organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Benzyl­sulfanyl-4-pentyl-6-(phenyl­sulfan­yl)pyrimidine-5-carbo­nitrile

aDepartment of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia, bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia, and cChemistry Department, Faculty of Science, King Abdulaziz University, PO Box 80203 Jeddah, Saudi Arabia
*Correspondence e-mail: edward.tiekink@gmail.com

(Received 26 October 2011; accepted 26 October 2011; online 29 October 2011)

In the title pyrimidine derivative, C23H23N3S2, the phenyl­sulfanyl and benzyl­sulfanyl benzene rings are orientated away from the carbonitrile group and are twisted out of the plane of the central ring with dihedral angles of 77.66 (6) and 64.73 (5)°, respectively. The n-pentyl group has an extended trans conformation. In the crystal, supra­molecular layers in the ab plane are sustained by C—H⋯π and ππ inter­actions [pyrimidine–phenyl­sulfanyl centroid–centroid distance = 3.8087 (7) Å].

Related literature

For the chemotherapeutic activity of pyrimidine derivatives, see: Al-Safarjalani et al. (2005[Al-Safarjalani, O. N., Zhou, X., Rais, R. H., Shi, J., Schinazi, R. F., Naguib, F. N. M. & El Kouni, M. H. (2005). Cancer Chemother. Pharmacol. 55, 541-551.]); Pauwels (2004[Pauwels, R. (2004). Curr. Opin. Pharmacol. 4, 437-446.]); Hawser et al. (2006[Hawser, S., Lociuro, S. & Islam, K. (2006). Biochem. Pharmacol. 71, 941-948.]), Al-Omar et al. (2010[Al-Omar, M. A., Al-Obaid, A. M., El-Brollosy, N. R. & El-Emam, A. A. (2010). Synth. Commun. 40, 1530-1538.]); Al-Abdullah et al. (2011[Al-Abdullah, E. S., Al-Obaid, A. M., Al-Deeb, O. A., Habib, E. E. & El-Emam, A. A. (2011). Eur. J. Med. Chem. 46, 4642-4647.]). For a related pyrimidine structure, see: Nasir et al. (2010[Nasir, S. B., Abdullah, Z., Fairuz, Z. A., Ng, S. W. & Tiekink, E. R. T. (2010). Acta Cryst. E66, o2187.]).

[Scheme 1]

Experimental

Crystal data
  • C23H23N3S2

  • Mr = 405.56

  • Monoclinic, P 21 /n

  • a = 9.0093 (1) Å

  • b = 8.2137 (1) Å

  • c = 28.6398 (3) Å

  • β = 98.427 (1)°

  • V = 2096.45 (4) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 2.39 mm−1

  • T = 100 K

  • 0.25 × 0.25 × 0.15 mm

Data collection
  • Agilent SuperNova Dual diffractometer with an Atlas detector

  • Absorption correction: multi-scan (CrysAlis PRO: Agilent, 2010[Agilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, England.]) Tmin = 0.586, Tmax = 0.715

  • 8836 measured reflections

  • 4307 independent reflections

  • 4029 reflections with I > 2σ(I)

  • Rint = 0.017

Refinement
  • R[F2 > 2σ(F2)] = 0.030

  • wR(F2) = 0.084

  • S = 1.02

  • 4307 reflections

  • 253 parameters

  • H-atom parameters constrained

  • Δρmax = 0.26 e Å−3

  • Δρmin = −0.26 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C6–C11 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C21—H21b⋯Cg1i 0.99 3.00 3.8443 (14) 148
Symmetry code: (i) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: CrysAlis PRO (Agilent, 2010[Agilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

The chemotherapeutic efficacy of pyrimidine derivatives is related to their ability to inhibit vital enzymes responsible for DNA biosynthesis. A large array of pyrimidine non-nucleoside derivatives possess various chemotherapeutic properties. These properties include anti-cancer (Al-Safarjalani et al., 2005), anti-viral (Pauwels, 2004), anti-bacterial (Hawser et al., 2006; Al-Abdullah et al., 2011). In continuation to our interest in the chemical and pharmacological properties of pyrimidine-5-carbonitrile derivatives (Al-Omar et al., 2010; Al-Abdullah et al., 2011), we synthesized the title compound, (I), as a potential chemotherapeutic agent, and as part of on-going structural studies of pyrimidine derivatives (Nasir et al., 2010), the crystal structure determination is reported herein.

The molecule of (I), Fig. 1, is a tetra-substituted pyrimidine derivative. With reference to the pyrimidine ring, the S-benzene and benzyl-benzene rings are each twisted out of the plane as indicated in the respective dihedral angles of 77.66 (6) and 64.73 (5)°. The dihedral angle between the benzene rings is 51.74 (6)°, indicating a non-parallel orientation, and they are directed to the same side of the molecule, i.e. away from the carbonitrile group. The n-pentyl group has an extended trans-conformation: the range of torsion angles = 174.92 (10) to -179.41 (12)°.

Weak C—H···π, Table 1, and ππ interactions feature in the crystal packing. The ππ interactions occur between the pyrimidine and S-benzene ring with the separation between the ring centroids being 3.8087 (7) Å [angle between rings = 14.45 (6)° for symmetry operation 3/2 - x, 1/2 + y, 1/2 - z]. The C—H···π interaction involves a methylene-H atom interacting with the benzyl-benzene ring. The interactions lead to supramolecular layers that inter-digitate along the c axis. Globally, the crystal structure comprises alternating pyrimidine-rich and aromatic regions stacking along the c direction.

Related literature top

For the chemotherapeutic activity of pyrimidine derivatives, see: Al-Safarjalani et al. (2005); Pauwels (2004); Hawser et al. (2006), Al-Omar et al. (2010); Al-Abdullah et al. (2011). For a related pyrimidine structure, see: Nasir et al. (2010).

Experimental top

To a solution of 2-(benzylthio)-4-chloro-6-(n-pentyl)pyrimidine-5-carbonitrile (665 mg, 2.0 mmol) in dry pyridine (3 ml) was added thiophenol (220 mg, 2.0 mmol). The mixture was heated for 6 h. On cooling, the solvent was distilled off in vacuo, and water (5 ml) was added to the residue. The precipitate was filtered, washed with cold water, dried and crystallized from ethanol to yield 625 mg (77%) of the title compound as colourless crystals, M.pt. 373–375 K. 1H NMR (DMSO-d6): δ 0.86 (t, 3H, CH3, J = 7.0 Hz), 1.30–1.33 (m, 4H, CH2CH2CH3), 1.66–1.69 (m, 2H, CH2—CH2CH2CH3), 2.77 (t, 2H, CH2—CH2CH2CH2CH3, J = 7.0 Hz), 3.99 (s, 2H, CH2S), 6.99–7.0 (m, 2H, Ar—H), 7.15–7.22 (m, 3H, Ar—H), 7.50–7.52 (m, 3H, Ar—H), 7.66–7.68 (m, 2H, Ar—H). 13C NMR: 13.70 (CH3), 21.72 (CH2CH3), 26.93 (CH2CH2CH3), 30.62 (CH2CH2CH2CH3), 33.97 (CH2CH2CH2CH2CH3), 35.64 (CH2S), 98.94 (pym. ring), 114.22 (CN), 125.17, 127.12, 128.30, 128.63, 129.56, 130.47, 135.81, 137.0 (Ar—C), 171.98, 172.71, 172.85 (pym. ring).

Refinement top

Carbon-bound H-atoms were placed in calculated positions [C—H 0.95 to 0.99 Å, Uiso(H) 1.2 to 1.5Ueq(C)] and were included in the refinement in the riding model approximation. One reflection, i.e. (002), was omitted owing to poor agreement.

Computing details top

Data collection: CrysAlis PRO (Agilent, 2010); cell refinement: CrysAlis PRO (Agilent, 2010); data reduction: CrysAlis PRO (Agilent, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing the atom-labelling scheme and displacement ellipsoids at the 50% probability level.
[Figure 2] Fig. 2. Unit-cell contents for (I) shown in projection down the a axis. The C—H···π and ππ interactions are shown as orange and purple dashed lines, respectively.
2-Benzylsulfanyl-4-pentyl-6-(phenylsulfanyl)pyrimidine-5-carbonitrile top
Crystal data top
C23H23N3S2F(000) = 856
Mr = 405.56Dx = 1.285 Mg m3
Monoclinic, P21/nCu Kα radiation, λ = 1.54184 Å
Hall symbol: -P 2ynCell parameters from 5846 reflections
a = 9.0093 (1) Åθ = 3.1–76.4°
b = 8.2137 (1) ŵ = 2.39 mm1
c = 28.6398 (3) ÅT = 100 K
β = 98.427 (1)°Block, colourless
V = 2096.45 (4) Å30.25 × 0.25 × 0.15 mm
Z = 4
Data collection top
Agilent SuperNova Dual
diffractometer with an Atlas detector
4307 independent reflections
Radiation source: SuperNova (Cu) X-ray Source4029 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.017
Detector resolution: 10.4041 pixels mm-1θmax = 76.6°, θmin = 5.0°
ω scanh = 119
Absorption correction: multi-scan
(CrysAlis PRO: Agilent, 2010)
k = 1010
Tmin = 0.586, Tmax = 0.715l = 3533
8836 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.030Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.084H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0513P)2 + 0.5251P]
where P = (Fo2 + 2Fc2)/3
4307 reflections(Δ/σ)max = 0.001
253 parametersΔρmax = 0.26 e Å3
0 restraintsΔρmin = 0.26 e Å3
Crystal data top
C23H23N3S2V = 2096.45 (4) Å3
Mr = 405.56Z = 4
Monoclinic, P21/nCu Kα radiation
a = 9.0093 (1) ŵ = 2.39 mm1
b = 8.2137 (1) ÅT = 100 K
c = 28.6398 (3) Å0.25 × 0.25 × 0.15 mm
β = 98.427 (1)°
Data collection top
Agilent SuperNova Dual
diffractometer with an Atlas detector
4307 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO: Agilent, 2010)
4029 reflections with I > 2σ(I)
Tmin = 0.586, Tmax = 0.715Rint = 0.017
8836 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0300 restraints
wR(F2) = 0.084H-atom parameters constrained
S = 1.02Δρmax = 0.26 e Å3
4307 reflectionsΔρmin = 0.26 e Å3
253 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.30604 (3)0.80793 (4)0.220499 (10)0.02127 (9)
S20.67551 (3)0.34287 (4)0.296075 (10)0.02388 (9)
N10.40792 (11)0.79888 (13)0.31052 (3)0.0209 (2)
N20.48869 (10)0.58292 (12)0.26357 (3)0.0190 (2)
N30.73908 (13)0.46797 (16)0.41882 (4)0.0307 (3)
C10.41211 (12)0.71875 (14)0.26995 (4)0.0182 (2)
C20.56944 (12)0.52008 (14)0.30172 (4)0.0189 (2)
C30.57250 (12)0.59182 (15)0.34636 (4)0.0196 (2)
C40.48934 (12)0.73471 (15)0.34910 (4)0.0203 (2)
C50.33729 (16)0.66417 (16)0.17420 (4)0.0272 (3)
H5A0.44380.63010.17870.033*
H5B0.27460.56600.17600.033*
C60.29747 (14)0.74341 (15)0.12657 (4)0.0217 (2)
C70.14885 (14)0.77277 (16)0.10733 (4)0.0244 (3)
H70.07050.74640.12490.029*
C80.11432 (16)0.84024 (17)0.06264 (5)0.0292 (3)
H80.01260.85950.04980.035*
C90.22769 (17)0.87966 (17)0.03667 (5)0.0325 (3)
H90.20380.92440.00590.039*
C100.37576 (17)0.85339 (18)0.05583 (5)0.0335 (3)
H100.45380.88140.03830.040*
C110.41074 (14)0.78623 (17)0.10058 (5)0.0283 (3)
H110.51280.76930.11360.034*
C120.63604 (13)0.31303 (15)0.23406 (4)0.0215 (2)
C130.70954 (14)0.40745 (16)0.20428 (5)0.0261 (3)
H130.78360.48400.21700.031*
C140.67381 (15)0.38880 (19)0.15583 (5)0.0319 (3)
H140.72120.45500.13520.038*
C150.56860 (16)0.2732 (2)0.13749 (5)0.0338 (3)
H150.54470.26000.10430.041*
C160.49858 (15)0.17724 (18)0.16746 (5)0.0320 (3)
H160.42830.09680.15480.038*
C170.53048 (14)0.19798 (16)0.21598 (5)0.0255 (3)
H170.48060.13410.23660.031*
C180.66434 (13)0.52388 (15)0.38680 (4)0.0226 (2)
C190.48584 (13)0.82239 (16)0.39484 (4)0.0235 (3)
H19A0.50410.93980.39030.028*
H19B0.56770.78070.41870.028*
C200.33583 (13)0.80131 (15)0.41337 (4)0.0215 (2)
H20A0.25490.85220.39100.026*
H20B0.31300.68380.41530.026*
C210.33978 (13)0.87849 (16)0.46189 (4)0.0224 (2)
H21A0.42330.82970.48370.027*
H21B0.36080.99620.45950.027*
C220.19546 (16)0.85754 (19)0.48265 (5)0.0326 (3)
H22A0.17480.73990.48560.039*
H22B0.11150.90550.46080.039*
C230.20205 (16)0.93742 (18)0.53094 (5)0.0318 (3)
H23A0.10690.91950.54290.048*
H23B0.21921.05460.52810.048*
H23C0.28420.88950.55280.048*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.02665 (15)0.02229 (15)0.01482 (15)0.00548 (10)0.00284 (11)0.00166 (10)
S20.03252 (17)0.02058 (15)0.01754 (15)0.00567 (11)0.00031 (11)0.00097 (11)
N10.0222 (5)0.0236 (5)0.0173 (5)0.0000 (4)0.0039 (4)0.0038 (4)
N20.0220 (4)0.0192 (5)0.0162 (4)0.0009 (4)0.0037 (4)0.0011 (4)
N30.0331 (6)0.0391 (6)0.0201 (5)0.0026 (5)0.0041 (4)0.0027 (5)
C10.0197 (5)0.0195 (5)0.0159 (5)0.0020 (4)0.0046 (4)0.0009 (4)
C20.0200 (5)0.0189 (5)0.0181 (5)0.0029 (4)0.0041 (4)0.0002 (4)
C30.0211 (5)0.0222 (6)0.0160 (5)0.0025 (4)0.0040 (4)0.0000 (4)
C40.0202 (5)0.0248 (6)0.0164 (5)0.0033 (4)0.0044 (4)0.0028 (5)
C50.0415 (7)0.0244 (6)0.0157 (6)0.0082 (5)0.0039 (5)0.0031 (5)
C60.0300 (6)0.0202 (5)0.0151 (5)0.0030 (5)0.0040 (4)0.0043 (4)
C70.0282 (6)0.0242 (6)0.0213 (6)0.0003 (5)0.0057 (5)0.0051 (5)
C80.0350 (7)0.0303 (7)0.0202 (6)0.0068 (5)0.0023 (5)0.0066 (5)
C90.0537 (8)0.0286 (7)0.0154 (6)0.0076 (6)0.0057 (5)0.0008 (5)
C100.0432 (7)0.0352 (7)0.0257 (7)0.0001 (6)0.0171 (6)0.0006 (6)
C110.0279 (6)0.0328 (7)0.0248 (6)0.0020 (5)0.0063 (5)0.0036 (5)
C120.0246 (5)0.0202 (6)0.0195 (6)0.0065 (4)0.0028 (4)0.0019 (4)
C130.0272 (6)0.0258 (6)0.0263 (6)0.0048 (5)0.0068 (5)0.0008 (5)
C140.0334 (7)0.0391 (7)0.0258 (7)0.0138 (6)0.0129 (5)0.0052 (6)
C150.0354 (7)0.0463 (8)0.0184 (6)0.0194 (6)0.0004 (5)0.0049 (6)
C160.0304 (6)0.0337 (7)0.0288 (7)0.0072 (5)0.0056 (5)0.0087 (6)
C170.0270 (6)0.0232 (6)0.0253 (6)0.0038 (5)0.0011 (5)0.0009 (5)
C180.0254 (5)0.0260 (6)0.0174 (5)0.0019 (5)0.0061 (4)0.0016 (5)
C190.0241 (6)0.0292 (6)0.0170 (6)0.0001 (5)0.0026 (4)0.0062 (5)
C200.0264 (6)0.0231 (6)0.0153 (5)0.0005 (5)0.0044 (4)0.0019 (4)
C210.0287 (6)0.0251 (6)0.0133 (5)0.0007 (5)0.0033 (4)0.0005 (5)
C220.0375 (7)0.0385 (8)0.0241 (7)0.0092 (6)0.0123 (5)0.0112 (6)
C230.0401 (7)0.0361 (7)0.0215 (6)0.0031 (6)0.0125 (5)0.0071 (6)
Geometric parameters (Å, º) top
S1—C11.7489 (12)C12—C171.3861 (18)
S1—C51.8279 (12)C12—C131.3902 (18)
S2—C21.7616 (12)C13—C141.3862 (19)
S2—C121.7766 (12)C13—H130.9500
N1—C11.3408 (15)C14—C151.389 (2)
N1—C41.3412 (16)C14—H140.9500
N2—C21.3253 (15)C15—C161.384 (2)
N2—C11.3383 (15)C15—H150.9500
N3—C181.1508 (17)C16—C171.3875 (19)
C2—C31.4043 (16)C16—H160.9500
C3—C41.4008 (17)C17—H170.9500
C3—C181.4342 (16)C19—C201.5324 (16)
C4—C191.4993 (16)C19—H19A0.9900
C5—C61.5066 (16)C19—H19B0.9900
C5—H5A0.9900C20—C211.5229 (16)
C5—H5B0.9900C20—H20A0.9900
C6—C71.3923 (17)C20—H20B0.9900
C6—C111.3935 (17)C21—C221.5167 (17)
C7—C81.3875 (18)C21—H21A0.9900
C7—H70.9500C21—H21B0.9900
C8—C91.387 (2)C22—C231.5241 (17)
C8—H80.9500C22—H22A0.9900
C9—C101.383 (2)C22—H22B0.9900
C9—H90.9500C23—H23A0.9800
C10—C111.3885 (19)C23—H23B0.9800
C10—H100.9500C23—H23C0.9800
C11—H110.9500
C1—S1—C5101.12 (6)C12—C13—H13120.3
C2—S2—C12100.01 (5)C13—C14—C15119.97 (13)
C1—N1—C4116.08 (10)C13—C14—H14120.0
C2—N2—C1116.35 (10)C15—C14—H14120.0
N2—C1—N1127.45 (11)C16—C15—C14120.17 (12)
N2—C1—S1118.03 (8)C16—C15—H15119.9
N1—C1—S1114.51 (9)C14—C15—H15119.9
N2—C2—C3121.48 (11)C15—C16—C17120.33 (13)
N2—C2—S2119.07 (9)C15—C16—H16119.8
C3—C2—S2119.45 (9)C17—C16—H16119.8
C4—C3—C2117.60 (10)C12—C17—C16119.20 (13)
C4—C3—C18122.05 (11)C12—C17—H17120.4
C2—C3—C18120.27 (11)C16—C17—H17120.4
N1—C4—C3121.03 (11)N3—C18—C3179.00 (14)
N1—C4—C19116.87 (11)C4—C19—C20112.38 (10)
C3—C4—C19122.10 (11)C4—C19—H19A109.1
C6—C5—S1109.64 (8)C20—C19—H19A109.1
C6—C5—H5A109.7C4—C19—H19B109.1
S1—C5—H5A109.7C20—C19—H19B109.1
C6—C5—H5B109.7H19A—C19—H19B107.9
S1—C5—H5B109.7C21—C20—C19111.41 (10)
H5A—C5—H5B108.2C21—C20—H20A109.3
C7—C6—C11118.81 (11)C19—C20—H20A109.3
C7—C6—C5121.39 (11)C21—C20—H20B109.3
C11—C6—C5119.79 (11)C19—C20—H20B109.3
C8—C7—C6120.46 (12)H20A—C20—H20B108.0
C8—C7—H7119.8C22—C21—C20113.81 (10)
C6—C7—H7119.8C22—C21—H21A108.8
C9—C8—C7120.31 (12)C20—C21—H21A108.8
C9—C8—H8119.8C22—C21—H21B108.8
C7—C8—H8119.8C20—C21—H21B108.8
C10—C9—C8119.61 (12)H21A—C21—H21B107.7
C10—C9—H9120.2C21—C22—C23112.67 (11)
C8—C9—H9120.2C21—C22—H22A109.1
C9—C10—C11120.23 (12)C23—C22—H22A109.1
C9—C10—H10119.9C21—C22—H22B109.1
C11—C10—H10119.9C23—C22—H22B109.1
C10—C11—C6120.56 (12)H22A—C22—H22B107.8
C10—C11—H11119.7C22—C23—H23A109.5
C6—C11—H11119.7C22—C23—H23B109.5
C17—C12—C13120.91 (12)H23A—C23—H23B109.5
C17—C12—S2119.56 (10)C22—C23—H23C109.5
C13—C12—S2119.52 (10)H23A—C23—H23C109.5
C14—C13—C12119.39 (13)H23B—C23—H23C109.5
C14—C13—H13120.3
C2—N2—C1—N10.16 (17)C11—C6—C7—C81.37 (19)
C2—N2—C1—S1179.08 (8)C5—C6—C7—C8177.55 (11)
C4—N1—C1—N20.37 (18)C6—C7—C8—C90.2 (2)
C4—N1—C1—S1179.33 (8)C7—C8—C9—C100.9 (2)
C5—S1—C1—N22.05 (10)C8—C9—C10—C110.7 (2)
C5—S1—C1—N1178.89 (9)C9—C10—C11—C60.5 (2)
C1—N2—C2—C30.71 (16)C7—C6—C11—C101.52 (19)
C1—N2—C2—S2179.12 (8)C5—C6—C11—C10177.42 (12)
C12—S2—C2—N21.98 (10)C2—S2—C12—C17100.77 (10)
C12—S2—C2—C3177.85 (9)C2—S2—C12—C1378.09 (10)
N2—C2—C3—C41.29 (17)C17—C12—C13—C141.61 (18)
S2—C2—C3—C4178.54 (8)S2—C12—C13—C14177.23 (9)
N2—C2—C3—C18178.17 (10)C12—C13—C14—C151.89 (19)
S2—C2—C3—C181.66 (15)C13—C14—C15—C160.4 (2)
C1—N1—C4—C30.27 (16)C14—C15—C16—C171.4 (2)
C1—N1—C4—C19179.88 (10)C13—C12—C17—C160.14 (18)
C2—C3—C4—N11.05 (17)S2—C12—C17—C16178.98 (10)
C18—C3—C4—N1177.88 (11)C15—C16—C17—C121.62 (19)
C2—C3—C4—C19179.36 (11)N1—C4—C19—C2072.64 (14)
C18—C3—C4—C192.54 (18)C3—C4—C19—C20106.96 (13)
C1—S1—C5—C6161.95 (9)C4—C19—C20—C21174.92 (10)
S1—C5—C6—C772.54 (14)C19—C20—C21—C22178.46 (11)
S1—C5—C6—C11108.55 (12)C20—C21—C22—C23179.41 (12)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C6–C11 ring.
D—H···AD—HH···AD···AD—H···A
C21—H21b···Cg1i0.993.003.8443 (14)148
Symmetry code: (i) x+1/2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC23H23N3S2
Mr405.56
Crystal system, space groupMonoclinic, P21/n
Temperature (K)100
a, b, c (Å)9.0093 (1), 8.2137 (1), 28.6398 (3)
β (°) 98.427 (1)
V3)2096.45 (4)
Z4
Radiation typeCu Kα
µ (mm1)2.39
Crystal size (mm)0.25 × 0.25 × 0.15
Data collection
DiffractometerAgilent SuperNova Dual
diffractometer with an Atlas detector
Absorption correctionMulti-scan
(CrysAlis PRO: Agilent, 2010)
Tmin, Tmax0.586, 0.715
No. of measured, independent and
observed [I > 2σ(I)] reflections
8836, 4307, 4029
Rint0.017
(sin θ/λ)max1)0.631
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.030, 0.084, 1.02
No. of reflections4307
No. of parameters253
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.26, 0.26

Computer programs: CrysAlis PRO (Agilent, 2010), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C6–C11 ring.
D—H···AD—HH···AD···AD—H···A
C21—H21b···Cg1i0.993.003.8443 (14)148
Symmetry code: (i) x+1/2, y+1/2, z+1/2.
 

Footnotes

Additional correspondence author, e-mail: elemam5@hotmail.com.

Acknowledgements

We thank the Deanship of Scientific Research and the Research Center of the College of Pharmacy, King Saud University, and the University of Malaya for supporting this study.

References

First citationAgilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, England.  Google Scholar
First citationAl-Abdullah, E. S., Al-Obaid, A. M., Al-Deeb, O. A., Habib, E. E. & El-Emam, A. A. (2011). Eur. J. Med. Chem. 46, 4642–4647.  Web of Science CAS PubMed Google Scholar
First citationAl-Omar, M. A., Al-Obaid, A. M., El-Brollosy, N. R. & El-Emam, A. A. (2010). Synth. Commun. 40, 1530–1538.  CAS Google Scholar
First citationAl-Safarjalani, O. N., Zhou, X., Rais, R. H., Shi, J., Schinazi, R. F., Naguib, F. N. M. & El Kouni, M. H. (2005). Cancer Chemother. Pharmacol. 55, 541–551.  Web of Science PubMed CAS Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationHawser, S., Lociuro, S. & Islam, K. (2006). Biochem. Pharmacol. 71, 941–948.  Web of Science CrossRef PubMed CAS Google Scholar
First citationNasir, S. B., Abdullah, Z., Fairuz, Z. A., Ng, S. W. & Tiekink, E. R. T. (2010). Acta Cryst. E66, o2187.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationPauwels, R. (2004). Curr. Opin. Pharmacol. 4, 437–446.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds