organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

(E)-1-(4-Hy­dr­oxy­benzyl­­idene)-4-methyl­thio­semi­carbazide

CROSSMARK_Color_square_no_text.svg

aInstitute of Science, Applied Sciences Faculty, Universiti Teknologi MARA, Shah Alam, 45400 Shah Alam, Selangor, Malaysia, bApplied Sciences Faculty, Universiti Teknologi MARA Cawangan Perak, Kampus Tapah, 35400 Tapah Road, Perak, Malaysia, cSchool of Chemical Sciences and Food Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor D.E. , Malaysia, dAtta-ur-Rahman Institute for Natural Product Discovery, Universiti Teknologi MARA (UiTM) Puncak Alam Campus, 42300 Bandar Puncak Alam, Selangor D. E. , Malaysia, and eFaculty of Applied Sciences, Universiti Tecknologi MARA, Shah Alam, 40000 Selangor, Malaysia
*Correspondence e-mail: hamiz410@salam.uitm.edu.my

Edited by P. C. Healy, Griffith University, Australia (Received 27 May 2016; accepted 28 June 2016; online 15 July 2016)

The title compound, C9H11N3OS, is derived from methyl­thio­semicarbazide and hy­droxy­benzyl­idene fragments with a trans configuration at the C=N bond. The structure is stabilized by inter­molecular N—H⋯S, N—H⋯O and O—H⋯S hydrogen bonds that form a two-dimensional network parallel to (102).

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Thio­semicarbazones are known for their diverse biological activity and are also useful as chelating ligands for transition metal ions. (Fang et al., 2007[Fang, W., Lin, L.-R., Huang, R.-B. & Zheng, L.-S. (2007). Acta Cryst. E63, o112-o113.]). The compounds 1-(2,3,4-tri­hydroxy­benzyl­idene) thio­semicarbazide (Shawish et al., 2010a[Shawish, H. B., Maah, M. J. & Ng, S. W. (2010a). Acta Cryst. E66, o1278.]) and 1-(2,3,4-tri­hydroxy­benzyl­idene)-4-ethyl­thio­semicarbazide (Shawish et al., 2010b[Shawish, H. B., Maah, M. J. & Ng, S. W. (2010b). Acta Cryst. E66, o1151.]) are analogous except for the presence of the ethyl group in the later compound. The present compound (Fig. 1[link]) is similar to these compounds but has only one hy­droxy substituent of the benzyl­idene group and a methyl substituent of the thio­carbazide fragment. The thio­urea fragment, S1/N1/N2/C8/C9, is planar with maximum deviation from the least-squares plane of 0.021 (2) Å for the N1 atom. It makes a dihedral angle of 12.01 (9)° with the benzene ring (C1–C6), considerably smaller than that in 1-(2,3,4-tri­hydroxy­benzyl­idene)-4-ethyl­thio­semicarbazide [20.5 (1)°]. No intra­molecular hydrogen bonds are observed in the mol­ecule.

[Figure 1]
Figure 1
The mol­ecular structure of the title compound with displacement ellipsoids drawn at the 50% probability level.

In the crystal, the mol­ecules are linked by N1—H1B⋯S1, N1—H1B⋯O1 and O1—H1A⋯S1 hydrogen bonds (Table 1[link]), to forming two-dimensional network parallel to (102) (Fig. 2[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1A⋯S1i 0.82 (2) 2.41 (2) 3.220 (2) 171 (3)
N1—H1B⋯O1ii 0.86 (2) 2.47 (2) 3.018 (3) 123 (2)
N2—H2A⋯S1iii 0.87 (2) 2.62 (1) 3.4177 (19) 154 (2)
Symmetry codes: (i) [x-1, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (ii) [-x-1, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iii) -x, -y+2, -z+1.
[Figure 2]
Figure 2
The crystal packing of the title compound, viewed along the a axis. The dashed lines indicate hydrogen bonds.

Synthesis and crystallization

4-Methyl-3-thio­semicarbazide (0.5258 g, 0.005 mol) in an ethanol solution (15 ml) was slowly added to an ethano­lic solution (15 ml) containing 4-hy­droxy­benzaldehyde (0.6106 g, 0.005 mol). The mixture was refluxed for 3 h and then cooled down to room temperature. Colorless crystals were collected by slow evaporation from the ethano­lic mixture solution.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C9H11N3OS
Mr 209.27
Crystal system, space group Monoclinic, P21/c
Temperature (K) 302
a, b, c (Å) 5.2320 (4), 9.9727 (9), 19.9900 (18)
β (°) 97.5196 (18)
V3) 1034.05 (15)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.28
Crystal size (mm) 0.50 × 0.30 × 0.24
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2013[Bruker (2013). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.903, 0.934
No. of measured, independent and observed [I > 2σ(I)] reflections 19497, 2572, 1977
Rint 0.062
(sin θ/λ)max−1) 0.670
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.130, 1.06
No. of reflections 2572
No. of parameters 140
No. of restraints 3
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.26, −0.32
Computer programs: APEX2 and SAINT (Bruker, 2013[Bruker (2013). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 and SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2013 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), PARST (Nardelli, 1995[Nardelli, M. (1995). J. Appl. Cryst. 28, 659.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Structural data


Computing details top

Data collection: APEX2 (Bruker, 2013); cell refinement: SAINT (Bruker, 2013); data reduction: SAINT (Bruker, 2013); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2015); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008), PARST (Nardelli, 1995) and PLATON (Spek, 2009).

(E)-1-(4-Hydroxybenzylidene)-4-methylthiosemicarbazide top
Crystal data top
C9H11N3OSF(000) = 440
Mr = 209.27Dx = 1.344 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 5.2320 (4) ÅCell parameters from 8733 reflections
b = 9.9727 (9) Åθ = 2.9–28.3°
c = 19.9900 (18) ŵ = 0.28 mm1
β = 97.5196 (18)°T = 302 K
V = 1034.05 (15) Å3Block, colorless
Z = 40.50 × 0.30 × 0.24 mm
Data collection top
Bruker APEXII CCD
diffractometer
2572 independent reflections
Radiation source: 'fire-focus sealed tube'1977 reflections with I > 2σ(I)
Detector resolution: 83.66 pixels mm-1Rint = 0.062
φ and ω scansθmax = 28.4°, θmin = 2.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2013)
h = 76
Tmin = 0.903, Tmax = 0.934k = 1313
19497 measured reflectionsl = 2626
Refinement top
Refinement on F2Secondary atom site location: inferred from neighbouring sites
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.048H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.130 w = 1/[σ2(Fo2) + (0.0508P)2 + 0.5068P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max < 0.001
2572 reflectionsΔρmax = 0.26 e Å3
140 parametersΔρmin = 0.32 e Å3
3 restraintsExtinction correction: SHELXL2013 (Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.022 (3)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > 2sigma(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.18138 (12)0.81497 (6)0.46654 (3)0.0587 (2)
N10.0989 (3)0.65738 (17)0.56994 (9)0.0485 (4)
N20.1481 (3)0.84494 (18)0.55381 (8)0.0484 (4)
N30.2569 (3)0.81887 (16)0.61222 (8)0.0444 (4)
O10.9364 (4)0.91660 (19)0.85451 (9)0.0705 (5)
C10.5004 (5)0.8075 (2)0.73541 (11)0.0553 (6)
H1C0.36990.74260.73190.066*
C20.6242 (4)0.8105 (2)0.79267 (11)0.0578 (6)
H2B0.57890.74760.82800.069*
C30.8139 (4)0.9049 (2)0.79833 (10)0.0485 (5)
C40.8827 (4)0.9941 (2)0.74681 (10)0.0499 (5)
H4A1.01521.05790.75030.060*
C50.7585 (4)0.9908 (2)0.68979 (10)0.0459 (5)
H5A0.80661.05310.65440.055*
C60.5644 (3)0.89803 (19)0.68337 (9)0.0412 (4)
C70.4324 (4)0.9023 (2)0.62330 (9)0.0436 (4)
H7A0.47930.97050.59080.052*
C80.0386 (4)0.7664 (2)0.53477 (9)0.0425 (4)
C90.3028 (4)0.5649 (2)0.55772 (13)0.0623 (6)
H9A0.31130.49130.59040.094*
H9B0.46810.61250.56260.094*
H9C0.26630.52870.51190.094*
H1B0.012 (4)0.643 (2)0.6027 (8)0.059 (7)*
H2A0.175 (5)0.9226 (14)0.5346 (11)0.069 (8)*
H1A0.894 (6)0.854 (2)0.8803 (14)0.100 (12)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0796 (4)0.0591 (4)0.0444 (3)0.0017 (3)0.0344 (3)0.0018 (2)
N10.0535 (10)0.0480 (9)0.0491 (9)0.0002 (7)0.0259 (8)0.0027 (8)
N20.0575 (10)0.0522 (10)0.0394 (9)0.0035 (8)0.0218 (7)0.0046 (8)
N30.0480 (9)0.0508 (9)0.0373 (8)0.0035 (7)0.0167 (7)0.0012 (7)
O10.0869 (12)0.0776 (12)0.0552 (10)0.0215 (10)0.0402 (9)0.0038 (9)
C10.0646 (13)0.0535 (12)0.0530 (12)0.0185 (10)0.0270 (10)0.0079 (9)
C20.0710 (14)0.0584 (13)0.0486 (12)0.0185 (11)0.0254 (10)0.0125 (10)
C30.0524 (11)0.0528 (11)0.0439 (10)0.0000 (9)0.0195 (8)0.0058 (9)
C40.0473 (11)0.0513 (11)0.0537 (11)0.0088 (9)0.0159 (9)0.0035 (9)
C50.0455 (10)0.0479 (11)0.0452 (10)0.0027 (8)0.0091 (8)0.0017 (8)
C60.0418 (10)0.0430 (10)0.0407 (9)0.0037 (8)0.0124 (7)0.0043 (8)
C70.0468 (10)0.0472 (11)0.0388 (9)0.0028 (8)0.0126 (8)0.0000 (8)
C80.0478 (10)0.0463 (10)0.0356 (9)0.0078 (8)0.0140 (7)0.0048 (8)
C90.0595 (13)0.0524 (12)0.0811 (16)0.0042 (10)0.0317 (12)0.0035 (12)
Geometric parameters (Å, º) top
S1—C81.7087 (18)C2—C31.383 (3)
N1—C81.311 (3)C2—H2B0.9500
N1—C91.454 (3)C3—C41.373 (3)
N1—H1B0.858 (10)C4—C51.384 (3)
N2—C81.345 (3)C4—H4A0.9500
N2—N31.389 (2)C5—C61.392 (3)
N2—H2A0.868 (10)C5—H5A0.9500
N3—C71.279 (2)C6—C71.462 (2)
O1—C31.369 (2)C7—H7A0.9500
O1—H1A0.823 (10)C9—H9A0.9800
C1—C61.385 (3)C9—H9B0.9800
C1—C21.388 (3)C9—H9C0.9800
C1—H1C0.9500
C8—N1—C9124.47 (17)C5—C4—H4A120.1
C8—N1—H1B115.4 (16)C4—C5—C6121.23 (18)
C9—N1—H1B120.1 (16)C4—C5—H5A119.4
C8—N2—N3121.45 (17)C6—C5—H5A119.4
C8—N2—H2A118.6 (17)C1—C6—C5118.15 (17)
N3—N2—H2A118.5 (16)C1—C6—C7122.80 (17)
C7—N3—N2113.97 (16)C5—C6—C7119.03 (17)
C3—O1—H1A109 (2)N3—C7—C6123.38 (18)
C6—C1—C2120.85 (19)N3—C7—H7A118.3
C6—C1—H1C119.6C6—C7—H7A118.3
C2—C1—H1C119.6N1—C8—N2117.64 (17)
C3—C2—C1119.95 (19)N1—C8—S1124.30 (15)
C3—C2—H2B120.0N2—C8—S1118.06 (15)
C1—C2—H2B120.0N1—C9—H9A109.5
O1—C3—C4117.05 (18)N1—C9—H9B109.5
O1—C3—C2122.90 (19)H9A—C9—H9B109.5
C4—C3—C2120.04 (18)N1—C9—H9C109.5
C3—C4—C5119.78 (18)H9A—C9—H9C109.5
C3—C4—H4A120.1H9B—C9—H9C109.5
C8—N2—N3—C7179.80 (18)C4—C5—C6—C10.7 (3)
C6—C1—C2—C30.2 (4)C4—C5—C6—C7177.60 (18)
C1—C2—C3—O1177.4 (2)N2—N3—C7—C6177.01 (17)
C1—C2—C3—C41.2 (4)C1—C6—C7—N33.7 (3)
O1—C3—C4—C5177.5 (2)C5—C6—C7—N3178.03 (18)
C2—C3—C4—C51.2 (3)C9—N1—C8—N2177.4 (2)
C3—C4—C5—C60.2 (3)C9—N1—C8—S12.6 (3)
C2—C1—C6—C50.7 (3)N3—N2—C8—N15.9 (3)
C2—C1—C6—C7177.5 (2)N3—N2—C8—S1174.09 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···S1i0.82 (2)2.41 (2)3.220 (2)171 (3)
N1—H1B···N30.86 (2)2.27 (2)2.681 (2)109 (2)
N1—H1B···O1ii0.86 (2)2.47 (2)3.018 (3)123 (2)
N2—H2A···S1iii0.87 (2)2.62 (1)3.4177 (19)154 (2)
Symmetry codes: (i) x1, y+3/2, z+1/2; (ii) x1, y1/2, z+3/2; (iii) x, y+2, z+1.
 

Acknowledgements

The authors thank the Ministry of Higher Education of Malaysia and Universiti Teknologi MARA for the research grant FRGS 1/2013/ST01/UiTM/01/6, RAGS/1/2015/sg0/uitm03/12 and the Atta Ur Rahman Institute for Natural Product Discovery (AURINs UiTM Puncak Alam) for the X-ray facility.

References

First citationBruker (2013). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFang, W., Lin, L.-R., Huang, R.-B. & Zheng, L.-S. (2007). Acta Cryst. E63, o112–o113.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNardelli, M. (1995). J. Appl. Cryst. 28, 659.  CrossRef IUCr Journals Google Scholar
First citationShawish, H. B., Maah, M. J. & Ng, S. W. (2010a). Acta Cryst. E66, o1278.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationShawish, H. B., Maah, M. J. & Ng, S. W. (2010b). Acta Cryst. E66, o1151.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds