research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structures of (2E)-1-(3-bromo­thio­phen-2-yl)-3-(2-meth­­oxy­phen­yl)prop-2-en-1-one and (2E)-1-(3-bromo­thio­phen-2-yl)-3-(3,4-di­meth­­oxy­phen­yl)prop-2-en-1-one

aDepartment of Physics, Government First Grade College, Kumta 581 343, India, Research and Development Centre, Bharathiar University, Coimbatore 641 046, India, bDepartment of Physics, Gokhale Centenary College, Ankola 581 314, India, Research and Development Centre, Bharathiar University, Coimbatore 641 046, India, cDepartment of Chemistry, Keene State College, 229 Main Street, Keene, NH 03435-2001, USA, and dDepartment of Studies in Chemistry, University of Mysore, Manasagangotri, Mysuru 570 006, India
*Correspondence e-mail: jpjasinski@keene.edu

Edited by P. C. Healy, Griffith University, Australia (Received 23 June 2015; accepted 13 July 2015; online 25 July 2015)

In the mol­ecules of the title compounds, (2E)-1-(3-bromo-thio­phen-2-yl)-3-(2-meth­oxy­phen­yl)prop-2-en-1-one, C14H11BrO2S, (I), which crystallizes in the space group P-1 with four independent mol­ecules in the asymmetric unit (Z′ = 8), and (2E)-1-(3-bromo­thio­phen-2-yl)-3-(3,4-di­meth­oxy­phen­yl)prop-2-en-1-one, C15H13BrO3S, (II), which crystallizes with Z′ = 8 in the space group I2/a, the non-H atoms are nearly coplanar. The mol­ecules of (I) pack with inversion symmetry stacked diagonally along the a-axis direction. Weak C—H⋯Br intra­molecular inter­actions in each of the four mol­ecules in the asymmetric unit are observed. In (II), weak C—H⋯O, bifurcated three-center inter­molecular inter­actions forming dimers along with weak C—H⋯π and ππ stacking inter­actions are observed, linking the mol­ecules into sheets along [001]. A weak C—H⋯Br intra­molecular inter­action is also present. There are no classical hydrogen bonds present in either structure.

1. Chemical context

Chalcones are known for their inter­esting pharmacological activities (Di Carlo et al., 1999[Di Carlo, G., Mascolo, N., Izzo, A. A. & Capasso, F. (1999). Life Sci. 65, 337-353.]). A review on the bioactivities of chalcones has been published (Dimmock et al., 1999[Dimmock, J. R., Elias, D. W., Beazely, M. A. & Kandepu, N. M. (1999). Curr. Med. Chem. 6, 1125-1149.]). Chalcones and their heterocyclic analogs as potential anti­fungal chemotherapeutic agents have been reported (Opletalová & Sedivý, 1999[Opletalová, V. & Sedivý, D. (1999). Ceska Slov. Farm. 48, 252-255.]). Chalcones and flavonoids as anti-tuberculosis agents are reported (Lin et al., 2002[Lin, Y. M., Zhou, Y., Flavin, M. T., Zhou, L. M., Nie, W. & Chen, F. C. (2002). Bioorg. Med. Chem. 10, 2795-2802.]). Also, chalcones are recognized material in the photonic industry because of their excellent blue-light transmittance and good crystallizability properties (Goto et al. 1991[Goto, Y., Hayashi, A., Kimura, Y. & Nakayama, M. (1991). J. Cryst. Growth, 108, 688-698.]; Indira et al., 2002[Indira, J., Karat, P. P. & Sarojini, B. K. (2002). J. Cryst. Growth, 242, 209-214.]; Sarojini et al., 2006[Sarojini, B. K., Narayana, B., Ashalatha, B. V., Indira, J. & Lobo, K. G. (2006). J. Cryst. Growth, 295, 54-59.]). 2-Acetyl-3-bromo­thio­phene is one of the well-known bio-active inter­mediates, and chalcones of 2-acetyl-3-bromo­thio­phene exhibit promising anti-inflammatory, analgesic and anti­bacterial activities (Ashalatha, et al. 2009[Ashalatha, B. V., Narayana, B. & Vijaya Raj, K. K. (2009). Phosphorus Sulfur Silicon, 184, 1904-1919.]).

Here we report the crystal structures of two new chalcones, namely (2E)-1-(3-bromo-2-thio­phen-2-yl)-3-(2-meth­oxy­phen­yl)prop-2-en-1-one, C14H11BrO2S, (I)[link] (Fig. 1[link]) and (2E)-1-(3-bromo-2-thio­phen-2-yl)-3-(3,4-di­meth­oxy­phen­yl)prop-2-en-1-one, C15H13BrO3S, (II)[link] (Fig. 2[link]). Compounds (I)[link] and (II)[link] are of the general type PC3H2OR and QC3H2OR where P represents the 2-meth­oxy­phenyl unit in (I)[link], Q represents the 3,4-dimeth­oxy unit in (II)[link] and R the 3-bromo­[thio­phenyl unit in (I)[link] and (II)[link]. The mol­ecular constitutions of compounds (I)[link] and (II)[link] differ only in the number of the meth­oxy­phenyl substituents, whereby (I)[link] contains only one, P unit, at an ortho position, and (II)[link] contains two, Q, units at the meta and para positions of the phenyl ring.

[Scheme 1]
[Figure 1]
Figure 1
The mol­ecular structure of title compound (I)[link], C14H11BrO2S, showing the atom-labelling scheme with 30% probability displacement ellipsoids.
[Figure 2]
Figure 2
The mol­ecular structure of title compound (II)[link], C15H13BrO3S, showing the atom-labelling scheme with 30% probability displacement ellipsoids.

2. Structural commentary

The structure of C14H11BrO2S, (I)[link], has triclinic (P[\overline{1}]) symmetry, while in (II)[link], C15H13BrO3S, it crystallizes in the monoclinic, I2/a space group. In (I)[link], four independent mol­ecules (A, B, C, D) crystallize in the asymmetric unit (Z′ = 8) (Fig. 1[link]), while only one mol­ecule (Z′ = 8) is present in (II)[link] (Fig. 2[link]). A search for possible additional crystallographic symmetry or pseudosymmetry in compound (II)[link] (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) produced none, while in compound (I)[link] there was indication of the possibility of either P[\overline{1}] symmetry with the a-axis halved or the presence of C2/c symmetry. Structural solution of the structure in the C2/c space group after transforming the axes in PLATON gave a negative result, confirming the (P[\overline{1}]) symmetry assignment. Refinement of the structure with two independent mol­ecules in the asymmetry unit rather than four also gave a negative result, even though the coordinates for the A/B and C/D pairs of mol­ecules are related by translation of 0.5 along the a axis, displaying pseudo symmetry which gave B alerts in checkCIF even after many cycles of refinement.

In the mol­ecular structures of both compounds, (I)[link] and (II)[link], the non-H atoms are almost coplanar, as shown by their relevant torsional and dihedral angles (Table 1[link]). In (I)[link], the mean plane of the keto group is twisted slightly out of plane with that of the thio­phene ring in the range of 3–4° and with torsion angles in the range of 174–176° in each of the four mol­ecules (Table 1[link]). The dihedral angle between the mean planes of the phenyl and thio­phene rings are in the range of 10–11°. In (II)[link], the mean plane of the keto group is twisted slightly out of plane with that of the thio­phene ring by 0.9 (9)°, with a torsion angle of −178.2 (6)°, and a dihedral angle between the mean planes of the phenyl and thio­phene rings of 8.4 (2)°. In both compounds, bond lengths and angles are in normal ranges (Allen et al., 2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]).

Table 1
Selected torsional and dihedral angles (°) for compounds (I)[link], (II)[link], (III), (IV) and (V)

Dihedral 1 represents the dihedral angle between the mean planes of the phenyl and thio­phene rings, Dihedral 2 represents the dihedral angle between the mean planes of the thio­phene ring and the keto unit, and Dihedral 3 represents the dihedral angle between the mean planes of the phenyl ring and the keto unit.

Parameter (I) (II) (III) (IV) (V)
C12A—C11A—C10A—O2A 174.3 (5)        
C12B—C11B—C10B—O2B 175.8 (5)        
C12C—C11C—C10C—O2C 174.3 (5)        
C12D—C11D—C10D—O2D 176.5 (5)        
C3—C2—C1—O1   −178.2 (6)      
C3A—C4A—C5A—O1A     −176.5 (7)    
C3B—C4B—C5B—O1B     178.2 (8)    
C3—C4—C5—O1       161.0 (3)  
C2—C1—C5—O5         3.3 (8)
Dihedral 1 11.3 (6)        
  10.9 (6)        
  11.3 (6)        
  11.1 (1)        
    8.4 (2)      
      4.9 (7)    
      12.2 (4)    
        19.5 (7)  
          7.1 (8)
Dihedral 2 4.1 (4)        
  3.4 (9)        
  3.0 (3)        
  3.3 (2)        
    0.9 (9)      
      2.8 (2)    
      5.1 (1)    
        18.6 (3)  
          4.0 (9)
Dihedral 3 7.4 (3)        
  7.7 (5)        
  7.3 (1)        
  7.6 (6)        
    9.1 (1)      
      3.8 (2)    
      9.8 (9)    
        10.2 (0)  
          3.8 (7)

3. Supra­molecular features

The presence of weak C—H⋯Br intra­molecular bonds (Table 2[link]) and absence of any direction-specific weak inter­molecular inter­actions in (I)[link] in contrast to the presence of a variety of weak C—H⋯O, C—H⋯π and ππ inter­molecular inter­actions in (II)[link] (Table 3[link]) is suggestive of this type of support in describing the slight differences in planarity of the mol­ecules that is observed between the two compounds. The mol­ecules in (I)[link] pack in zigzag layers in (010) (Fig. 3[link]). Within the asymmetric unit, short O—S inter­molecular contacts aligned between each mol­ecule pair [S1D⋯O2A = 3.14 (1), O2C⋯S1A = 3.13 (5), S1C⋯O2B = 3.13 (8), O2D⋯S1B = 3.14 (1) Å] are also observed (Fig. 4[link]). In (II)[link], weak C5—H5⋯O2 and C5—H5⋯O3 inter­actions display bifurcated three-center character, forming dimers in layers along [001] (Fig. 5[link]). Additionally, ππ stacking inter­actions occur between the thio­phene (S/C2–C5) and phenyl rings (C8–C13) with a ring centroid separation of 3.840 (3)Å, and a shortest perpendicular distance from the centroid of one ring to the plane of the other of 3.454 (2) Å.

Table 2
Hydrogen-bond geometry (Å, °) for (I)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
C9C—H9C⋯Br1C 0.95 2.68 3.401 (5) 133
C9D—H9D⋯Br1D 0.95 2.69 3.405 (4) 133
C9A—H9A⋯Br1A 0.95 2.69 3.398 (5) 132
C9B—H9B⋯Br1B 0.95 2.68 3.401 (5) 133

Table 3
Hydrogen-bond geometry (Å, °) for (II)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
C5—H5⋯O2i 0.95 2.52 3.301 (6) 140
C5—H5⋯O3i 0.95 2.45 3.291 (6) 148
C6—H6⋯Br1 0.95 2.59 3.361 (5) 139
C14—H14A⋯O1ii 0.98 2.59 3.495 (6) 154
Symmetry codes: (i) [x, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (ii) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].
[Figure 3]
Figure 3
The mol­ecular packing for compound (I)[link], viewed along the a axis, showing zigzag layers in (010). H atoms not involved in hydrogen bonding and weak inter­molecular inter­actions have been omitted for clarity.
[Figure 4]
Figure 4
A view of the asymmetric unit in (I)[link], with dashed lines showing short O⋯S inter­molecular contacts between each mol­ecule pair [S1D⋯O2A = 3.14 (1), O2C⋯S1A = 3.13 (5), S1C⋯O2B = 3.13 (8), O2D⋯S1B = 3.14 (1) Å].
[Figure 5]
Figure 5
The mol­ecular packing for compound (II)[link], viewed along the a axis. Dashed lines indicate weak C—H⋯O inter­molecular inter­actions displaying bifurcated three-center character, forming dimers in layers along [001]. H atoms not involved in hydrogen bonding or weak inter­molecular inter­actions have been omitted for clarity.

4. Database survey

A search of the Cambridge Structural Database (Version 5.36, last update February 2015: Allen 2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]) revealed three closely related (3-bromo-2-thio­phen-2-yl)-3-(di­meth­oxy­phen­yl)prop-2-en-1-one types of compounds similar to the title compounds in this study and will be referred to as (III) (2E)-1-(3-bromo­thien-2-yl)-3-phenyl­prop-2-en-1-one (Butcher et al., 2007d[Butcher, R. J., Jasinski, J. P., Yathirajan, H. S., Ashalatha, B. V. & Narayana, B. (2007d). Acta Cryst. E63, o3705-o3706.]), (IV) (2E)-1-(3-bromo-2-thio­phen-2-yl)-3-(4-meth­oxy­phen­yl)prop-2-en-1-one (Harrison et al., 2006[Harrison, W. T. A., Yathirajan, H. S., Ashalatha, B. V., Bindya, S. & Narayana, B. (2006). Acta Cryst. E62, o4164-o4165.]) and (V) (2E)-1-(3-bromo-2-thio­phen-2-yl)-3-(2,5-di­meth­oxy­phen­yl)prop-2-en-1-one (Yathirajan et al., 2006[Yathirajan, H. S., Ashalatha, B., Narayana, B., Bindya, S. & Bolte, M. (2006). Acta Cryst. E62, o4551-o4553.]) for structural comparisons (Fig. 6[link]).

[Figure 6]
Figure 6
Compounds (III), (IV) and (V).

The crystal structures of some other related chalcones, viz., (2E)-1-(3-bromo-2-thio­phen-2-yl)-3-(4-meth­oxy-2,3,6-trimethyl­phen­yl)prop-2-en-1-one (Yathirajan et al., 2006a[Yathirajan, H. S., Narayana, B., Ashalatha, B. V., Sarojini, B. K. & Bolte, M. (2006a). Acta Cryst. E62, o5010-o5012.]), (2E)-1-(3-bromo-2-thio­phen-2-yl)-3-(4,5-dimeth­oxy-2-nitrophen­yl)prop-2-en-1-one (Yathirajan et al., 2006b[Yathirajan, H. S., Sarojini, B. K., Narayana, B., Ashalatha, B. V. & Bolte, M. (2006b). Acta Cryst. E62, o3964-o3965.]), (2E)-1-(3-bromo-2-thien­yl)-3-(2,5-di­meth­oxy­phen­yl)prop-2-en-1-one (Yathirajan et al., 2006c[Yathirajan, H. S., Sarojini, B. K., Narayana, B., Bindya, S. & Bolte, M. (2006c). Acta Cryst. E62, o4048-o4049.]), 1-(3-bromo-2-thien­yl)-3-[4-(di­methyl­amino)­phen­yl]prop-2-en-1-one (Butcher et al., 2007a[Butcher, R. J., Yathirajan, H. S., Ashalatha, B. V., Narayana, B. & Sarojini, B. K. (2007a). Acta Cryst. E63, o1005-o1007.]), 1-(3-bromo-2-thien­yl)-3-(4-but­oxyphen­yl)prop-2-en-1-one (Butcher et al., 2007b[Butcher, R. J., Yathirajan, H. S., Ashalatha, B. V., Narayana, B. & Sarojini, B. K. (2007b). Acta Cryst. E63, o1201-o1203.]) and 1-(3-bromo-2-thien­yl)-3-(6-meth­oxy-2-naphth­yl)prop-2-en-1-one (Butcher et al., 2007c[Butcher, R. J., Yathirajan, H. S., Ashalatha, B. V., Narayana, B. & Sarojini, B. K. (2007c). Acta Cryst. E63, o1430-o1431.]) have also been reported.

Compound (IV) is structurally similar to (I)[link] with the only difference occurring in the P unit with the meth­oxy group now in the para position on the phenyl ring. Compound (V) is structurally similar to (II)[link] with the Q unit now containing the two meth­oxy groups at the ortho and meta positions of the phenyl ring, Compound (III), which crystallized with two independent mol­ecules in the asymmetric unit, is structurally similar to both (I)[link] and (II)[link] except with no meth­oxy groups on the phenyl ring. The R units are structurally identical in all five compounds described here.

A comparison of the supra­molecular features of the title compounds (Table 4[link]) suggests that the presence or absence of direction-specific weak inter­molecular inter­actions plays a role in their influence on the small differences in planarity observed and supported by similar types of inter­actions in closely related compounds. No classical hydrogen bonds are observed in any of the five compounds. All five compounds do display a similar weak C—H⋯Br intra­molecular inter­action. In (I)[link] and (III) only weak C—H⋯π inter­molecular inter­actions are observed, while in (IV) only weak C—H⋯O inter­molecular inter­actions are present.

Table 4
Hydrogen bonds and short inter­molecular contacts (Å, °) for compounds (I)[link], (II)[link], (III), (IV) and (V)

Cg2(I) represents the centroid of the ring C2A–C7A, Cg4(I) represents the centroid of the ring C2B–C7B, Cg6(I) represents the centroid of the ring C2C–C7C, Cg8(I) represents the centroid of the ring C2D–C7D, Cg1(II) represents the centroid of the ring S1/C2–C5, Cg1(III) represents the centroid of the ring S1A/C1A–C4A, Cg2(III) represents the centroid of the ring C8A–C13A, Cg3(III) represents the centroid of the ring S1B/C1B–C4B.

Compound D—H⋯A D—H H⋯A D⋯A D—H⋯A
(I) C9A—H9A⋯Br1A 0.95 2.68 3.400 (5) 132
  C9B—H9B⋯Br1B 0.95 2.68 3.401 (5) 132
  C9C—H9C⋯Br1C 0.95 2.68 3.400 (5) 133
  C9D—H9D⋯Br1D 0.95 2.68 3.405 (4) 133
  C13A—H13ACg8i   2.96 3.678 (6) 134
  C13B—H13BCg6ii   2.96 3.666 (6) 132
  C13C—H13CCg4iii   2.95 3.667 (6) 133
  C13D—H13DCg2iv   2.94 3.664 (5) 134
(II) C5—H5⋯O2v 0.95 2.52 3.301 (6) 140
  C5—H5⋯O3vi 0.95 2.45 3.291 (6) 147
  C14—H14A⋯O1vii 0.98 2.59 3.495 (6) 154
  C6—H6⋯Br1 0.95 2.59 3.361 (5) 139
  C15—H15BCg1(II)viii   2.98 3.734 (7) 135
(III) C6A—H6AA⋯Br1A 0.95 2.61 3.1367 (3) 137
  C6B—H6BA⋯Br1B 0.95 2.68 3.421 (8) 135
  C1A—H1ACg2(III)ix   2.87 3.566 (8) 131
  C10A—H10ACg1(III)x   3.00 3.668 (8) 129
  C10B—H10BCg3(III)xi   2.92 3.659 (8) 135
(IV) C1—H1⋯O2xii 0.95 2.54 3.457 (3) 162
  C14—H14B⋯O1xiii 0.98 2.45 3.300 (4) 145
  C6—H6⋯Br1 0.95 2.73 3.410 (3) 129
(V) C4—H4⋯O5xiv 0.96 2.37 3.296 (3) 164
  C17—H17⋯O5xv 0.98 2.41 3.331 (9) 157
  C6—H6⋯Br1 0.95 2.68 3.394 (7) 133
Symmetry codes: (i) 1 − x, 1 − y, −z; (ii) −x, 1 − y, −z; (iii) −x, 1 − y, 1 − z; (iv) 1 − x, [{1\over 2}] + y, [{1\over 2}] − z; (v) x, [{3\over 2}] − y, [{1\over 2}] + z; (vi) x, [{3\over 2}] − y, [{3\over 2}] + z; (vii) x, [{1\over 2}] − y, −[{1\over 2}] + z; (viii) [{1\over 2}] − x, −[{1\over 2}] + y, [{1\over 2}] − z; (ix) [{1\over 2}] + x, − y, z; (x) −[{1\over 2}] − x, 1 − y, z; (xi) [{1\over 2}] + x, −y, z; (xii) x, y, −1 + z; (xiii) −x, [{1\over 2}] + y, 1 − z; (xiv) 3 − x, [{1\over 2}] + y, 2 − z; (xv) 1 − x, −[{1\over 2}] + y, 2 − z.

In (II)[link], the weak C5—H5⋯O2 and C5—H5⋯O3 inter­actions display bifurcated three-center character, forming dimers in layers along [001]. Additionally, C—H⋯π and ππ stacking inter­actions (Table 4[link]) are observed, which help pack the mol­ecules into a two-dimensional network (Fig. 4[link]). In (V), weak C—H⋯O also form bifurcated three-center character in a similar fashion to (II)[link].

5. Synthesis and crystallization

For crystals (I)[link] and (II)[link], the following procedure was used. A solution of 3-bromo-2-acetyl­thio­phene (2.05 g, 0.01 mol) in methanol (20 ml) was mixed with 2-meth­oxy­benzaldehyde (1.36 g, 0.01 mol) for crystal (I)[link] and 3,4-di­meth­oxy­benzaldehyde (1.66 g, 0.01 mol) for crystal (II) in methanol (20 ml) in the presence of NaOH (5 ml, 30%) at 283 K. After stirring for four h, the contents of the flask were poured into ice-cold water (250 ml). The resulting crude solid was collected by filtration and dried in a hot-air oven at 323 K. A supersaturated solution was obtained by dissolving the sample in acetone at ambient temperature. The prepared solution was filtered, warmed slightly and allowed to evaporate slowly at room temperature. After several days X-ray quality crystals were obtained by the slow the evaporation technique, m.p.: 367 K for (I)[link] and 405 K for (II)[link].

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 5[link]. In both (I)[link] and (II)[link], all H atoms were located in difference maps. The H atoms bonded to C atoms were then treated as riding atoms in geometrically idealized positions with C—H distances 0.95 Å (aromatic and hetero-aromatic) or 0.98 Å (CH3) and with Uiso(H) = kUeq(C), where k = 1.5 for the methyl groups, which were permitted to rotate but not to tilt, and 1.2 for all other H atoms bonded to C atoms. The maximum residual electron density peaks of 1.17 and −0.82 Å3, for (I)[link], were located at 0.94 and 0.84 Å from Br1, respectively. For (II)[link], the maximum residual electron density peaks of 3.38 and −2.20 Å3 were located at 0.94 and 0.84 Å from Br1.

Table 5
Experimental details

  (I) (II)
Crystal data
Chemical formula C14H11BrO2S C15H13BrO3S
Mr 323.20 353.22
Crystal system, space group Triclinic, P[\overline{1}] Monoclinic, I2/a
Temperature (K) 173 173
a, b, c (Å) 11.2517 (4), 14.5397 (6), 16.7857 (6) 13.4748 (7), 8.3853 (3), 25.0214 (9)
α, β, γ (°) 76.561 (3), 89.989 (3), 78.836 (3) 90, 93.957 (4), 90
V3) 2617.44 (17) 2820.4 (2)
Z 8 8
Radiation type Cu Kα Cu Kα
μ (mm−1) 5.70 5.40
Crystal size (mm) 0.49 × 0.44 × 0.28 0.32 × 0.28 × 0.22
 
Data collection
Diffractometer Agilent Eos Gemini Agilent Eos Gemini
Absorption correction Multi-scan (CrysAlis PRO; Agilent, 2014[Agilent (2012). CrysAlis PRO and CrysAlis RED. Agilent Technologies Ltd, Yarnton, England.]) Multi-scan (CrysAlis PRO; Agilent, 2014[Agilent (2012). CrysAlis PRO and CrysAlis RED. Agilent Technologies Ltd, Yarnton, England.])
Tmin, Tmax 0.353, 1.000 0.726, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 19842, 9990, 4573 5523, 2690, 2399
Rint 0.037 0.026
(sin θ/λ)max−1) 0.614 0.615
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.168, 1.01 0.074, 0.187, 1.04
No. of reflections 9990 2690
No. of parameters 653 183
H-atom treatment H-atom parameters constrained H-atom parameters constrained
(Δ/σ)max 0.148 < 0.001
Δρmax, Δρmin (e Å−3) 1.17, −0.82 3.38, −2.20
Computer programs: CrysAlis PRO and CrysAlis RED (Agilent, 2014[Agilent (2012). CrysAlis PRO and CrysAlis RED. Agilent Technologies Ltd, Yarnton, England.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2014 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Supporting information


Computing details top

For both compounds, data collection: CrysAlis PRO (Agilent, 2014); cell refinement: CrysAlis PRO (Agilent, 2014); data reduction: CrysAlis RED (Agilent, 2014); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

(I) (2E)-1-(3-Bromothiophen-2-yl)-3-(2-methoxyphenyl)prop-2-en-1-one top
Crystal data top
C14H11BrO2SZ = 8
Mr = 323.20F(000) = 1296
Triclinic, P1Dx = 1.640 Mg m3
a = 11.2517 (4) ÅCu Kα radiation, λ = 1.54184 Å
b = 14.5397 (6) ÅCell parameters from 5217 reflections
c = 16.7857 (6) Åθ = 4.6–70.9°
α = 76.561 (3)°µ = 5.70 mm1
β = 89.989 (3)°T = 173 K
γ = 78.836 (3)°Irregular, colourless
V = 2617.44 (17) Å30.49 × 0.44 × 0.28 mm
Data collection top
Agilent Eos Gemini
diffractometer
9990 independent reflections
Radiation source: Enhance (Cu) X-ray Source4573 reflections with I > 2σ(I)
Detector resolution: 16.0416 pixels mm-1Rint = 0.037
ω scansθmax = 71.3°, θmin = 4.0°
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2014)
h = 138
Tmin = 0.353, Tmax = 1.000k = 1717
19842 measured reflectionsl = 2020
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.047H-atom parameters constrained
wR(F2) = 0.168 w = 1/[σ2(Fo2) + (0.0832P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.01(Δ/σ)max = 0.148
9990 reflectionsΔρmax = 1.17 e Å3
653 parametersΔρmin = 0.82 e Å3
0 restraints
Special details top

Experimental. Absorption correction: CrysAlisPro, Agilent Technologies, Version 1.171.37.31 (release 14-01-2014 CrysAlis171 .NET) (compiled Jan 14 2014,18:38:05) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br1C0.03752 (6)0.89566 (4)0.11911 (4)0.04215 (18)
S1C0.02881 (12)0.58646 (10)0.21914 (8)0.0281 (3)
O1C0.4824 (3)0.6319 (3)0.0458 (2)0.0298 (9)
O2C0.1708 (3)0.5722 (3)0.1207 (2)0.0303 (8)
C1C0.5883 (5)0.5823 (4)0.0767 (4)0.0368 (14)
H1CA0.58160.59870.13680.055*
H1CB0.59530.51250.05620.055*
H1CC0.66030.60170.05830.055*
C2C0.4461 (4)0.7277 (4)0.0760 (3)0.0198 (10)
C3C0.5054 (4)0.7849 (4)0.1346 (3)0.0268 (11)
H3C0.57790.75670.15610.032*
C4C0.4596 (5)0.8819 (4)0.1616 (3)0.0319 (12)
H4C0.50190.92020.20080.038*
C5C0.3544 (5)0.9244 (4)0.1332 (4)0.0390 (14)
H5C0.32240.99140.15340.047*
C6C0.2948 (5)0.8678 (4)0.0741 (3)0.0306 (12)
H6C0.22250.89760.05340.037*
C7C0.3374 (4)0.7697 (3)0.0445 (3)0.0192 (10)
C8C0.2771 (4)0.7080 (3)0.0168 (3)0.0211 (10)
H8C0.31680.64220.03350.025*
C9C0.1732 (4)0.7324 (3)0.0525 (3)0.0231 (10)
H9C0.13070.79750.04030.028*
C10C0.1253 (4)0.6578 (4)0.1105 (3)0.0187 (10)
C11C0.0180 (4)0.6843 (4)0.1582 (3)0.0189 (10)
C12C0.0524 (5)0.7689 (4)0.1692 (3)0.0259 (11)
C13C0.1438 (5)0.7531 (5)0.2268 (3)0.0361 (14)
H13C0.20000.80350.24160.043*
C14C0.1415 (5)0.6582 (4)0.2579 (3)0.0303 (12)
H14C0.19610.63430.29680.036*
Br1D0.46260 (6)0.89569 (4)0.11921 (4)0.04200 (18)
S1D0.47162 (12)0.58643 (10)0.21926 (8)0.0272 (3)
O1D0.9843 (3)0.6313 (3)0.0454 (2)0.0300 (9)
O2D0.6696 (3)0.5728 (3)0.1210 (2)0.0301 (8)
C1D1.0906 (4)0.5823 (4)0.0765 (3)0.0311 (12)
H1DA1.07270.57820.13250.047*
H1DB1.11590.51710.04150.047*
H1DC1.15610.61810.07670.047*
C2D0.9458 (4)0.7278 (4)0.0761 (3)0.0187 (10)
C3D1.0067 (4)0.7839 (4)0.1352 (3)0.0267 (11)
H3D1.07810.75520.15740.032*
C4D0.9610 (5)0.8821 (4)0.1606 (3)0.0355 (14)
H4D1.00440.92140.19820.043*
C5D0.8523 (5)0.9244 (4)0.1322 (3)0.0357 (13)
H5D0.81930.99100.15330.043*
C6D0.7927 (5)0.8694 (4)0.0735 (3)0.0298 (12)
H6D0.72040.89900.05280.036*
C7D0.8376 (4)0.7703 (3)0.0440 (3)0.0193 (10)
C8D0.7773 (4)0.7092 (4)0.0175 (3)0.0215 (10)
H8D0.81740.64350.03480.026*
C9D0.6745 (4)0.7328 (3)0.0525 (3)0.0196 (9)
H9D0.63210.79800.04050.024*
C10D0.6254 (4)0.6576 (4)0.1104 (3)0.0191 (10)
C11D0.5194 (4)0.6847 (3)0.1587 (3)0.0184 (9)
C12D0.4472 (4)0.7684 (4)0.1688 (3)0.0236 (10)
C13D0.3574 (4)0.7535 (4)0.2272 (3)0.0303 (12)
H13D0.30140.80390.24210.036*
C14D0.3616 (5)0.6586 (5)0.2588 (4)0.0361 (14)
H14D0.30870.63460.29900.043*
Br1A0.41043 (6)0.10433 (4)0.38081 (4)0.04188 (19)
S1A0.26463 (11)0.41362 (9)0.28077 (7)0.0270 (3)
O1A0.7996 (3)0.3677 (3)0.5461 (2)0.0306 (9)
O2A0.4566 (3)0.4277 (3)0.3799 (2)0.0295 (8)
C1A0.8804 (5)0.4168 (4)0.5775 (3)0.0350 (13)
H1AA0.86020.48580.55090.052*
H1AB0.96400.39040.56650.052*
H1AC0.87250.40800.63680.052*
C2A0.8093 (4)0.2730 (3)0.5760 (3)0.0198 (10)
C3A0.8983 (5)0.2159 (4)0.6342 (3)0.0290 (12)
H3A0.95720.24420.65500.035*
C4A0.9009 (5)0.1179 (4)0.6616 (3)0.0349 (14)
H4A0.96230.07950.70090.042*
C5A0.8147 (5)0.0747 (4)0.6324 (4)0.0365 (13)
H5A0.81600.00780.65230.044*
C6A0.7271 (4)0.1315 (4)0.5736 (3)0.0309 (13)
H6A0.66900.10250.55280.037*
C7A0.7227 (4)0.2300 (3)0.5443 (3)0.0172 (9)
C8A0.6313 (4)0.2924 (3)0.4822 (3)0.0194 (10)
H8A0.63860.35800.46450.023*
C9A0.5392 (4)0.2671 (3)0.4481 (3)0.0203 (10)
H9A0.52920.20200.46100.024*
C10A0.4538 (4)0.3418 (3)0.3902 (3)0.0188 (9)
C11A0.3599 (4)0.3155 (3)0.3419 (3)0.0186 (9)
C12A0.3308 (4)0.2328 (4)0.3300 (3)0.0246 (11)
C13A0.2337 (5)0.2469 (4)0.2734 (3)0.0315 (12)
H13A0.20330.19630.25850.038*
C14A0.1897 (5)0.3403 (4)0.2432 (4)0.0352 (14)
H14A0.12290.36400.20440.042*
Br1B0.08962 (6)0.10432 (4)0.38073 (4)0.04162 (19)
S1B0.23554 (11)0.41352 (10)0.28088 (7)0.0276 (3)
O1B0.2986 (3)0.3684 (3)0.5458 (2)0.0301 (9)
O2B0.0437 (3)0.4276 (3)0.3792 (2)0.0294 (8)
C1B0.3811 (4)0.4181 (4)0.5759 (3)0.0345 (13)
H1BA0.46380.39340.56190.052*
H1BB0.37730.40750.63560.052*
H1BC0.35840.48740.55070.052*
C2B0.3094 (4)0.2722 (4)0.5759 (3)0.0201 (10)
C3B0.3978 (4)0.2151 (4)0.6341 (3)0.0268 (11)
H3B0.45700.24320.65480.032*
C4B0.3999 (5)0.1186 (4)0.6617 (3)0.0353 (14)
H4B0.45990.08060.70210.042*
C5B0.3158 (5)0.0750 (4)0.6318 (4)0.0385 (14)
H5B0.31890.00770.65070.046*
C6B0.2273 (4)0.1314 (4)0.5738 (3)0.0293 (12)
H6B0.16880.10220.55380.035*
C7B0.2222 (4)0.2305 (3)0.5441 (3)0.0199 (10)
C8B0.1314 (4)0.2912 (3)0.4831 (3)0.0206 (10)
H8B0.13730.35720.46680.025*
C9B0.0413 (4)0.2668 (3)0.4471 (3)0.0223 (10)
H9B0.03230.20150.45860.027*
C10B0.0450 (4)0.3420 (4)0.3890 (3)0.0221 (10)
C11B0.1379 (4)0.3144 (3)0.3419 (3)0.0188 (9)
C12B0.1673 (4)0.2310 (4)0.3310 (3)0.0249 (11)
C13B0.2675 (5)0.2455 (4)0.2742 (3)0.0329 (13)
H13B0.29930.19500.26030.039*
C14B0.3121 (5)0.3430 (4)0.2419 (3)0.0358 (14)
H14B0.37810.36750.20250.043*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br1C0.0574 (4)0.0177 (3)0.0475 (4)0.0001 (3)0.0161 (3)0.0062 (3)
S1C0.0354 (7)0.0243 (7)0.0253 (6)0.0110 (5)0.0106 (5)0.0031 (5)
O1C0.0301 (19)0.0184 (19)0.034 (2)0.0029 (15)0.0126 (16)0.0010 (16)
O2C0.0347 (19)0.0195 (18)0.0290 (19)0.0002 (16)0.0118 (16)0.0054 (15)
C1C0.038 (3)0.028 (3)0.045 (3)0.002 (3)0.011 (3)0.017 (3)
C2C0.023 (2)0.020 (2)0.015 (2)0.0043 (19)0.0031 (18)0.0017 (18)
C3C0.025 (2)0.036 (3)0.021 (3)0.009 (2)0.000 (2)0.006 (2)
C4C0.043 (3)0.028 (3)0.023 (3)0.014 (2)0.002 (2)0.003 (2)
C5C0.045 (3)0.024 (3)0.041 (4)0.008 (3)0.001 (3)0.008 (3)
C6C0.028 (3)0.019 (3)0.041 (3)0.003 (2)0.005 (2)0.002 (2)
C7C0.021 (2)0.019 (2)0.015 (2)0.0024 (19)0.0018 (18)0.0007 (19)
C8C0.026 (2)0.015 (2)0.016 (2)0.0005 (19)0.0015 (19)0.0051 (18)
C9C0.037 (3)0.013 (2)0.016 (2)0.004 (2)0.004 (2)0.0013 (18)
C10C0.020 (2)0.022 (3)0.012 (2)0.003 (2)0.0016 (18)0.0009 (19)
C11C0.020 (2)0.023 (2)0.013 (2)0.0047 (19)0.0022 (18)0.0034 (19)
C12C0.030 (3)0.025 (3)0.024 (3)0.005 (2)0.003 (2)0.008 (2)
C13C0.032 (3)0.046 (4)0.033 (3)0.003 (3)0.007 (2)0.020 (3)
C14C0.032 (3)0.039 (3)0.028 (3)0.020 (2)0.012 (2)0.015 (2)
Br1D0.0565 (4)0.0175 (3)0.0486 (4)0.0002 (3)0.0165 (3)0.0068 (3)
S1D0.0340 (7)0.0239 (6)0.0238 (6)0.0105 (5)0.0095 (5)0.0017 (5)
O1D0.0310 (19)0.0191 (19)0.034 (2)0.0019 (15)0.0109 (16)0.0006 (16)
O2D0.0306 (18)0.0201 (19)0.0296 (19)0.0050 (15)0.0082 (15)0.0054 (15)
C1D0.027 (3)0.030 (3)0.036 (3)0.001 (2)0.013 (2)0.011 (2)
C2D0.023 (2)0.020 (2)0.011 (2)0.0044 (19)0.0006 (18)0.0006 (18)
C3D0.026 (3)0.033 (3)0.017 (2)0.009 (2)0.007 (2)0.004 (2)
C4D0.040 (3)0.036 (3)0.027 (3)0.017 (3)0.007 (2)0.008 (2)
C5D0.042 (3)0.018 (3)0.037 (3)0.002 (2)0.003 (3)0.012 (2)
C6D0.034 (3)0.017 (3)0.031 (3)0.001 (2)0.004 (2)0.005 (2)
C7D0.022 (2)0.016 (2)0.018 (2)0.0052 (19)0.0002 (19)0.0004 (19)
C8D0.023 (2)0.021 (2)0.018 (2)0.0030 (19)0.0023 (18)0.0007 (19)
C9D0.020 (2)0.011 (2)0.023 (2)0.0011 (17)0.0016 (18)0.0016 (18)
C10D0.021 (2)0.020 (2)0.015 (2)0.0027 (19)0.0007 (19)0.0017 (19)
C11D0.025 (2)0.015 (2)0.015 (2)0.0083 (18)0.0047 (18)0.0002 (18)
C12D0.026 (2)0.026 (3)0.019 (2)0.005 (2)0.000 (2)0.007 (2)
C13D0.029 (3)0.040 (3)0.026 (3)0.009 (2)0.011 (2)0.014 (2)
C14D0.033 (3)0.042 (4)0.037 (3)0.010 (3)0.016 (2)0.017 (3)
Br1A0.0596 (4)0.0172 (3)0.0477 (4)0.0055 (3)0.0119 (3)0.0071 (3)
S1A0.0270 (6)0.0241 (6)0.0251 (7)0.0023 (5)0.0075 (5)0.0021 (5)
O1A0.0327 (19)0.024 (2)0.034 (2)0.0096 (16)0.0082 (16)0.0006 (16)
O2A0.038 (2)0.0177 (19)0.0289 (19)0.0072 (15)0.0100 (16)0.0035 (15)
C1A0.040 (3)0.027 (3)0.044 (3)0.011 (2)0.002 (3)0.015 (3)
C2A0.019 (2)0.020 (2)0.019 (2)0.0024 (19)0.0033 (18)0.0020 (19)
C3A0.028 (3)0.035 (3)0.020 (3)0.003 (2)0.002 (2)0.000 (2)
C4A0.029 (3)0.031 (3)0.031 (3)0.011 (2)0.008 (2)0.008 (2)
C5A0.038 (3)0.018 (3)0.043 (3)0.001 (2)0.002 (3)0.008 (2)
C6A0.028 (3)0.020 (3)0.042 (3)0.004 (2)0.007 (2)0.000 (2)
C7A0.017 (2)0.016 (2)0.017 (2)0.0018 (18)0.0017 (18)0.0016 (18)
C8A0.019 (2)0.015 (2)0.021 (2)0.0014 (18)0.0007 (19)0.0015 (18)
C9A0.025 (2)0.017 (2)0.017 (2)0.0041 (19)0.0005 (19)0.0007 (18)
C10A0.021 (2)0.016 (2)0.017 (2)0.0044 (19)0.0048 (18)0.0028 (17)
C11A0.020 (2)0.020 (2)0.013 (2)0.0004 (18)0.0007 (17)0.0014 (17)
C12A0.029 (3)0.023 (3)0.022 (2)0.004 (2)0.002 (2)0.006 (2)
C13A0.029 (3)0.037 (3)0.035 (3)0.014 (2)0.003 (2)0.016 (3)
C14A0.025 (3)0.044 (4)0.038 (3)0.003 (2)0.007 (2)0.016 (3)
Br1B0.0586 (4)0.0174 (3)0.0474 (4)0.0054 (3)0.0120 (3)0.0066 (3)
S1B0.0285 (6)0.0249 (7)0.0246 (7)0.0032 (5)0.0073 (5)0.0029 (5)
O1B0.035 (2)0.0191 (19)0.034 (2)0.0066 (15)0.0118 (16)0.0001 (15)
O2B0.0334 (19)0.0164 (18)0.033 (2)0.0056 (15)0.0105 (16)0.0056 (15)
C1B0.033 (3)0.032 (3)0.043 (3)0.010 (2)0.008 (2)0.014 (3)
C2B0.025 (2)0.022 (3)0.013 (2)0.005 (2)0.0034 (18)0.0040 (19)
C3B0.026 (3)0.032 (3)0.020 (3)0.001 (2)0.003 (2)0.005 (2)
C4B0.032 (3)0.036 (3)0.027 (3)0.000 (2)0.004 (2)0.010 (2)
C5B0.037 (3)0.023 (3)0.046 (4)0.002 (2)0.008 (3)0.008 (2)
C6B0.030 (3)0.020 (3)0.031 (3)0.004 (2)0.003 (2)0.005 (2)
C7B0.021 (2)0.019 (2)0.018 (2)0.0038 (19)0.0042 (19)0.0023 (19)
C8B0.026 (2)0.011 (2)0.022 (2)0.0033 (19)0.003 (2)0.0003 (18)
C9B0.030 (3)0.016 (2)0.018 (2)0.004 (2)0.001 (2)0.0004 (18)
C10B0.027 (2)0.023 (3)0.014 (2)0.004 (2)0.0019 (19)0.0002 (19)
C11B0.020 (2)0.020 (2)0.015 (2)0.0024 (19)0.0049 (17)0.0011 (18)
C12B0.022 (2)0.026 (3)0.025 (3)0.001 (2)0.001 (2)0.007 (2)
C13B0.031 (3)0.041 (3)0.031 (3)0.006 (2)0.001 (2)0.019 (3)
C14B0.037 (3)0.037 (3)0.030 (3)0.003 (3)0.008 (2)0.011 (3)
Geometric parameters (Å, º) top
Br1C—C12C1.880 (5)Br1A—C12A1.905 (5)
S1C—C11C1.721 (5)S1A—C11A1.722 (4)
S1C—C14C1.710 (5)S1A—C14A1.705 (5)
O1C—C1C1.431 (6)O1A—C1A1.430 (6)
O1C—C2C1.348 (6)O1A—C2A1.334 (6)
O2C—C10C1.223 (6)O2A—C10A1.226 (6)
C1C—H1CA0.9800C1A—H1AA0.9800
C1C—H1CB0.9800C1A—H1AB0.9800
C1C—H1CC0.9800C1A—H1AC0.9800
C2C—C3C1.393 (7)C2A—C3A1.395 (6)
C2C—C7C1.418 (6)C2A—C7A1.420 (6)
C3C—H3C0.9500C3A—H3A0.9500
C3C—C4C1.371 (7)C3A—C4A1.386 (8)
C4C—H4C0.9500C4A—H4A0.9500
C4C—C5C1.364 (8)C4A—C5A1.399 (8)
C5C—H5C0.9500C5A—H5A0.9500
C5C—C6C1.395 (7)C5A—C6A1.391 (7)
C6C—H6C0.9500C6A—H6A0.9500
C6C—C7C1.384 (7)C6A—C7A1.392 (7)
C7C—C8C1.460 (6)C7A—C8A1.472 (6)
C8C—H8C0.9500C8A—H8A0.9500
C8C—C9C1.337 (6)C8A—C9A1.336 (6)
C9C—H9C0.9500C9A—H9A0.9500
C9C—C10C1.466 (6)C9A—C10A1.466 (6)
C10C—C11C1.487 (6)C10A—C11A1.490 (6)
C11C—C12C1.379 (7)C11A—C12A1.363 (7)
C12C—C13C1.425 (7)C12A—C13A1.401 (7)
C13C—H13C0.9500C13A—H13A0.9500
C13C—C14C1.351 (8)C13A—C14A1.329 (8)
C14C—H14C0.9500C14A—H14A0.9500
Br1D—C12D1.886 (5)Br1B—C12B1.875 (5)
S1D—C11D1.728 (5)S1B—C11B1.742 (5)
S1D—C14D1.701 (5)S1B—C14B1.696 (6)
O1D—C1D1.433 (5)O1B—C1B1.439 (6)
O1D—C2D1.360 (6)O1B—C2B1.353 (6)
O2D—C10D1.208 (6)O2B—C10B1.221 (6)
C1D—H1DA0.9800C1B—H1BA0.9800
C1D—H1DB0.9800C1B—H1BB0.9800
C1D—H1DC0.9800C1B—H1BC0.9800
C2D—C3D1.400 (6)C2B—C3B1.392 (6)
C2D—C7D1.420 (6)C2B—C7B1.414 (6)
C3D—H3D0.9500C3B—H3B0.9500
C3D—C4D1.385 (8)C3B—C4B1.367 (8)
C4D—H4D0.9500C4B—H4B0.9500
C4D—C5D1.395 (7)C4B—C5B1.388 (8)
C5D—H5D0.9500C5B—H5B0.9500
C5D—C6D1.378 (7)C5B—C6B1.387 (7)
C6D—H6D0.9500C6B—H6B0.9500
C6D—C7D1.401 (7)C6B—C7B1.400 (7)
C7D—C8D1.458 (6)C7B—C8B1.449 (6)
C8D—H8D0.9500C8B—H8B0.9500
C8D—C9D1.319 (6)C8B—C9B1.325 (6)
C9D—H9D0.9500C9B—H9B0.9500
C9D—C10D1.479 (6)C9B—C10B1.477 (6)
C10D—C11D1.484 (6)C10B—C11B1.478 (6)
C11D—C12D1.372 (7)C11B—C12B1.368 (7)
C12D—C13D1.419 (7)C12B—C13B1.429 (7)
C13D—H13D0.9500C13B—H13B0.9500
C13D—C14D1.349 (8)C13B—C14B1.387 (8)
C14D—H14D0.9500C14B—H14B0.9500
C14C—S1C—C11C92.4 (2)C14A—S1A—C11A91.3 (3)
C2C—O1C—C1C119.0 (4)C2A—O1A—C1A119.2 (4)
O1C—C1C—H1CA109.5O1A—C1A—H1AA109.5
O1C—C1C—H1CB109.5O1A—C1A—H1AB109.5
O1C—C1C—H1CC109.5O1A—C1A—H1AC109.5
H1CA—C1C—H1CB109.5H1AA—C1A—H1AB109.5
H1CA—C1C—H1CC109.5H1AA—C1A—H1AC109.5
H1CB—C1C—H1CC109.5H1AB—C1A—H1AC109.5
O1C—C2C—C3C125.2 (5)O1A—C2A—C3A124.4 (5)
O1C—C2C—C7C114.9 (4)O1A—C2A—C7A116.0 (4)
C3C—C2C—C7C119.9 (5)C3A—C2A—C7A119.7 (5)
C2C—C3C—H3C119.9C2A—C3A—H3A119.9
C4C—C3C—C2C120.3 (5)C4A—C3A—C2A120.1 (5)
C4C—C3C—H3C119.9C4A—C3A—H3A119.9
C3C—C4C—H4C119.3C3A—C4A—H4A119.5
C5C—C4C—C3C121.4 (5)C3A—C4A—C5A121.0 (5)
C5C—C4C—H4C119.3C5A—C4A—H4A119.5
C4C—C5C—H5C120.6C4A—C5A—H5A120.6
C4C—C5C—C6C118.8 (5)C6A—C5A—C4A118.8 (5)
C6C—C5C—H5C120.6C6A—C5A—H5A120.6
C5C—C6C—H6C118.9C5A—C6A—H6A119.2
C7C—C6C—C5C122.2 (5)C5A—C6A—C7A121.5 (5)
C7C—C6C—H6C118.9C7A—C6A—H6A119.2
C2C—C7C—C8C118.6 (4)C2A—C7A—C8A118.0 (4)
C6C—C7C—C2C117.5 (5)C6A—C7A—C2A118.9 (4)
C6C—C7C—C8C123.9 (5)C6A—C7A—C8A123.1 (5)
C7C—C8C—H8C115.9C7A—C8A—H8A116.4
C9C—C8C—C7C128.2 (5)C9A—C8A—C7A127.2 (5)
C9C—C8C—H8C115.9C9A—C8A—H8A116.4
C8C—C9C—H9C120.2C8A—C9A—H9A120.6
C8C—C9C—C10C119.5 (5)C8A—C9A—C10A118.7 (4)
C10C—C9C—H9C120.2C10A—C9A—H9A120.6
O2C—C10C—C9C121.6 (4)O2A—C10A—C9A121.6 (4)
O2C—C10C—C11C117.8 (4)O2A—C10A—C11A117.6 (4)
C9C—C10C—C11C120.6 (4)C9A—C10A—C11A120.8 (4)
C10C—C11C—S1C113.6 (3)C10A—C11A—S1A113.7 (3)
C12C—C11C—S1C110.2 (4)C12A—C11A—S1A109.4 (4)
C12C—C11C—C10C136.1 (5)C12A—C11A—C10A136.9 (4)
C11C—C12C—Br1C127.4 (4)C11A—C12A—Br1A126.4 (4)
C11C—C12C—C13C113.0 (5)C11A—C12A—C13A114.8 (5)
C13C—C12C—Br1C119.6 (4)C13A—C12A—Br1A118.8 (4)
C12C—C13C—H13C123.9C12A—C13A—H13A124.5
C14C—C13C—C12C112.3 (5)C14A—C13A—C12A111.1 (5)
C14C—C13C—H13C123.9C14A—C13A—H13A124.5
S1C—C14C—H14C123.9S1A—C14A—H14A123.2
C13C—C14C—S1C112.2 (4)C13A—C14A—S1A113.5 (4)
C13C—C14C—H14C123.9C13A—C14A—H14A123.2
C14D—S1D—C11D92.0 (3)C14B—S1B—C11B92.8 (3)
C2D—O1D—C1D119.1 (4)C2B—O1B—C1B119.4 (4)
O1D—C1D—H1DA109.5O1B—C1B—H1BA109.5
O1D—C1D—H1DB109.5O1B—C1B—H1BB109.5
O1D—C1D—H1DC109.5O1B—C1B—H1BC109.5
H1DA—C1D—H1DB109.5H1BA—C1B—H1BB109.5
H1DA—C1D—H1DC109.5H1BA—C1B—H1BC109.5
H1DB—C1D—H1DC109.5H1BB—C1B—H1BC109.5
O1D—C2D—C3D123.7 (5)O1B—C2B—C3B124.8 (5)
O1D—C2D—C7D115.7 (4)O1B—C2B—C7B115.1 (4)
C3D—C2D—C7D120.6 (5)C3B—C2B—C7B120.1 (5)
C2D—C3D—H3D120.6C2B—C3B—H3B119.9
C4D—C3D—C2D118.8 (5)C4B—C3B—C2B120.3 (5)
C4D—C3D—H3D120.6C4B—C3B—H3B119.9
C3D—C4D—H4D119.4C3B—C4B—H4B119.4
C3D—C4D—C5D121.2 (5)C3B—C4B—C5B121.2 (5)
C5D—C4D—H4D119.4C5B—C4B—H4B119.4
C4D—C5D—H5D120.0C4B—C5B—H5B120.5
C6D—C5D—C4D120.0 (5)C6B—C5B—C4B118.9 (6)
C6D—C5D—H5D120.0C6B—C5B—H5B120.6
C5D—C6D—H6D119.6C5B—C6B—H6B119.2
C5D—C6D—C7D120.7 (5)C5B—C6B—C7B121.6 (5)
C7D—C6D—H6D119.6C7B—C6B—H6B119.2
C2D—C7D—C8D118.8 (4)C2B—C7B—C8B119.2 (5)
C6D—C7D—C2D118.5 (4)C6B—C7B—C2B117.9 (5)
C6D—C7D—C8D122.7 (5)C6B—C7B—C8B122.9 (5)
C7D—C8D—H8D115.7C7B—C8B—H8B115.7
C9D—C8D—C7D128.6 (5)C9B—C8B—C7B128.6 (5)
C9D—C8D—H8D115.7C9B—C8B—H8B115.7
C8D—C9D—H9D120.1C8B—C9B—H9B120.2
C8D—C9D—C10D119.8 (4)C8B—C9B—C10B119.6 (4)
C10D—C9D—H9D120.1C10B—C9B—H9B120.2
O2D—C10D—C9D122.1 (4)O2B—C10B—C9B121.9 (5)
O2D—C10D—C11D117.5 (4)O2B—C10B—C11B118.1 (4)
C9D—C10D—C11D120.3 (4)C9B—C10B—C11B120.0 (4)
C10D—C11D—S1D113.3 (3)C10B—C11B—S1B113.0 (4)
C12D—C11D—S1D109.7 (4)C12B—C11B—S1B109.7 (4)
C12D—C11D—C10D137.0 (5)C12B—C11B—C10B137.3 (5)
C11D—C12D—Br1D127.0 (4)C11B—C12B—Br1B127.1 (4)
C11D—C12D—C13D113.9 (5)C11B—C12B—C13B114.3 (5)
C13D—C12D—Br1D119.0 (4)C13B—C12B—Br1B118.6 (4)
C12D—C13D—H13D124.3C12B—C13B—H13B124.5
C14D—C13D—C12D111.4 (5)C14B—C13B—C12B111.0 (5)
C14D—C13D—H13D124.3C14B—C13B—H13B124.5
S1D—C14D—H14D123.5S1B—C14B—H14B123.9
C13D—C14D—S1D113.0 (4)C13B—C14B—S1B112.2 (4)
C13D—C14D—H14D123.5C13B—C14B—H14B123.9
Br1C—C12C—C13C—C14C179.2 (4)Br1A—C12A—C13A—C14A179.2 (4)
S1C—C11C—C12C—Br1C178.8 (3)S1A—C11A—C12A—Br1A178.5 (3)
S1C—C11C—C12C—C13C0.3 (6)S1A—C11A—C12A—C13A0.3 (6)
O1C—C2C—C3C—C4C179.4 (5)O1A—C2A—C3A—C4A179.9 (5)
O1C—C2C—C7C—C6C179.2 (5)O1A—C2A—C7A—C6A179.4 (5)
O1C—C2C—C7C—C8C1.0 (7)O1A—C2A—C7A—C8A0.1 (6)
O2C—C10C—C11C—S1C2.3 (6)O2A—C10A—C11A—S1A2.4 (6)
O2C—C10C—C11C—C12C174.3 (5)O2A—C10A—C11A—C12A174.3 (5)
C1C—O1C—C2C—C3C1.7 (8)C1A—O1A—C2A—C3A3.4 (7)
C1C—O1C—C2C—C7C177.2 (4)C1A—O1A—C2A—C7A177.4 (4)
C2C—C3C—C4C—C5C1.3 (9)C2A—C3A—C4A—C5A0.5 (9)
C2C—C7C—C8C—C9C178.1 (5)C2A—C7A—C8A—C9A176.5 (4)
C3C—C2C—C7C—C6C0.2 (7)C3A—C2A—C7A—C6A1.3 (7)
C3C—C2C—C7C—C8C179.9 (4)C3A—C2A—C7A—C8A179.2 (4)
C3C—C4C—C5C—C6C1.6 (9)C3A—C4A—C5A—C6A1.4 (9)
C4C—C5C—C6C—C7C1.3 (9)C4A—C5A—C6A—C7A0.9 (9)
C5C—C6C—C7C—C2C0.6 (8)C5A—C6A—C7A—C2A0.4 (8)
C5C—C6C—C7C—C8C179.5 (5)C5A—C6A—C7A—C8A179.9 (5)
C6C—C7C—C8C—C9C2.1 (9)C6A—C7A—C8A—C9A3.0 (8)
C7C—C2C—C3C—C4C0.5 (8)C7A—C2A—C3A—C4A0.9 (8)
C7C—C8C—C9C—C10C177.3 (4)C7A—C8A—C9A—C10A176.8 (4)
C8C—C9C—C10C—O2C7.8 (8)C8A—C9A—C10A—O2A8.6 (7)
C8C—C9C—C10C—C11C172.9 (4)C8A—C9A—C10A—C11A171.6 (4)
C9C—C10C—C11C—S1C177.0 (4)C9A—C10A—C11A—S1A177.4 (3)
C9C—C10C—C11C—C12C6.4 (8)C9A—C10A—C11A—C12A5.9 (8)
C10C—C11C—C12C—Br1C2.1 (9)C10A—C11A—C12A—Br1A1.7 (9)
C10C—C11C—C12C—C13C176.9 (5)C10A—C11A—C12A—C13A177.0 (5)
C11C—S1C—C14C—C13C0.5 (5)C11A—S1A—C14A—C13A0.8 (5)
C11C—C12C—C13C—C14C0.1 (7)C11A—C12A—C13A—C14A0.4 (7)
C12C—C13C—C14C—S1C0.4 (6)C12A—C13A—C14A—S1A0.8 (7)
C14C—S1C—C11C—C10C177.9 (3)C14A—S1A—C11A—C10A178.2 (4)
C14C—S1C—C11C—C12C0.5 (4)C14A—S1A—C11A—C12A0.6 (4)
Br1D—C12D—C13D—C14D177.7 (4)Br1B—C12B—C13B—C14B178.6 (4)
S1D—C11D—C12D—Br1D178.3 (3)S1B—C11B—C12B—Br1B179.0 (3)
S1D—C11D—C12D—C13D2.3 (5)S1B—C11B—C12B—C13B0.0 (5)
O1D—C2D—C3D—C4D178.4 (5)O1B—C2B—C3B—C4B178.9 (5)
O1D—C2D—C7D—C6D179.6 (5)O1B—C2B—C7B—C6B179.0 (4)
O1D—C2D—C7D—C8D0.1 (7)O1B—C2B—C7B—C8B0.6 (7)
O2D—C10D—C11D—S1D3.4 (6)O2B—C10B—C11B—S1B1.9 (6)
O2D—C10D—C11D—C12D176.5 (5)O2B—C10B—C11B—C12B175.8 (5)
C1D—O1D—C2D—C3D2.2 (8)C1B—O1B—C2B—C3B1.4 (7)
C1D—O1D—C2D—C7D178.0 (4)C1B—O1B—C2B—C7B178.4 (4)
C2D—C3D—C4D—C5D3.9 (9)C2B—C3B—C4B—C5B1.0 (9)
C2D—C7D—C8D—C9D177.0 (5)C2B—C7B—C8B—C9B178.6 (5)
C3D—C2D—C7D—C6D0.6 (7)C3B—C2B—C7B—C6B0.9 (7)
C3D—C2D—C7D—C8D179.9 (5)C3B—C2B—C7B—C8B179.6 (4)
C3D—C4D—C5D—C6D4.5 (9)C3B—C4B—C5B—C6B1.1 (9)
C4D—C5D—C6D—C7D2.5 (9)C4B—C5B—C6B—C7B1.0 (9)
C5D—C6D—C7D—C2D0.1 (8)C5B—C6B—C7B—C2B0.9 (8)
C5D—C6D—C7D—C8D179.6 (5)C5B—C6B—C7B—C8B179.5 (5)
C6D—C7D—C8D—C9D2.5 (9)C6B—C7B—C8B—C9B0.9 (8)
C7D—C2D—C3D—C4D1.3 (8)C7B—C2B—C3B—C4B0.9 (8)
C7D—C8D—C9D—C10D176.3 (4)C7B—C8B—C9B—C10B177.1 (4)
C8D—C9D—C10D—O2D7.7 (8)C8B—C9B—C10B—O2B7.7 (7)
C8D—C9D—C10D—C11D171.6 (4)C8B—C9B—C10B—C11B173.6 (4)
C9D—C10D—C11D—S1D177.2 (3)C9B—C10B—C11B—S1B176.9 (3)
C9D—C10D—C11D—C12D2.9 (8)C9B—C10B—C11B—C12B5.4 (9)
C10D—C11D—C12D—Br1D1.6 (8)C10B—C11B—C12B—Br1B1.2 (9)
C10D—C11D—C12D—C13D177.6 (5)C10B—C11B—C12B—C13B177.8 (5)
C11D—S1D—C14D—C13D1.4 (5)C11B—S1B—C14B—C13B0.7 (5)
C11D—C12D—C13D—C14D1.3 (7)C11B—C12B—C13B—C14B0.5 (7)
C12D—C13D—C14D—S1D0.3 (7)C12B—C13B—C14B—S1B0.8 (6)
C14D—S1D—C11D—C10D177.8 (4)C14B—S1B—C11B—C10B178.0 (4)
C14D—S1D—C11D—C12D2.1 (4)C14B—S1B—C11B—C12B0.4 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C9C—H9C···Br1C0.952.683.401 (5)133
C9D—H9D···Br1D0.952.693.405 (4)133
C9A—H9A···Br1A0.952.693.398 (5)132
C9B—H9B···Br1B0.952.683.401 (5)133
(II) (2E)-1-(3-Bromothiophen-2-yl)-3-(3,4-dimethoxyphenyl)prop-2-en-1-one top
Crystal data top
C15H13BrO3SF(000) = 1424
Mr = 353.22Dx = 1.664 Mg m3
Monoclinic, I2/aCu Kα radiation, λ = 1.54184 Å
a = 13.4748 (7) ÅCell parameters from 2804 reflections
b = 8.3853 (3) Åθ = 5.5–71.4°
c = 25.0214 (9) ŵ = 5.40 mm1
β = 93.957 (4)°T = 173 K
V = 2820.4 (2) Å3Irregular, yellow
Z = 80.32 × 0.28 × 0.22 mm
Data collection top
Agilent Eos Gemini
diffractometer
2690 independent reflections
Radiation source: Enhance (Cu) X-ray Source2399 reflections with I > 2σ(I)
Detector resolution: 16.0416 pixels mm-1Rint = 0.026
ω scansθmax = 71.4°, θmin = 3.5°
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2014)
h = 1316
Tmin = 0.726, Tmax = 1.000k = 710
5523 measured reflectionsl = 3023
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.074H-atom parameters constrained
wR(F2) = 0.187 w = 1/[σ2(Fo2) + (0.0864P)2 + 41.1386P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max < 0.001
2690 reflectionsΔρmax = 3.38 e Å3
183 parametersΔρmin = 2.20 e Å3
0 restraints
Special details top

Experimental. Absorption correction: CrysAlisPro, Agilent Technologies, Version 1.171.37.31 (release 14-01-2014 CrysAlis171 .NET) (compiled Jan 14 2014,18:38:05) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.61968 (8)0.91781 (8)0.53629 (3)0.0580 (3)
S10.64474 (11)0.66323 (16)0.68963 (5)0.0276 (3)
O10.6334 (3)0.3966 (4)0.61923 (14)0.0274 (8)
O20.5945 (3)0.6136 (4)0.32362 (14)0.0240 (8)
O30.6189 (3)0.3395 (4)0.28114 (13)0.0240 (8)
C10.6314 (3)0.5174 (6)0.59246 (18)0.0182 (9)
C20.6360 (3)0.6745 (6)0.62051 (18)0.0177 (9)
C30.6336 (4)0.8322 (6)0.60615 (19)0.0218 (10)
C40.6394 (4)0.9416 (7)0.6490 (2)0.0272 (11)
H40.63881.05420.64490.033*
C50.6460 (4)0.8652 (7)0.6967 (2)0.0296 (12)
H50.65080.91820.73040.035*
C60.6245 (4)0.5171 (6)0.53382 (19)0.0235 (10)
H60.61730.61590.51530.028*
C70.6282 (4)0.3831 (6)0.50554 (19)0.0204 (10)
H70.63440.28620.52520.025*
C80.6235 (4)0.3708 (6)0.44730 (19)0.0191 (9)
C90.6359 (4)0.2233 (6)0.4232 (2)0.0233 (10)
H90.64600.13120.44500.028*
C100.6339 (4)0.2082 (6)0.3679 (2)0.0226 (10)
H100.64170.10600.35230.027*
C110.6207 (4)0.3397 (6)0.33556 (18)0.0185 (9)
C120.6083 (3)0.4915 (5)0.35916 (19)0.0173 (9)
C130.6105 (3)0.5049 (6)0.41371 (19)0.0182 (9)
H130.60310.60710.42930.022*
C140.6252 (4)0.1871 (6)0.2557 (2)0.0280 (11)
H14A0.62360.20160.21680.042*
H14B0.56880.12080.26470.042*
H14C0.68760.13470.26820.042*
C150.5831 (5)0.7695 (6)0.3449 (2)0.0299 (12)
H15A0.57050.84550.31550.045*
H15B0.64400.79990.36610.045*
H15C0.52690.77040.36780.045*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.1252 (8)0.0253 (4)0.0221 (4)0.0140 (4)0.0044 (4)0.0097 (2)
S10.0458 (8)0.0257 (7)0.0108 (6)0.0012 (5)0.0015 (5)0.0002 (5)
O10.044 (2)0.0208 (18)0.0174 (17)0.0012 (16)0.0004 (15)0.0032 (14)
O20.044 (2)0.0126 (16)0.0151 (17)0.0035 (15)0.0004 (14)0.0028 (13)
O30.045 (2)0.0161 (17)0.0111 (16)0.0013 (15)0.0015 (14)0.0022 (13)
C10.020 (2)0.020 (2)0.015 (2)0.0015 (18)0.0009 (17)0.0015 (18)
C20.020 (2)0.021 (2)0.011 (2)0.0017 (18)0.0024 (16)0.0006 (18)
C30.030 (2)0.022 (2)0.014 (2)0.005 (2)0.0001 (18)0.0026 (19)
C40.033 (3)0.021 (2)0.028 (3)0.002 (2)0.001 (2)0.006 (2)
C50.032 (3)0.032 (3)0.024 (3)0.001 (2)0.001 (2)0.011 (2)
C60.036 (3)0.019 (2)0.015 (2)0.001 (2)0.0031 (19)0.0007 (18)
C70.026 (2)0.019 (2)0.015 (2)0.0017 (19)0.0029 (18)0.0020 (18)
C80.025 (2)0.019 (2)0.013 (2)0.0018 (19)0.0029 (17)0.0012 (18)
C90.038 (3)0.012 (2)0.019 (2)0.000 (2)0.001 (2)0.0038 (18)
C100.034 (3)0.013 (2)0.020 (2)0.0013 (19)0.0009 (19)0.0029 (19)
C110.026 (2)0.015 (2)0.014 (2)0.0001 (18)0.0000 (17)0.0025 (18)
C120.021 (2)0.012 (2)0.018 (2)0.0017 (17)0.0006 (16)0.0016 (18)
C130.024 (2)0.013 (2)0.017 (2)0.0008 (18)0.0012 (17)0.0034 (18)
C140.046 (3)0.021 (3)0.017 (2)0.000 (2)0.000 (2)0.007 (2)
C150.048 (3)0.012 (2)0.029 (3)0.001 (2)0.002 (2)0.002 (2)
Geometric parameters (Å, º) top
Br1—C31.887 (5)C7—H70.9500
S1—C21.728 (5)C7—C81.458 (7)
S1—C51.703 (6)C8—C91.391 (7)
O1—C11.213 (6)C8—C131.407 (7)
O2—C121.360 (6)C9—H90.9500
O2—C151.424 (6)C9—C101.388 (7)
O3—C111.360 (6)C10—H100.9500
O3—C141.433 (6)C10—C111.372 (7)
C1—C21.492 (7)C11—C121.417 (6)
C1—C61.464 (6)C12—C131.368 (7)
C2—C31.370 (7)C13—H130.9500
C3—C41.409 (7)C14—H14A0.9800
C4—H40.9500C14—H14B0.9800
C4—C51.353 (8)C14—H14C0.9800
C5—H50.9500C15—H15A0.9800
C6—H60.9500C15—H15B0.9800
C6—C71.331 (7)C15—H15C0.9800
C5—S1—C292.8 (3)C8—C9—H9119.4
C12—O2—C15117.4 (4)C10—C9—C8121.2 (4)
C11—O3—C14116.7 (4)C10—C9—H9119.4
O1—C1—C2118.6 (4)C9—C10—H10119.7
O1—C1—C6123.3 (5)C11—C10—C9120.5 (4)
C6—C1—C2118.0 (4)C11—C10—H10119.7
C1—C2—S1114.8 (3)O3—C11—C10125.6 (4)
C3—C2—S1108.3 (4)O3—C11—C12115.1 (4)
C3—C2—C1136.8 (4)C10—C11—C12119.3 (4)
C2—C3—Br1127.5 (4)O2—C12—C11114.7 (4)
C2—C3—C4115.4 (5)O2—C12—C13125.6 (4)
C4—C3—Br1117.0 (4)C13—C12—C11119.6 (4)
C3—C4—H4124.4C8—C13—H13119.2
C5—C4—C3111.2 (5)C12—C13—C8121.6 (4)
C5—C4—H4124.4C12—C13—H13119.2
S1—C5—H5123.9O3—C14—H14A109.5
C4—C5—S1112.2 (4)O3—C14—H14B109.5
C4—C5—H5123.9O3—C14—H14C109.5
C1—C6—H6118.9H14A—C14—H14B109.5
C7—C6—C1122.1 (5)H14A—C14—H14C109.5
C7—C6—H6118.9H14B—C14—H14C109.5
C6—C7—H7116.9O2—C15—H15A109.5
C6—C7—C8126.2 (5)O2—C15—H15B109.5
C8—C7—H7116.9O2—C15—H15C109.5
C9—C8—C7119.8 (4)H15A—C15—H15B109.5
C9—C8—C13117.7 (4)H15A—C15—H15C109.5
C13—C8—C7122.4 (4)H15B—C15—H15C109.5
Br1—C3—C4—C5178.1 (4)C6—C1—C2—S1179.6 (4)
S1—C2—C3—Br1177.5 (3)C6—C1—C2—C31.8 (8)
S1—C2—C3—C40.6 (6)C6—C7—C8—C9175.0 (5)
O1—C1—C2—S10.3 (6)C6—C7—C8—C132.4 (8)
O1—C1—C2—C3178.2 (6)C7—C8—C9—C10178.7 (5)
O1—C1—C6—C75.5 (8)C7—C8—C13—C12178.6 (4)
O2—C12—C13—C8178.8 (4)C8—C9—C10—C110.8 (8)
O3—C11—C12—O21.3 (6)C9—C8—C13—C121.1 (7)
O3—C11—C12—C13179.0 (4)C9—C10—C11—O3179.0 (5)
C1—C2—C3—Br11.1 (9)C9—C10—C11—C120.5 (8)
C1—C2—C3—C4179.2 (5)C10—C11—C12—O2179.2 (4)
C1—C6—C7—C8179.1 (5)C10—C11—C12—C130.5 (7)
C2—S1—C5—C40.5 (5)C11—C12—C13—C80.8 (7)
C2—C1—C6—C7174.4 (5)C13—C8—C9—C101.1 (8)
C2—C3—C4—C50.2 (7)C14—O3—C11—C104.1 (7)
C3—C4—C5—S10.2 (6)C14—O3—C11—C12176.4 (4)
C5—S1—C2—C1179.5 (4)C15—O2—C12—C11179.1 (4)
C5—S1—C2—C30.6 (4)C15—O2—C12—C131.3 (7)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5···O2i0.952.523.301 (6)140
C5—H5···O3i0.952.453.291 (6)148
C6—H6···Br10.952.593.361 (5)139
C14—H14A···O1ii0.982.593.495 (6)154
Symmetry codes: (i) x, y+3/2, z+1/2; (ii) x, y+1/2, z1/2.
Selected torsional and dihedral angles (°) for compounds (I), (II), (III), (IV) and (V) top
Dihedral 1 represents the dihedral angle between the mean planes of the phenyl and thiophene rings, Dihedral 2 represents the dihedral angle between the mean planes of the thiophene ring and the keto unit, and Dihedral 3 represents the dihedral angle between the mean planes of the phenyl ring and the keto unit.
Parameter(I)(II)(III)(IV)(V)
C12A—C11A—C10A—O2A174.3 (5)
C12B—C11B—C10B—O2B175.8 (5)
C12C—C11C—C10C—O2C174.3 (5)
C12D—C11D—C10D—O2D176.5 (5)
C3—C2—C1—O1-178.2 (6)
C3A—C4A—C5A—O1A-176.5 (7)
C3B—C4B—C5B—O1B178.2 (8)
C3—C4—C5—O1161.0 (3)
C2—C1—C5—O53.3 (8)
Dihedral 111.3 (6)
10.9 (6)
11.3 (6)
11.1 (1)
8.4 (2)
4.9 (7)
12.2 (4)
19.5 (7)
7.1 (8)
Dihedral 24.1 (4)
3.4 (9)
3.0 (3)
3.3 (2)
0.9 (9)
2.8 (2)
5.1 (1)
18.6 (3)
4.0 (9)
Dihedral 37.4 (3)
7.7 (5)
7.3 (1)
7.6 (6)
9.1 (1)
3.8 (2)
9.8 (9)
10.2 (0)
3.8 (7)
Hydrogen bonds and short intermolecular contacts (Å, °) for compounds (I), (II), (III), (IV) and (V) top
Cg2(I) represents the centroid of the ring C2A–C7A, Cg4(I) represents the centroid of the ring C2B–C7B, Cg6(I) represents the centroid of the ring C2C–C7C, Cg8(I) represents the centroid of the ring C2D–C7D, Cg1(II) represents the centroid of the ring S1/C2–C5, Cg1(III) represents the centroid of the ring S1A/C1A–C4A, Cg2(III) represents the centroid of the ring C8A–C13A, Cg3(III) represents the centroid of the ring S1B/C1B–C4B.
CompoundD—H···AD—HH···AD···AD—H···A
(I)C9A—H9A···Br1A0.952.683.400 (5)132
C9B—H9B···Br1B0.952.683.401 (5)132
C9C—H9C···Br1C0.952.683.400 (5)133
C9D—H9D···Br1D0.952.683.405 (4)133
C13A—H13A···Cg8i2.963.678 (6)134
C13B—H13B···Cg6ii2.963.666 (6)132
C13C—H13C···Cg4iii2.953.667 (6)133
C13D—H13D···Cg2iv2.943.664 (5)134
(II)C5—H5···O2v0.952.523.301 (6)140
C5—H5···O3vi0.952.453.291 (6)147
C14—H14A···O1vii0.982.593.495 (6)154
C6—H6···Br10.952.593.361 (5)139
C15—H15B···Cg1(II)viii2.983.734 (7)135
(III)C6A—H6AA···Br1A0.952.613.1367 (3)137
C6B—H6BA···Br1B0.952.683.421 (8)135
C1A—H1A···Cg2(III)ix2.873.566 (8)131
C10A—H10A···Cg1(III)x3.003.668 (8)129
C10B—H10B···Cg3(III)xi2.923.659 (8)135
(IV)C1—H1···O2xii0.952.543.457 (3)162
C14—H14B···O1xiii0.982.453.300 (4)145
C6—H6···Br10.952.733.410 (3)129
(V)C4—H4···O5xiv0.962.373.296 (3)164
C17—H17···O5xv0.982.413.331 (9)157
C6—H6···Br10.952.683.394 (7)133
Symmetry codes: (i) 1 - x, 1 - y, -z; (ii) -x, 1 - y, -z; (iii) -x, 1 - y, 1 - z; (iv) 1 - x, 1/2 + y, 1/2 - z; (v) x, 3/2 - y, 1/2 + z; (vi) x, 3/2 - y, 3/2 + z; (vii) x, 1/2 - y, -1/2 + z; (viii) 1/2 - x, -1/2 + y, 1/2 - z; (ix) 1/2 + x, - y, z; (x) -1/2 - x, 1 - y, z; (xi) 1/2 + x, -y, z; (xii) x, y, -1 + z; (xiii) -x, 1/2 + y, 1 - z; (xiv) 3 - x, 1/2 + y, 2 - z; (xv) 1 - x, -1/2 + y, 2 - z.
 

Acknowledgements

VSN thanks the Gokhale Centenary College, Ankola, for research facilities. JPJ acknowledges the NSF–MRI program (grant No. 1039027) for funds to purchase the X-ray diffractometer.

References

First citationAgilent (2012). CrysAlis PRO and CrysAlis RED. Agilent Technologies Ltd, Yarnton, England.  Google Scholar
First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationAshalatha, B. V., Narayana, B. & Vijaya Raj, K. K. (2009). Phosphorus Sulfur Silicon, 184, 1904–1919.  Web of Science CrossRef CAS Google Scholar
First citationButcher, R. J., Jasinski, J. P., Yathirajan, H. S., Ashalatha, B. V. & Narayana, B. (2007d). Acta Cryst. E63, o3705–o3706.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationButcher, R. J., Yathirajan, H. S., Ashalatha, B. V., Narayana, B. & Sarojini, B. K. (2007a). Acta Cryst. E63, o1005–o1007.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationButcher, R. J., Yathirajan, H. S., Ashalatha, B. V., Narayana, B. & Sarojini, B. K. (2007b). Acta Cryst. E63, o1201–o1203.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationButcher, R. J., Yathirajan, H. S., Ashalatha, B. V., Narayana, B. & Sarojini, B. K. (2007c). Acta Cryst. E63, o1430–o1431.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationDi Carlo, G., Mascolo, N., Izzo, A. A. & Capasso, F. (1999). Life Sci. 65, 337–353.  Web of Science CrossRef PubMed CAS Google Scholar
First citationDimmock, J. R., Elias, D. W., Beazely, M. A. & Kandepu, N. M. (1999). Curr. Med. Chem. 6, 1125–1149.  Web of Science PubMed CAS Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGoto, Y., Hayashi, A., Kimura, Y. & Nakayama, M. (1991). J. Cryst. Growth, 108, 688–698.  CrossRef CAS Web of Science Google Scholar
First citationHarrison, W. T. A., Yathirajan, H. S., Ashalatha, B. V., Bindya, S. & Narayana, B. (2006). Acta Cryst. E62, o4164–o4165.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationIndira, J., Karat, P. P. & Sarojini, B. K. (2002). J. Cryst. Growth, 242, 209–214.  Web of Science CrossRef CAS Google Scholar
First citationLin, Y. M., Zhou, Y., Flavin, M. T., Zhou, L. M., Nie, W. & Chen, F. C. (2002). Bioorg. Med. Chem. 10, 2795–2802.  Web of Science CrossRef PubMed CAS Google Scholar
First citationOpletalová, V. & Sedivý, D. (1999). Ceska Slov. Farm. 48, 252–255.  PubMed Google Scholar
First citationSarojini, B. K., Narayana, B., Ashalatha, B. V., Indira, J. & Lobo, K. G. (2006). J. Cryst. Growth, 295, 54–59.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYathirajan, H. S., Ashalatha, B., Narayana, B., Bindya, S. & Bolte, M. (2006). Acta Cryst. E62, o4551–o4553.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationYathirajan, H. S., Narayana, B., Ashalatha, B. V., Sarojini, B. K. & Bolte, M. (2006a). Acta Cryst. E62, o5010–o5012.  CSD CrossRef IUCr Journals Google Scholar
First citationYathirajan, H. S., Sarojini, B. K., Narayana, B., Ashalatha, B. V. & Bolte, M. (2006b). Acta Cryst. E62, o3964–o3965.  CSD CrossRef IUCr Journals Google Scholar
First citationYathirajan, H. S., Sarojini, B. K., Narayana, B., Bindya, S. & Bolte, M. (2006c). Acta Cryst. E62, o4048–o4049.  CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds