)0.0099 (9)
O220.0342 (9)0.0351 (10)0.0410 (11)0.0093 (8)0.0134 (8)0.0129 (8)
O230.0586 (13)0.0499 (13)0.0568 (14)0.0314 (11)0.0390 (11)0.0159 (11)
C2250.0264 (11)0.0251 (11)0.0249 (11)0.0160 (9)0.0064 (9)0.0028 (9)
C2260.0278 (11)0.0190 (10)0.0250 (11)0.0141 (9)0.0055 (9)0.0022 (8)
N230.0245 (9)0.0161 (8)0.0221 (9)0.0129 (7)0.0061 (7)0.0017 (7)
C240.0257 (10)0.0181 (10)0.0197 (10)0.0125 (8)0.0055 (8)0.0001 (8)
C2410.0248 (10)0.0141 (9)0.0260 (11)0.0112 (8)0.0070 (8)0.0004 (8)
C2420.0240 (10)0.0191 (10)0.0275 (11)0.0107 (8)0.0065 (9)0.0033 (8)
C2430.0244 (11)0.0196 (10)0.0388 (13)0.0126 (9)0.0046 (9)0.0032 (9)
C2440.0261 (11)0.0218 (11)0.0464 (15)0.0127 (9)0.0110 (10)0.0016 (10)
C2450.0348 (13)0.0279 (12)0.0353 (13)0.0172 (10)0.0164 (10)0.0003 (10)
C2460.0339 (12)0.0241 (11)0.0266 (11)0.0175 (9)0.0098 (9)0.0015 (9)
C250.0253 (10)0.0162 (9)0.0188 (10)0.0123 (8)0.0041 (8)0.0021 (8)
C2510.0286 (11)0.0165 (10)0.0204 (10)0.0144 (8)0.0082 (8)0.0019 (8)
C2520.0301 (11)0.0233 (11)0.0257 (11)0.0128 (9)0.0057 (9)0.0001 (9)
C2530.0321 (12)0.0240 (12)0.0392 (14)0.0112 (10)0.0104 (10)0.0030 (10)
C2540.0412 (13)0.0238 (11)0.0394 (14)0.0201 (10)0.0211 (11)0.0133 (10)
C2550.0420 (13)0.0282 (12)0.0244 (11)0.0255 (10)0.0136 (10)0.0095 (9)
C2560.0319 (11)0.0205 (10)0.0225 (11)0.0176 (9)0.0066 (9)0.0018 (8)
Geometric parameters (Å, º) top
N11—C121.370 (3)N21—C221.372 (3)
N11—C151.390 (3)N21—C251.385 (3)
N11—C1111.467 (3)N21—C2111.471 (3)
C111—C1121.527 (3)C211—C2121.529 (3)
C111—H11A0.9900C211—H21A0.9900
C111—H11B0.9900C211—H21B0.9900
C112—O1121.417 (3)C212—O2121.414 (3)
C112—C1131.521 (3)C212—C2131.521 (3)
C112—H1121.0000C212—H2121.0000
O112—H11O0.88 (4)O212—H21O0.89 (4)
C113—H11C0.9800C213—H21C0.9800
C113—H11D0.9800C213—H21D0.9800
C113—H11E0.9800C213—H21E0.9800
C12—N131.327 (3)C22—N231.327 (3)
C12—C1211.472 (3)C22—C2211.470 (3)
C121—C1221.399 (3)C221—C2261.400 (3)
C121—C1261.401 (3)C221—C2221.408 (3)
C122—C1231.389 (3)C222—C2231.382 (3)
C122—H1220.9500C222—H2220.9500
C123—C1241.382 (3)C223—C2241.384 (3)
C123—H1230.9500C223—H2230.9500
C124—C1251.388 (3)C224—C2251.387 (3)
C124—N1241.465 (3)C224—N2241.465 (3)
N124—O121.222 (3)N224—O231.224 (3)
N124—O131.228 (3)N224—O221.230 (3)
C125—C1261.381 (3)C225—C2261.390 (3)
C125—H1250.9500C225—H2250.9500
C126—H1260.9500C226—H2260.9500
N13—C141.374 (3)N23—C241.377 (3)
C14—C151.379 (3)C24—C251.381 (3)
C14—C1411.479 (3)C24—C2411.474 (3)
C141—C1421.391 (3)C241—C2421.395 (3)
C141—C1461.391 (3)C241—C2461.398 (3)
C142—C1431.392 (3)C242—C2431.391 (3)
C142—H1420.9500C242—H2420.9500
C143—C1441.394 (4)C243—C2441.380 (4)
C143—H1430.9500C243—H2430.9500
C144—C1451.387 (4)C244—C2451.391 (4)
C144—H1440.9500C244—H2440.9500
C145—C1461.389 (3)C245—C2461.392 (3)
C145—H1450.9500C245—H2450.9500
C146—H1460.9500C246—H2460.9500
C15—C1511.479 (3)C25—C2511.475 (3)
C151—C1521.393 (3)C251—C2521.397 (3)
C151—C1561.394 (3)C251—C2561.398 (3)
C152—C1531.394 (3)C252—C2531.381 (4)
C152—H1520.9500C252—H2520.9500
C153—C1541.383 (4)C253—C2541.395 (4)
C153—H1530.9500C253—H2530.9500
C154—C1551.384 (4)C254—C2551.386 (4)
C154—H1540.9500C254—H2540.9500
C155—C1561.395 (3)C255—C2561.390 (3)
C155—H1550.9500C255—H2550.9500
C156—H1560.9500C256—H2560.9500
C12—N11—C15107.00 (18)C22—N21—C25107.17 (17)
C12—N11—C111128.14 (18)C22—N21—C211128.44 (18)
C15—N11—C111124.83 (18)C25—N21—C211124.28 (18)
N11—C111—C112112.57 (17)N21—C211—C212112.49 (18)
N11—C111—H11A109.1N21—C211—H21A109.1
C112—C111—H11A109.1C212—C211—H21A109.1
N11—C111—H11B109.1N21—C211—H21B109.1
C112—C111—H11B109.1C212—C211—H21B109.1
H11A—C111—H11B107.8H21A—C211—H21B107.8
O112—C112—C113112.54 (18)O212—C212—C213113.03 (19)
O112—C112—C111106.18 (17)O212—C212—C211106.32 (17)
C113—C112—C111110.42 (18)C213—C212—C211110.40 (19)
O112—C112—H112109.2O212—C212—H212109.0
C113—C112—H112109.2C213—C212—H212109.0
C111—C112—H112109.2C211—C212—H212109.0
C112—O112—H11O111 (2)C212—O212—H21O112 (2)
C112—C113—H11C109.5C212—C213—H21C109.5
C112—C113—H11D109.5C212—C213—H21D109.5
H11C—C113—H11D109.5H21C—C213—H21D109.5
C112—C113—H11E109.5C212—C213—H21E109.5
H11C—C113—H11E109.5H21C—C213—H21E109.5
H11D—C113—H11E109.5H21D—C213—H21E109.5
N13—C12—N11110.95 (19)N23—C22—N21110.80 (19)
N13—C12—C121121.03 (19)N23—C22—C221120.87 (19)
N11—C12—C121127.94 (19)N21—C22—C221128.32 (18)
C122—C121—C126119.1 (2)C226—C221—C222119.1 (2)
C122—C121—C12123.53 (19)C226—C221—C22124.2 (2)
C126—C121—C12117.30 (19)C222—C221—C22116.45 (19)
C123—C122—C121120.2 (2)C223—C222—C221120.9 (2)
C123—C122—H122119.9C223—C222—H222119.5
C121—C122—H122119.9C221—C222—H222119.5
C124—C123—C122118.9 (2)C222—C223—C224118.4 (2)
C124—C123—H123120.6C222—C223—H223120.8
C122—C123—H123120.6C224—C223—H223120.8
C123—C124—C125122.4 (2)C223—C224—C225122.5 (2)
C123—C124—N124118.6 (2)C223—C224—N224118.3 (2)
C125—C124—N124119.0 (2)C225—C224—N224119.2 (2)
O12—N124—O13123.5 (2)O23—N224—O22123.5 (2)
O12—N124—C124118.4 (2)O23—N224—C224118.6 (2)
O13—N124—C124118.1 (2)O22—N224—C224117.8 (2)
C126—C125—C124118.1 (2)C224—C225—C226118.7 (2)
C126—C125—H125120.9C224—C225—H225120.6
C124—C125—H125120.9C226—C225—H225120.6
C125—C126—C121121.2 (2)C225—C226—C221120.3 (2)
C125—C126—H126119.4C225—C226—H226119.8
C121—C126—H126119.4C221—C226—H226119.8
C12—N13—C14106.47 (18)C22—N23—C24106.57 (18)
N13—C14—C15109.86 (19)N23—C24—C25109.58 (19)
N13—C14—C141122.40 (19)N23—C24—C241122.00 (19)
C15—C14—C141127.7 (2)C25—C24—C241128.4 (2)
C142—C141—C146119.1 (2)C242—C241—C246118.8 (2)
C142—C141—C14121.0 (2)C242—C241—C24120.4 (2)
C146—C141—C14119.9 (2)C246—C241—C24120.8 (2)
C141—C142—C143120.2 (2)C243—C242—C241120.2 (2)
C141—C142—H142119.9C243—C242—H242119.9
C143—C142—H142119.9C241—C242—H242119.9
C142—C143—C144120.2 (2)C244—C243—C242120.9 (2)
C142—C143—H143119.9C244—C243—H243119.6
C144—C143—H143119.9C242—C243—H243119.6
C145—C144—C143119.7 (2)C243—C244—C245119.5 (2)
C145—C144—H144120.1C243—C244—H244120.3
C143—C144—H144120.1C245—C244—H244120.3
C144—C145—C146119.8 (2)C244—C245—C246120.1 (2)
C144—C145—H145120.1C244—C245—H245120.0
C146—C145—H145120.1C246—C245—H245120.0
C145—C146—C141121.0 (2)C245—C246—C241120.6 (2)
C145—C146—H146119.5C245—C246—H246119.7
C141—C146—H146119.5C241—C246—H246119.7
C14—C15—N11105.72 (19)C24—C25—N21105.88 (19)
C14—C15—C151128.9 (2)C24—C25—C251128.6 (2)
N11—C15—C151125.36 (19)N21—C25—C251125.49 (18)
C152—C151—C156118.9 (2)C252—C251—C256118.8 (2)
C152—C151—C15121.9 (2)C252—C251—C25118.9 (2)
C156—C151—C15119.0 (2)C256—C251—C25122.0 (2)
C151—C152—C153120.2 (2)C253—C252—C251121.0 (2)
C151—C152—H152119.9C253—C252—H252119.5
C153—C152—H152119.9C251—C252—H252119.5
C154—C153—C152120.5 (2)C252—C253—C254119.9 (2)
C154—C153—H153119.8C252—C253—H253120.1
C152—C153—H153119.7C254—C253—H253120.1
C153—C154—C155119.7 (2)C255—C254—C253119.6 (2)
C153—C154—H154120.2C255—C254—H254120.2
C155—C154—H154120.2C253—C254—H254120.2
C154—C155—C156120.1 (2)C254—C255—C256120.6 (2)
C154—C155—H155119.9C254—C255—H255119.7
C156—C155—H155119.9C256—C255—H255119.7
C151—C156—C155120.6 (2)C255—C256—C251120.1 (2)
C151—C156—H156119.7C255—C256—H256120.0
C155—C156—H156119.7C251—C256—H256120.0
C12—N11—C111—C112107.9 (2)C22—N21—C211—C212110.1 (2)
C15—N11—C111—C11274.2 (2)C25—N21—C211—C21274.3 (3)
N11—C111—C112—O11264.7 (2)N21—C211—C212—O21266.0 (2)
N11—C111—C112—C113173.05 (19)N21—C211—C212—C213171.0 (2)
C15—N11—C12—N130.4 (2)C25—N21—C22—N230.6 (2)
C111—N11—C12—N13177.80 (18)C211—N21—C22—N23175.67 (19)
C15—N11—C12—C121177.1 (2)C25—N21—C22—C221178.8 (2)
C111—N11—C12—C1211.1 (3)C211—N21—C22—C2214.9 (3)
N13—C12—C121—C122138.1 (2)N23—C22—C221—C226137.8 (2)
N11—C12—C121—C12245.5 (3)N21—C22—C221—C22641.5 (3)
N13—C12—C121—C12639.2 (3)N23—C22—C221—C22236.9 (3)
N11—C12—C121—C126137.1 (2)N21—C22—C221—C222143.8 (2)
C126—C121—C122—C1231.0 (3)C226—C221—C222—C2230.4 (3)
C12—C121—C122—C123178.3 (2)C22—C221—C222—C223174.5 (2)
C121—C122—C123—C1241.2 (4)C221—C222—C223—C2240.7 (3)
C122—C123—C124—C1251.7 (4)C222—C223—C224—C2250.9 (4)
C122—C123—C124—N124177.6 (2)C222—C223—C224—N224177.6 (2)
C123—C124—N124—O1211.7 (4)C223—C224—N224—O23168.0 (2)
C125—C124—N124—O12169.0 (3)C225—C224—N224—O2310.5 (3)
C123—C124—N124—O13166.8 (3)C223—C224—N224—O2212.1 (3)
C125—C124—N124—O1312.5 (4)C225—C224—N224—O22169.3 (2)
C123—C124—C125—C1260.2 (4)C223—C224—C225—C2260.0 (4)
N124—C124—C125—C126179.5 (2)N224—C224—C225—C226178.5 (2)
C124—C125—C126—C1212.4 (4)C224—C225—C226—C2211.2 (3)
C122—C121—C126—C1252.9 (4)C222—C221—C226—C2251.4 (3)
C12—C121—C126—C125179.6 (2)C22—C221—C226—C225173.1 (2)
N11—C12—N13—C140.3 (2)N21—C22—N23—C240.2 (2)
C121—C12—N13—C14177.24 (19)C221—C22—N23—C24179.24 (19)
C12—N13—C14—C150.0 (2)C22—N23—C24—C250.3 (2)
C12—N13—C14—C141177.4 (2)C22—N23—C24—C241179.2 (2)
N13—C14—C141—C14246.6 (3)N23—C24—C241—C24234.5 (3)
C15—C14—C141—C142136.5 (2)C25—C24—C241—C242146.2 (2)
N13—C14—C141—C146133.2 (2)N23—C24—C241—C246144.8 (2)
C15—C14—C141—C14643.6 (3)C25—C24—C241—C24634.5 (3)
C146—C141—C142—C1430.9 (3)C246—C241—C242—C2430.5 (3)
C14—C141—C142—C143179.3 (2)C24—C241—C242—C243179.7 (2)
C141—C142—C143—C1440.7 (4)C241—C242—C243—C2440.1 (3)
C142—C143—C144—C1450.1 (4)C242—C243—C244—C2450.0 (4)
C143—C144—C145—C1460.7 (4)C243—C244—C245—C2460.1 (4)
C144—C145—C146—C1410.5 (4)C244—C245—C246—C2410.4 (4)
C142—C141—C146—C1450.3 (3)C242—C241—C246—C2450.6 (3)
C14—C141—C146—C145179.9 (2)C24—C241—C246—C245179.9 (2)
N13—C14—C15—N110.2 (2)N23—C24—C25—N210.6 (2)
C141—C14—C15—N11177.0 (2)C241—C24—C25—N21178.8 (2)
N13—C14—C15—C151179.5 (2)N23—C24—C25—C251176.2 (2)
C141—C14—C15—C1513.4 (4)C241—C24—C25—C2514.4 (4)
C12—N11—C15—C140.4 (2)C22—N21—C25—C240.7 (2)
C111—N11—C15—C14177.92 (18)C211—N21—C25—C24175.74 (19)
C12—N11—C15—C151179.31 (19)C22—N21—C25—C251176.2 (2)
C111—N11—C15—C1512.4 (3)C211—N21—C25—C2517.3 (3)
C14—C15—C151—C152120.2 (3)C24—C25—C251—C25256.1 (3)
N11—C15—C151—C15260.2 (3)N21—C25—C251—C252120.1 (2)
C14—C15—C151—C15654.2 (3)C24—C25—C251—C256118.7 (3)
N11—C15—C151—C156125.4 (2)N21—C25—C251—C25665.1 (3)
C156—C151—C152—C1530.9 (3)C256—C251—C252—C2530.6 (3)
C15—C151—C152—C153175.3 (2)C25—C251—C252—C253174.4 (2)
C151—C152—C153—C1541.2 (3)C251—C252—C253—C2540.1 (4)
C152—C153—C154—C1550.7 (4)C252—C253—C254—C2550.6 (4)
C153—C154—C155—C1560.2 (4)C253—C254—C255—C2560.9 (3)
C152—C151—C156—C1550.0 (3)C254—C255—C256—C2510.4 (3)
C15—C151—C156—C155174.6 (2)C252—C251—C256—C2550.3 (3)
C154—C155—C156—C1510.5 (4)C25—C251—C256—C255174.50 (19)
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg5 are the centroids of the N11/C12/N13/C14/C15 and N21/C22/N23/C24/C25 rings, respectively.
D—H···AD—HH···AD···AD—H···A
O212—H21O···N130.89 (4)1.90 (4)2.773 (2)168 (3)
C253—H253···O130.952.693.491 (4)143
O112—H11O···N23i0.88 (4)1.94 (4)2.798 (2)165 (3)
C155—H155···O22i0.952.573.244 (3)128
C152—H152···O212ii0.952.663.263 (3)122
C153—H153···N21ii0.952.743.682 (3)170
C243—H243···O23iii0.952.593.542 (4)176
C242—H242···O112iv0.952.713.338 (3)124
C256—H256···O112v0.952.573.208 (3)125
C145—H145···O22vi0.952.583.439 (3)151
C153—H153···Cg5ii0.952.613.469 (2)151
C255—H255···Cg1v0.952.663.544 (3)154
Symmetry codes: (i) x, y1, z; (ii) x+1, y+1, z+1; (iii) x1, y, z; (iv) x, y+1, z; (v) x+1, y+1, z+2; (vi) x+2, y+2, z+1.
 

Acknowledgements

We thank the University of Otago for the purchase of the diffractometer. We also thank the Department of Chemistry, University of Otago for the support of the work of JS.

References

First citationAgilent (2014). CrysAlis PRO. Agilent Technologies, Yarnton, England.  Google Scholar
First citationAkkurt, M., Jasinski, J. P., Mohamed, S. K., Marzouk, A. A. & Albayati, M. R. (2015). Acta Cryst. E71, o299–o300.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAlkahtani, H. M., Abbas, A. Y. & Wang, S. (2012). Bioorg. Med. Chem. Lett. 22, 1317–1321.  CrossRef CAS PubMed Google Scholar
First citationAllen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335–338.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGaba, M., Singh, D., Singh, S., Sharma, V. & Gaba, P. (2010). Eur. J. Med. Chem. 45, 2245–2249.  CrossRef CAS PubMed Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHunter, K. A. & Simpson, J. (1999). TITAN2000. University of Otago, New Zealand.  Google Scholar
First citationJasinski, J. P., Mohamed, S. K., Akkurt, M., Abdelhamid, A. A. & Albayati, M. R. (2015). Acta Cryst. E71, o77–o78.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKankala, S., Kankala, R. K., Gundepaka, P., Thota, N., Nerella, S., Gangula, M. R., Guguloth, H., Kagga, M., Vadde, R. & Vasam, C. S. (2013). Bioorg. Med. Chem. Lett. 23, 1306–1309.  CrossRef CAS PubMed Google Scholar
First citationKleeman, A., Engel, J., Kutscher, B. & Reichert, D. (1999). Pharmaceutical Substances, 3rd ed. 2286 pp. Stuttgart/New York: Thieme.  Google Scholar
First citationLee, S., Kim, S., Yun, M., Lee, Y., Cho, S., Oh, T. & Kim, P. (2011). Bioorg. Med. Chem. Lett. 21, 1515–1518.  CrossRef CAS PubMed Google Scholar
First citationLu, X., Liu, X., Wan, B., Franzblau, S. G., Chen, L., Zhou, C. & You, Q. (2012). Eur. J. Med. Chem. 49, 164–171.  CrossRef CAS PubMed Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMarzouk, A. A., Abdelhamid, A. A., Mohamed, S. K. & Simpson, J. (2017). Z. Naturforsch. Teil B, 72, 23–33.  CAS Google Scholar
First citationMohamed, S. K., Akkurt, M., Marzouk, A. A., Abbasov, V. M. & Gurbanov, A. V. (2013a). Acta Cryst. E69, o474–o475.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationMohamed, S. K., Akkurt, M., Singh, K., Marzouk, A. A. & Abdelhamid, A. A. (2013b). Acta Cryst. E69, o1243.  CSD CrossRef IUCr Journals Google Scholar
First citationMohamed, S. K., Marzouk, A. A., Albayati, M. R., Abdelhamid, A. A. & Simpson, J. (2017). Acta Cryst. E73, 59–62.  CrossRef IUCr Journals Google Scholar
First citationMohamed, S. K., Simpson, J., Marzouk, A. A., Talybov, A. H., Abdelhamid, A. A., Abdullayev, Y. A. & Abbasov, V. M. (2015). Z. Naturforsch. Teil B, 70, 809–817.  CAS Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVijesh, A. M., Isloor, A. M., Telkar, S., Peethambar, S. K., Rai, S. & Isloor, N. (2011). Eur. J. Med. Chem. 46, 3531–3536.  Web of Science CrossRef CAS PubMed Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYang, X., Wan, W., Deng, X., Li, Y., Yang, L., Li, L. & Zhang, H. (2012). Bioorg. Med. Chem. Lett. 22, 2726–2729.  CrossRef CAS PubMed Google Scholar
First citationYanover, D. & Kaftory, M. (2009). Acta Cryst. E65, o711.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhan, P., Liu, X., Zhu, J., Fang, Z., Li, Z., Pannecouque, C. & de Clercq, E. (2009). Bioorg. Med. Chem. 17, 5775–5781.  CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds