metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 2| February 2011| Pages m133-m134

(Di­methyl sulfoxide-κO)bis­­(thio­semicarbazide-κ2N1,S)zinc dipicrate di­methyl sulfoxide solvate monohydrate

aDepartment of Physics, Government Arts College for Women, Pudukottai 622 001, Tamil Nadu, India, bDepartment of Physics, Seethalakshmi Ramaswami College (Autonomous), Tiruchirappalli 620 002, India, cCrystal Growth and Thin Film Laboratory, School of Physics, Bharathidasan University, Tiruchirapalli 620 024, India, dLaboratory of Crystallography, Indian Institute of Chemical Technology, Hyderabad 500 007, India, and eInstitute of Physics, University of Neuchâtel, Rue Emile-Argand 11, CH-2000, Neuchâtel, Switzerland

(Received 17 December 2010; accepted 22 December 2010; online 8 January 2011)

The title complex, [Zn(CH5N3S)2(C2H6OS)](C6H2N3O7)2·C2H6OS·H2O, is composed of a [Zn(thio­semi­carbazide)2(DMSO)]2+ cation (where DMSO is dimethyl sulfoxide), and two picrate anions. In the asymmetric unit, there is also a solvent mol­ecule of DMSO and a water mol­ecule of crystallization. In the cation, the ZnII atom is five-coordinated in a distorted square–pyramidal geometry. It coordinates to the O atom of a DMSO mol­ecule and to the S and one N atom of two thio­semicarbazide mol­ecules, which behave as bidentate ligands coordinating in a trans arrangement. In the crystal, a number of N—H⋯O, O—H⋯O and N—H⋯S hydrogen bonds link the mol­ecules into two-dimensional networks. These networks are further linked via weak C—H⋯O inter­actions, forming a three-dimensional arrangement. Positional disorder in one methyl group of the coordinated DMSO molecule and in the two picrate anions was observed.

Related literature

For the biological activity of thio­semicarbazides, see: Gowda & Mahadevappa (1977)[Gowda, B. T. & Mahadevappa, D. S. (1977). J. Indian Chem. Soc. 54, 470-473.]; Pillai et al. (1977[Pillai, C. K. S., Nandhi, U. S. & Levinson, W. (1977). Bioinorg. Chem. 7, 151-157.]). For the use of thio­semicarbazide as a masking agent, see: Kirkbright & Taddia (1978[Kirkbright, G. F. & Taddia, M. (1978). Anal. Chim. Acta, 100, 145-150.]). For the crystal structure of a similar five-coordinate zinc(II)–thio­semicarbazide complex, see: Babb et al. (2003[Babb, J. E. V., Burrows, A. D., Harrington, R. W. & Mahon, M. F. (2003). Polyhedron, 22, 673-686.]). For a description of five-coordinate metal atoms, see: Addison et al. (1984[Addison, A. W., Rao, T. N., Reedijk, J. V.-R., Jacobus, V. & Gerrir, C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349-1355.]).

[Scheme 1]

Experimental

Crystal data
  • [Zn(CH5N3S)2(C2H6OS)](C6H2N3O7)2·C2H6OS·H2O

  • Mr = 878.13

  • Triclinic, [P \overline 1]

  • a = 10.8762 (11) Å

  • b = 11.2559 (12) Å

  • c = 14.4859 (15) Å

  • α = 81.124 (2)°

  • β = 77.063 (2)°

  • γ = 81.168 (2)°

  • V = 1694.6 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.06 mm−1

  • T = 294 K

  • 0.24 × 0.24 × 0.20 mm

Data collection
  • Bruker SMART APEX CCD area-detector diffractometer

  • 18781 measured reflections

  • 7719 independent reflections

  • 6573 reflections with I > 2σ(I)

  • Rint = 0.021

Refinement
  • R[F2 > 2σ(F2)] = 0.034

  • wR(F2) = 0.095

  • S = 1.05

  • 7719 reflections

  • 546 parameters

  • 6 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.54 e Å−3

  • Δρmin = −0.37 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1NA⋯O1Wi 0.87 (2) 2.20 (2) 2.974 (3) 148 (2)
N2—HN2⋯O15Ai 0.80 (2) 2.41 (3) 3.01 (2) 133 (2)
N2—HN2⋯O16i 0.80 (2) 1.96 (2) 2.693 (2) 152 (2)
N3—H3NA⋯O10i 0.87 (3) 2.44 (3) 3.166 (2) 141 (2)
N3—H3NA⋯O16i 0.87 (3) 2.03 (3) 2.790 (3) 146 (3)
N3—H3NB⋯O5ii 0.77 (2) 2.24 (2) 3.004 (3) 173 (2)
N5—H5N⋯O7iii 0.84 (2) 2.37 (2) 3.007 (3) 133 (2)
N5—H5N⋯O9Aiii 0.84 (2) 1.94 (3) 2.698 (17) 150 (2)
N4—H4NA⋯O2iii 0.88 (2) 2.20 (2) 2.933 (3) 141 (2)
N4—H4NB⋯S1iv 0.84 (3) 2.63 (3) 3.457 (2) 170 (2)
N6—H6NA⋯O6iii 0.82 (3) 2.41 (3) 3.081 (3) 140 (2)
N6—H6NA⋯O9Aiii 0.82 (3) 2.05 (5) 2.76 (3) 145 (3)
N6—H6NB⋯O11v 0.82 (3) 2.22 (3) 3.034 (3) 172 (3)
O1W—H1WA⋯O8 0.819 (19) 2.27 (2) 3.059 (3) 163 (3)
O1W—H1WB⋯O2 0.80 (2) 2.02 (2) 2.806 (3) 171 (3)
C6—H6B⋯O2iii 0.96 2.52 3.347 (3) 145
C8—H8⋯O4vi 0.93 2.47 3.390 (3) 168
C4A—H4A2⋯O1W 0.96 2.48 3.430 (7) 170
Symmetry codes: (i) x, y-1, z; (ii) -x, -y+1, -z; (iii) -x, -y+1, -z+1; (iv) -x, -y, -z+1; (v) x, y-1, z+1; (vi) -x+1, -y+1, -z.

Data collection: SMART (Bruker, 2007[Bruker (2007). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97 and PLATON.

Supporting information


Comment top

Thosemicarbazide, a well known chelating agent, is used to characterize aldehydes, ketones, and polysaccharides. Some thiosemicarbazide derivatives are potential anti-tumor, anti-hypertensive agents, and are active against influenza, protozoa and smallpox (Gowda & Mahadevappa, 1977; Pillai et al., 1977). Thiosemicarbazide is also used as a masking agent to minimize interference from metals such as copper, nickel and platinum in the determination of arsenic by atomic absorption methods (Kirkbright & Taddia, 1978). The conformational preferences of thiosemicarbazide in metal-complex formation are therefore of some interest. The reaction of zinc chloride with thiosemicarbazide in the presence of picric acid gave a yellow powder that was recrystallized using DMSO. This lead to the formation of yellow crystals of the title compoud, a DMSO-water solvate.

The molecular structure of the title complex is illustrated in Fig. 1. In the cation [Zn(thiosemicarbazide)2(DMSO)]2+ the thiosemicarbazide ligands coordinate in a bidentate mode, bonding to atom Zn1 through atoms S1, N1 and S2, N4, in a trans arrangment. Atom Zn1 is also coordinated to a DMSO molecule through the O-atom, O1. The zinc atom has a distorted square pyramidal coordination sphere with a τ value of 0.17 [τ = 0 for square pyramidal, τ = 1 for trigonal bipyramidal; Addison et al., 1984]. The bond distances are comparable to those in a related penta-coordinated complex, (Citraconato-O)-bis(thiosemicarbazide-N,S)-zinc(II) monohydrate (Babb et al., 2003). Interestingly, here the thiosemicarbazide ligands are in a cis disposition, and the zinc coordination sphere has a τ value of 0.72, hence it can be described as a distorted trigonal bipyramid.

In the crystal a sheet-like network is formed, propagating in the ac-plane, as a result of a number of intermolecular N—H···O, O—H···O and N—H···S hydrogen bonds. These sheets are then linked via weak C—H···O interactions to form a three-dimensional arrangement (Table 1 and Fig. 2).

Related literature top

For the biological activity of thiosemicarbazides, see: Gowda & Mahadevappa (1977); Pillai et al. (1977). For the use of thiosemicarbazide as a masking agent, see: Kirkbright & Taddia (1978). For the crystal structure of a similar five-coordinate zinc(II)–thiosemicarbazide complex, see: Babb et al. (2003). For a description of five-coordinate metal centers, see: Addison et al. (1984).

Experimental top

A mixture of supersaturated solutions of thiosemicarbazide, picric acid and zinc chloride were added in the molar ratio of 1:1:1 (0.9 g: 2.5 g: 2.8 g). The calculated amount of thiosemicarbazide and zinc chloride were dissolved in distilled water and picric acid dissolved in acetone was added. Within a few minutes, the solution became turbid. The reaction was ensured with continuous stirring and after 1 h a yellow product was deposited at the bottom of the beaker, it was filtered off and dried. This yellow solid was recrystallized from DMSO to afford yellow block-like crystals of the title compound (yield: 4 g, 66.6%)

Refinement top

There is a certain positional disorder in one of the methyl groups of the coordinated DMSO molecule, and in the two picrate anions. Methyl C4 was refined with occupanices of C4A/C4B = 0.5/0.5, with C—S distance restraints of 1.76 (2) Å and their ADP's were made equal to those of atom C3. O-atom O9 in one of the picrate anions was refined with occupancies of O9A/O9B = 0.56 (8)/0.44 (8), while O-atoms O14 and O15 of a NO2 group in the second picrate anion where refined with occupancies of O14A/O14B = O15A/O15B = 0.67 (3)/0.33 (7). There is a short O13···O13i contact involving a NO2 O-atom [symmetry code (i) = -x + 2, -y + 1, -z]. This contact was refined with a distance restraint of 2.95 (3) Å. The NH2 and NH H atoms were located in difference electron density maps and were freely refined. The water molecule H-atoms could also be located in a difference electron density map and were refined with distance restraints of 0.84 (2) Å. The C-bound H atoms were included in calculated positions and treated as riding atoms; C—H = 0.93 and 0.96 Å for CH and methyl H-atoms, respectively, with Uiso(H) = k ×Ueq(C), where k =1.5 for methyl H-atoms and k = 1.2 for all other H-atoms.

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. View of the asymmetric unit of the title compound showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. Only the principal components of the disordered atoms are shown.
[Figure 2] Fig. 2. A view along the a axis of the crystal packing of the title compound. The hydrogen bonds are shown as dashed lines [details are given in Table 1; C-bound H-atoms have been omitted for clarity].
(Dimethyl sulfoxide-κO)bis(thiosemicarbazide-κ2N1,S)zinc dipicrate dimethyl sulfoxide solvate monohydrate top
Crystal data top
[Zn(CH5N3S)2(C2H6OS)](C6H2N3O7)2·C2H6OS·H2OZ = 2
Mr = 878.13F(000) = 900
Triclinic, P1Dx = 1.721 Mg m3
Hall symbol: -P 1Melting point: 469 K
a = 10.8762 (11) ÅMo Kα radiation, λ = 0.71073 Å
b = 11.2559 (12) ÅCell parameters from 5926 reflections
c = 14.4859 (15) Åθ = 1.9–25.0°
α = 81.124 (2)°µ = 1.06 mm1
β = 77.063 (2)°T = 294 K
γ = 81.168 (2)°Block, yellow
V = 1694.6 (3) Å30.24 × 0.24 × 0.20 mm
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
6573 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.021
Graphite monochromatorθmax = 28.0°, θmin = 1.9°
ω scansh = 1413
18781 measured reflectionsk = 1414
7719 independent reflectionsl = 1818
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.095H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0559P)2 + 0.4578P]
where P = (Fo2 + 2Fc2)/3
7719 reflections(Δ/σ)max = 0.001
546 parametersΔρmax = 0.54 e Å3
6 restraintsΔρmin = 0.37 e Å3
Crystal data top
[Zn(CH5N3S)2(C2H6OS)](C6H2N3O7)2·C2H6OS·H2Oγ = 81.168 (2)°
Mr = 878.13V = 1694.6 (3) Å3
Triclinic, P1Z = 2
a = 10.8762 (11) ÅMo Kα radiation
b = 11.2559 (12) ŵ = 1.06 mm1
c = 14.4859 (15) ÅT = 294 K
α = 81.124 (2)°0.24 × 0.24 × 0.20 mm
β = 77.063 (2)°
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
6573 reflections with I > 2σ(I)
18781 measured reflectionsRint = 0.021
7719 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0346 restraints
wR(F2) = 0.095H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.54 e Å3
7719 reflectionsΔρmin = 0.37 e Å3
546 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Zn10.26667 (2)0.03164 (2)0.50488 (1)0.0319 (1)
S10.14900 (4)0.05204 (5)0.38255 (3)0.0384 (1)
S20.32467 (5)0.06515 (5)0.64778 (3)0.0377 (1)
S30.33061 (5)0.30032 (5)0.44415 (4)0.0427 (2)
O10.37531 (13)0.16931 (13)0.47872 (10)0.0403 (4)
N10.39527 (17)0.08894 (18)0.41352 (11)0.0353 (5)
N20.37816 (15)0.06488 (16)0.31838 (11)0.0356 (5)
N30.25503 (19)0.00172 (19)0.20917 (12)0.0425 (6)
N40.10145 (16)0.11037 (18)0.60253 (11)0.0357 (5)
N50.12502 (16)0.10238 (17)0.69507 (11)0.0392 (5)
N60.23281 (19)0.0216 (2)0.81157 (13)0.0464 (6)
C10.26914 (17)0.01021 (16)0.29808 (13)0.0304 (5)
C20.22014 (17)0.02636 (17)0.72219 (13)0.0323 (5)
C30.3683 (3)0.3103 (3)0.31805 (18)0.0625 (8)
C4A0.4290 (6)0.3825 (6)0.4800 (4)0.0625 (8)0.500
C4B0.4667 (6)0.3781 (6)0.4444 (4)0.0625 (8)0.500
O100.37612 (15)0.93032 (16)0.00119 (11)0.0523 (5)
O110.46364 (16)0.86421 (16)0.13237 (11)0.0530 (5)
O120.83363 (17)0.59567 (19)0.17971 (11)0.0648 (6)
O130.95110 (17)0.5539 (2)0.07638 (13)0.0719 (7)
O14A0.7817 (12)0.655 (3)0.2427 (8)0.083 (4)0.67 (7)
O15A0.604 (2)0.7437 (19)0.2841 (6)0.074 (3)0.67 (7)
O160.48564 (19)0.8581 (2)0.14820 (12)0.0727 (7)
N100.46168 (16)0.86917 (15)0.04741 (12)0.0373 (5)
N110.85340 (17)0.60065 (17)0.10083 (12)0.0432 (5)
N120.6796 (2)0.69437 (19)0.22324 (13)0.0535 (7)
C130.56306 (18)0.79722 (17)0.00584 (13)0.0335 (5)
C140.65550 (18)0.73364 (17)0.06708 (13)0.0344 (5)
C150.75575 (18)0.66393 (18)0.03405 (13)0.0355 (5)
C160.76483 (19)0.65359 (18)0.06125 (14)0.0384 (6)
C170.6701 (2)0.71427 (19)0.12300 (13)0.0386 (6)
C180.5638 (2)0.79503 (19)0.09423 (14)0.0393 (6)
O15B0.575 (3)0.709 (4)0.2800 (14)0.070 (5)0.33 (7)
O14B0.759 (4)0.607 (4)0.2468 (12)0.076 (5)0.33 (7)
O30.35471 (17)0.59850 (19)0.20375 (12)0.0616 (6)
O40.47002 (16)0.55050 (18)0.09782 (13)0.0644 (6)
O50.02160 (17)0.8604 (2)0.15007 (12)0.0684 (7)
O60.10969 (17)0.91940 (19)0.01512 (12)0.0648 (6)
O70.12595 (19)0.7413 (2)0.26100 (12)0.0690 (7)
O80.3023 (2)0.6364 (2)0.22031 (14)0.0917 (9)
O9A0.002 (3)0.849 (3)0.1297 (7)0.059 (4)0.56 (8)
N70.37299 (16)0.59932 (17)0.12325 (12)0.0422 (5)
N80.02350 (16)0.86148 (17)0.06498 (12)0.0432 (6)
N90.20614 (17)0.69458 (17)0.20037 (12)0.0417 (5)
C70.27455 (18)0.66079 (18)0.05566 (13)0.0349 (5)
C80.28479 (17)0.64976 (17)0.03925 (14)0.0352 (5)
C90.19018 (18)0.70787 (18)0.10207 (13)0.0356 (6)
C100.0773 (2)0.7806 (2)0.07608 (14)0.0434 (6)
C110.07928 (18)0.78936 (18)0.02508 (14)0.0367 (6)
C120.17383 (18)0.73076 (18)0.08814 (13)0.0355 (5)
O9B0.0239 (12)0.803 (4)0.1378 (10)0.047 (3)0.44 (8)
S40.00366 (5)0.64929 (5)0.61310 (4)0.0427 (2)
O20.03790 (16)0.69781 (16)0.50943 (11)0.0524 (5)
C50.1098 (3)0.6799 (3)0.6734 (2)0.0726 (11)
C60.0343 (4)0.4902 (2)0.6228 (2)0.0740 (12)
O1W0.29788 (19)0.67515 (18)0.42553 (14)0.0576 (6)
H1NA0.385 (2)0.164 (2)0.4348 (18)0.049 (7)*
H1NB0.465 (3)0.076 (2)0.4097 (15)0.047 (7)*
HN20.429 (2)0.097 (2)0.2780 (15)0.039 (6)*
H3A0.453900.273400.297800.0940*
H3B0.360700.393900.291200.0940*
H3C0.310900.268900.296800.0940*
H3NA0.312 (3)0.043 (2)0.1701 (19)0.053 (7)*
H3NB0.192 (2)0.030 (2)0.1965 (17)0.041 (6)*
H5N0.074 (2)0.139 (2)0.7368 (16)0.037 (6)*
H4NA0.080 (2)0.187 (2)0.5829 (18)0.050 (7)*
H4NB0.035 (3)0.077 (2)0.6116 (18)0.050 (7)*
H6NA0.179 (3)0.061 (2)0.8477 (19)0.054 (7)*
H6NB0.290 (3)0.026 (2)0.8302 (18)0.050 (7)*
H4B10.477400.374800.508800.0940*0.500
H4B20.451800.461100.417400.0940*0.500
H4B30.542100.339000.407200.0940*0.500
H4A10.426100.361000.547200.0940*0.500
H4A20.401200.467500.467400.0940*0.500
H4A30.514600.364800.445400.0940*0.500
H160.833500.606600.082700.0460*
H140.650300.737700.130700.0410*
H80.354600.603800.059700.0420*
H120.169800.738300.152300.0430*
H5A0.104700.765800.673400.1090*
H5B0.193400.649400.641600.1090*
H5C0.093100.641100.738000.1090*
H6A0.120300.470200.589900.1110*
H6B0.022300.456300.594900.1110*
H6C0.025700.457800.688900.1110*
H1WA0.305 (3)0.679 (3)0.3677 (13)0.079 (10)*
H1WB0.2231 (18)0.688 (3)0.445 (2)0.079 (11)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.0304 (1)0.0402 (1)0.0272 (1)0.0032 (1)0.0084 (1)0.0087 (1)
S10.0272 (2)0.0551 (3)0.0363 (2)0.0046 (2)0.0122 (2)0.0176 (2)
S20.0387 (2)0.0412 (3)0.0309 (2)0.0088 (2)0.0099 (2)0.0067 (2)
S30.0398 (3)0.0435 (3)0.0471 (3)0.0000 (2)0.0169 (2)0.0063 (2)
O10.0408 (7)0.0413 (7)0.0431 (8)0.0097 (6)0.0171 (6)0.0016 (6)
N10.0323 (9)0.0488 (10)0.0277 (8)0.0042 (7)0.0144 (6)0.0107 (7)
N20.0304 (8)0.0515 (10)0.0240 (7)0.0058 (7)0.0072 (6)0.0102 (7)
N30.0393 (10)0.0588 (11)0.0301 (8)0.0083 (8)0.0152 (8)0.0103 (8)
N40.0290 (8)0.0517 (10)0.0263 (8)0.0013 (7)0.0105 (6)0.0038 (7)
N50.0348 (9)0.0560 (10)0.0254 (8)0.0115 (8)0.0103 (7)0.0117 (7)
N60.0416 (10)0.0673 (13)0.0288 (8)0.0150 (9)0.0145 (8)0.0121 (8)
C10.0297 (8)0.0333 (9)0.0305 (8)0.0034 (7)0.0099 (7)0.0060 (7)
C20.0287 (8)0.0398 (10)0.0285 (9)0.0011 (7)0.0083 (7)0.0039 (7)
C30.0726 (16)0.0699 (13)0.0501 (13)0.0240 (12)0.0251 (11)0.0108 (11)
C4A0.0726 (16)0.0699 (13)0.0501 (13)0.0240 (12)0.0251 (11)0.0108 (11)
C4B0.0726 (16)0.0699 (13)0.0501 (13)0.0240 (12)0.0251 (11)0.0108 (11)
O100.0416 (8)0.0646 (10)0.0461 (9)0.0187 (7)0.0124 (7)0.0132 (7)
O110.0544 (9)0.0681 (11)0.0376 (8)0.0168 (8)0.0242 (7)0.0121 (7)
O120.0578 (10)0.0959 (14)0.0380 (9)0.0225 (10)0.0137 (7)0.0260 (9)
O130.0516 (10)0.0996 (15)0.0582 (11)0.0363 (10)0.0204 (8)0.0229 (10)
O14A0.088 (4)0.106 (10)0.058 (3)0.038 (5)0.046 (2)0.023 (4)
O15A0.078 (5)0.108 (6)0.035 (2)0.028 (4)0.027 (3)0.026 (3)
O160.0752 (12)0.0983 (15)0.0355 (8)0.0452 (11)0.0187 (8)0.0257 (9)
N100.0357 (8)0.0421 (9)0.0349 (8)0.0023 (7)0.0136 (7)0.0050 (7)
N110.0393 (9)0.0509 (10)0.0361 (9)0.0071 (8)0.0073 (7)0.0084 (7)
N120.0645 (13)0.0628 (12)0.0340 (9)0.0129 (10)0.0239 (9)0.0088 (8)
C130.0337 (9)0.0361 (9)0.0312 (9)0.0037 (7)0.0126 (7)0.0048 (7)
C140.0367 (10)0.0398 (10)0.0275 (8)0.0008 (8)0.0102 (7)0.0056 (7)
C150.0341 (9)0.0400 (10)0.0318 (9)0.0021 (8)0.0081 (7)0.0076 (7)
C160.0383 (10)0.0418 (10)0.0364 (10)0.0046 (8)0.0165 (8)0.0050 (8)
C170.0453 (11)0.0437 (11)0.0279 (9)0.0027 (9)0.0142 (8)0.0058 (8)
C180.0416 (11)0.0446 (11)0.0305 (9)0.0067 (8)0.0108 (8)0.0084 (8)
O15B0.066 (7)0.122 (12)0.021 (4)0.010 (8)0.012 (4)0.019 (5)
O14B0.106 (11)0.075 (11)0.039 (4)0.041 (9)0.036 (5)0.008 (5)
O30.0527 (10)0.0909 (13)0.0397 (9)0.0133 (9)0.0087 (7)0.0270 (8)
O40.0427 (9)0.0877 (13)0.0552 (10)0.0275 (9)0.0122 (8)0.0176 (9)
O50.0597 (11)0.1050 (15)0.0401 (9)0.0329 (10)0.0282 (8)0.0239 (9)
O60.0496 (10)0.0909 (14)0.0490 (9)0.0321 (9)0.0181 (8)0.0228 (9)
O70.0631 (11)0.1053 (15)0.0325 (8)0.0230 (10)0.0140 (8)0.0171 (9)
O80.0740 (13)0.147 (2)0.0503 (11)0.0524 (14)0.0364 (10)0.0318 (12)
O9A0.057 (6)0.078 (9)0.0335 (19)0.029 (6)0.012 (2)0.018 (3)
N70.0368 (9)0.0498 (10)0.0376 (9)0.0026 (7)0.0047 (7)0.0104 (7)
N80.0364 (9)0.0570 (11)0.0379 (9)0.0079 (8)0.0166 (7)0.0116 (8)
N90.0425 (9)0.0521 (10)0.0323 (8)0.0006 (8)0.0153 (7)0.0064 (7)
C70.0296 (9)0.0408 (10)0.0336 (9)0.0004 (7)0.0059 (7)0.0085 (7)
C80.0298 (9)0.0397 (10)0.0359 (9)0.0020 (7)0.0112 (7)0.0040 (8)
C90.0351 (10)0.0435 (10)0.0294 (9)0.0008 (8)0.0105 (7)0.0065 (7)
C100.0377 (10)0.0595 (13)0.0321 (10)0.0103 (9)0.0117 (8)0.0127 (9)
C110.0325 (9)0.0463 (11)0.0328 (9)0.0055 (8)0.0138 (8)0.0092 (8)
C120.0337 (9)0.0447 (10)0.0295 (9)0.0007 (8)0.0097 (7)0.0088 (8)
O9B0.037 (3)0.069 (9)0.033 (3)0.011 (4)0.007 (2)0.020 (4)
S40.0414 (3)0.0479 (3)0.0403 (3)0.0013 (2)0.0136 (2)0.0069 (2)
O20.0545 (9)0.0617 (10)0.0409 (8)0.0040 (8)0.0163 (7)0.0005 (7)
C50.083 (2)0.093 (2)0.0590 (16)0.0320 (17)0.0335 (15)0.0139 (14)
C60.122 (3)0.0469 (14)0.0635 (16)0.0030 (15)0.0447 (17)0.0084 (12)
O1W0.0559 (11)0.0734 (12)0.0472 (10)0.0066 (9)0.0200 (9)0.0065 (9)
Geometric parameters (Å, º) top
Zn1—S12.3728 (5)N3—H3NB0.77 (2)
Zn1—S22.3554 (6)N4—H4NA0.88 (2)
Zn1—O12.0302 (15)N4—H4NB0.84 (3)
Zn1—N12.1662 (19)N5—H5N0.84 (2)
Zn1—N42.1852 (18)N6—H6NA0.82 (3)
S1—C11.7214 (19)N6—H6NB0.82 (3)
S2—C21.718 (2)N10—C131.452 (3)
S3—O11.5240 (16)N11—C151.446 (3)
S3—C31.770 (3)N12—C171.459 (3)
S3—C4A1.724 (7)N7—C71.448 (3)
S3—C4B1.833 (7)N8—C111.452 (3)
S4—C51.764 (3)N9—C91.455 (3)
S4—C61.766 (2)C3—H3C0.9600
S4—O21.5088 (17)C3—H3A0.9600
O10—N101.223 (2)C3—H3B0.9600
O11—N101.236 (2)C4A—H4A30.9600
O12—N111.220 (2)C4A—H4A10.9600
O13—N111.213 (3)C4A—H4A20.9600
O14A—N121.208 (17)C4B—H4B30.9600
O14B—N121.26 (4)C4B—H4B20.9600
O15A—N121.203 (16)C4B—H4B10.9600
O15B—N121.25 (3)C13—C141.373 (3)
O16—C181.235 (3)C13—C181.448 (3)
O3—N71.228 (2)C14—C151.374 (3)
O4—N71.219 (3)C15—C161.392 (3)
O5—N81.230 (2)C16—C171.374 (3)
O6—N81.217 (3)C17—C181.454 (3)
O7—N91.211 (3)C14—H140.9300
O8—N91.214 (3)C16—H160.9300
O9A—C101.25 (3)C7—C81.389 (3)
O9B—C101.272 (19)C7—C121.376 (3)
O1W—H1WB0.80 (2)C8—C91.368 (3)
O1W—H1WA0.819 (19)C9—C101.457 (3)
N1—N21.411 (2)C10—C111.449 (3)
N2—C11.322 (3)C11—C121.373 (3)
N3—C11.318 (3)C8—H80.9300
N4—N51.407 (2)C12—H120.9300
N5—C21.328 (3)C5—H5B0.9600
N6—C21.325 (3)C5—H5C0.9600
N1—H1NB0.78 (3)C5—H5A0.9600
N1—H1NA0.87 (2)C6—H6C0.9600
N2—HN20.80 (2)C6—H6A0.9600
N3—H3NA0.87 (3)C6—H6B0.9600
S1—Zn1—S2152.59 (2)S3—C4A—H4A3109.00
S1—Zn1—O1108.71 (4)C4B—C4A—H4A1137.00
S1—Zn1—N182.09 (5)S3—C4A—H4A2110.00
S1—Zn1—N491.39 (5)C4B—C4A—H4B254.00
S2—Zn1—O198.68 (4)S3—C4A—H4B1141.00
S2—Zn1—N195.55 (5)S3—C4A—H4B2106.00
S2—Zn1—N482.99 (5)H4B2—C4A—H4A371.00
O1—Zn1—N197.42 (7)H4A1—C4A—H4A2109.00
O1—Zn1—N499.60 (7)H4A1—C4A—H4A3109.00
N1—Zn1—N4162.94 (7)H4A2—C4A—H4A3109.00
Zn1—S1—C197.02 (7)C4B—C4A—H4B193.00
Zn1—S2—C296.46 (7)H4B1—C4A—H4A2109.00
O1—S3—C3104.91 (12)H4B1—C4A—H4A365.00
O1—S3—C4A103.8 (2)H4B2—C4A—H4A1142.00
O1—S3—C4B102.5 (2)C4B—C4A—H4A297.00
C3—S3—C4A108.6 (2)H4B1—C4A—H4B2108.00
C3—S3—C4B91.3 (2)S3—C4B—H4B3109.00
C5—S4—C697.69 (17)S3—C4B—H4A3136.00
O2—S4—C5106.85 (12)S3—C4B—H4A293.00
O2—S4—C6107.24 (12)H4B2—C4B—H4B3110.00
Zn1—O1—S3124.56 (9)S3—C4B—H4B1109.00
H1WA—O1W—H1WB104 (3)S3—C4B—H4B2109.00
Zn1—N1—N2112.09 (13)H4B2—C4B—H4A3112.00
N1—N2—C1121.00 (16)H4B3—C4B—H4A2150.00
Zn1—N4—N5111.38 (13)H4A2—C4B—H4A3129.00
N4—N5—C2121.32 (17)C4A—C4B—H4B296.00
Zn1—N1—H1NB108.9 (16)C4A—C4B—H4B3152.00
H1NA—N1—H1NB112 (2)C4A—C4B—H4A3120.00
N2—N1—H1NA109.0 (16)H4B1—C4B—H4B2110.00
N2—N1—H1NB103.8 (16)H4B1—C4B—H4B3109.00
Zn1—N1—H1NA110.6 (16)H4B1—C4B—H4A279.00
C1—N2—HN2118.8 (16)H4B1—C4B—H4A371.00
N1—N2—HN2118.9 (16)N10—C13—C18120.67 (17)
C1—N3—H3NB118.7 (18)C14—C13—C18123.49 (18)
H3NA—N3—H3NB123 (3)N10—C13—C14115.84 (16)
C1—N3—H3NA117.8 (19)C13—C14—C15119.81 (17)
Zn1—N4—H4NA111.4 (16)N11—C15—C16119.95 (18)
Zn1—N4—H4NB116.2 (17)C14—C15—C16121.52 (18)
N5—N4—H4NB103.2 (17)N11—C15—C14118.52 (17)
H4NA—N4—H4NB106 (2)C15—C16—C17118.52 (19)
N5—N4—H4NA108.2 (16)C16—C17—C18124.12 (18)
C2—N5—H5N117.6 (15)N12—C17—C18119.41 (18)
N4—N5—H5N120.6 (15)N12—C17—C16116.47 (19)
H6NA—N6—H6NB122 (3)C13—C18—C17112.38 (17)
C2—N6—H6NA119 (2)O16—C18—C17123.79 (19)
C2—N6—H6NB119.0 (17)O16—C18—C13123.8 (2)
O10—N10—C13120.59 (16)C13—C14—H14120.00
O11—N10—C13117.81 (17)C15—C14—H14120.00
O10—N10—O11121.59 (18)C15—C16—H16121.00
O12—N11—O13122.5 (2)C17—C16—H16121.00
O12—N11—C15118.43 (19)N7—C7—C12118.57 (16)
O13—N11—C15119.08 (17)C8—C7—C12121.73 (18)
O14B—N12—C17116.3 (10)N7—C7—C8119.69 (18)
O15B—N12—C17113.9 (12)C7—C8—C9118.72 (18)
O14A—N12—O15A115.6 (12)C8—C9—C10124.08 (17)
O14B—N12—O15B117 (2)N9—C9—C8116.57 (18)
O14A—N12—C17118.3 (6)N9—C9—C10119.35 (17)
O15A—N12—C17123.0 (8)O9A—C10—C11122.6 (10)
O3—N7—C7118.38 (18)C9—C10—C11112.28 (18)
O4—N7—C7118.72 (17)O9B—C10—C9122.0 (11)
O3—N7—O4122.90 (19)O9B—C10—C11123.0 (7)
O5—N8—C11117.93 (18)O9A—C10—C9123.3 (12)
O6—N8—C11120.77 (17)C10—C11—C12123.67 (19)
O5—N8—O6121.3 (2)N8—C11—C12116.06 (17)
O8—N9—C9118.53 (18)N8—C11—C10120.26 (18)
O7—N9—O8120.53 (19)C7—C12—C11119.44 (17)
O7—N9—C9120.93 (19)C9—C8—H8121.00
S1—C1—N2122.28 (14)C7—C8—H8121.00
S1—C1—N3119.89 (16)C7—C12—H12120.00
N2—C1—N3117.81 (18)C11—C12—H12120.00
S2—C2—N5123.28 (14)S4—C5—H5A109.00
S2—C2—N6119.36 (16)S4—C5—H5B109.00
N5—C2—N6117.36 (18)H5A—C5—H5B109.00
S3—C4A—C4B91.2 (9)H5A—C5—H5C109.00
S3—C4B—C4A70.1 (9)S4—C5—H5C109.00
S3—C3—H3C109.00H5B—C5—H5C109.00
S3—C3—H3A109.00S4—C6—H6B109.00
S3—C3—H3B109.00S4—C6—H6C109.00
H3B—C3—H3C110.00S4—C6—H6A109.00
H3A—C3—H3B109.00H6A—C6—H6C109.00
H3A—C3—H3C109.00H6B—C6—H6C110.00
S3—C4A—H4A1109.00H6A—C6—H6B110.00
S2—Zn1—S1—C1101.75 (7)O15A—N12—C17—C181.3 (13)
O1—Zn1—S1—C180.25 (8)O4—N7—C7—C88.4 (3)
N1—Zn1—S1—C114.95 (8)O3—N7—C7—C8171.5 (2)
N4—Zn1—S1—C1179.13 (8)O3—N7—C7—C129.7 (3)
S1—Zn1—S2—C294.78 (8)O4—N7—C7—C12170.5 (2)
O1—Zn1—S2—C283.31 (8)O6—N8—C11—C103.1 (3)
N1—Zn1—S2—C2178.29 (8)O5—N8—C11—C10175.7 (2)
N4—Zn1—S2—C215.39 (8)O5—N8—C11—C123.3 (3)
S1—Zn1—O1—S341.44 (11)O6—N8—C11—C12177.9 (2)
S2—Zn1—O1—S3137.63 (9)O7—N9—C9—C101.3 (3)
N1—Zn1—O1—S3125.56 (10)O7—N9—C9—C8178.8 (2)
N4—Zn1—O1—S353.34 (11)O8—N9—C9—C81.9 (3)
S1—Zn1—N1—N221.71 (13)O8—N9—C9—C10178.1 (2)
S2—Zn1—N1—N2174.21 (13)N10—C13—C14—C15179.42 (18)
O1—Zn1—N1—N286.26 (14)C14—C13—C18—C172.4 (3)
S1—Zn1—N4—N5172.48 (13)N10—C13—C18—O164.8 (3)
S2—Zn1—N4—N519.39 (13)N10—C13—C18—C17177.75 (18)
O1—Zn1—N4—N578.28 (14)C18—C13—C14—C150.4 (3)
Zn1—S1—C1—N29.21 (17)C14—C13—C18—O16175.0 (2)
Zn1—S1—C1—N3169.23 (16)C13—C14—C15—N11178.34 (18)
Zn1—S2—C2—N513.08 (18)C13—C14—C15—C161.5 (3)
Zn1—S2—C2—N6167.45 (16)N11—C15—C16—C17179.62 (19)
C3—S3—O1—Zn189.65 (14)C14—C15—C16—C170.5 (3)
C4A—S3—O1—Zn1156.5 (2)C15—C16—C17—N12176.16 (19)
C4B—S3—O1—Zn1175.6 (2)C15—C16—C17—C183.8 (3)
O1—S3—C4A—C4B88.3 (9)C16—C17—C18—O16172.9 (2)
C3—S3—C4A—C4B22.9 (10)C16—C17—C18—C134.6 (3)
O1—S3—C4B—C4A96.1 (9)N12—C17—C18—C13175.37 (19)
C3—S3—C4B—C4A158.3 (9)N12—C17—C18—O167.2 (3)
Zn1—N1—N2—C123.6 (2)N7—C7—C8—C9179.51 (18)
N1—N2—C1—S18.4 (3)C12—C7—C8—C91.7 (3)
N1—N2—C1—N3173.14 (19)N7—C7—C12—C11179.74 (18)
Zn1—N4—N5—C217.8 (2)C8—C7—C12—C111.4 (3)
N4—N5—C2—S21.8 (3)C7—C8—C9—N9179.32 (18)
N4—N5—C2—N6177.69 (19)C7—C8—C9—C100.6 (3)
O10—N10—C13—C14178.90 (18)N9—C9—C10—O9A12.0 (17)
O10—N10—C13—C180.9 (3)N9—C9—C10—C11177.15 (18)
O11—N10—C13—C142.7 (3)C8—C9—C10—O9A168.0 (17)
O11—N10—C13—C18177.51 (19)C8—C9—C10—C112.8 (3)
O12—N11—C15—C1411.4 (3)O9A—C10—C11—N812.7 (18)
O12—N11—C15—C16168.7 (2)O9A—C10—C11—C12168.4 (18)
O13—N11—C15—C14169.1 (2)C9—C10—C11—N8178.05 (18)
O13—N11—C15—C1610.8 (3)C9—C10—C11—C123.0 (3)
O14A—N12—C17—C1619.5 (17)N8—C11—C12—C7179.91 (18)
O14A—N12—C17—C18160.6 (17)C10—C11—C12—C71.1 (3)
O15A—N12—C17—C16178.7 (12)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1NA···O1Wi0.87 (2)2.20 (2)2.974 (3)148 (2)
N2—HN2···O15Ai0.80 (2)2.41 (3)3.01 (2)133 (2)
N2—HN2···O16i0.80 (2)1.96 (2)2.693 (2)152 (2)
N3—H3NA···O10i0.87 (3)2.44 (3)3.166 (2)141 (2)
N3—H3NA···O16i0.87 (3)2.03 (3)2.790 (3)146 (3)
N3—H3NB···O5ii0.77 (2)2.24 (2)3.004 (3)173 (2)
N5—H5N···O7iii0.84 (2)2.37 (2)3.007 (3)133 (2)
N5—H5N···O9Aiii0.84 (2)1.94 (3)2.698 (17)150 (2)
N4—H4NA···O2iii0.88 (2)2.20 (2)2.933 (3)141 (2)
N4—H4NB···S1iv0.84 (3)2.63 (3)3.457 (2)170 (2)
N6—H6NA···O6iii0.82 (3)2.41 (3)3.081 (3)140 (2)
N6—H6NA···O9Aiii0.82 (3)2.05 (5)2.76 (3)145 (3)
N6—H6NB···O11v0.82 (3)2.22 (3)3.034 (3)172 (3)
O1W—H1WA···O80.819 (19)2.27 (2)3.059 (3)163 (3)
O1W—H1WB···O20.80 (2)2.02 (2)2.806 (3)171 (3)
C6—H6B···O2iii0.962.523.347 (3)145
C8—H8···O4vi0.932.473.390 (3)168
C12—H12···O50.932.312.636 (3)100
C14—H14···O110.932.302.631 (3)101
C4A—H4A2···O1W0.962.483.430 (7)170
Symmetry codes: (i) x, y1, z; (ii) x, y+1, z; (iii) x, y+1, z+1; (iv) x, y, z+1; (v) x, y1, z+1; (vi) x+1, y+1, z.

Experimental details

Crystal data
Chemical formula[Zn(CH5N3S)2(C2H6OS)](C6H2N3O7)2·C2H6OS·H2O
Mr878.13
Crystal system, space groupTriclinic, P1
Temperature (K)294
a, b, c (Å)10.8762 (11), 11.2559 (12), 14.4859 (15)
α, β, γ (°)81.124 (2), 77.063 (2), 81.168 (2)
V3)1694.6 (3)
Z2
Radiation typeMo Kα
µ (mm1)1.06
Crystal size (mm)0.24 × 0.24 × 0.20
Data collection
DiffractometerBruker SMART APEX CCD area-detector
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
18781, 7719, 6573
Rint0.021
(sin θ/λ)max1)0.661
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.095, 1.05
No. of reflections7719
No. of parameters546
No. of restraints6
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.54, 0.37

Computer programs: SMART (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1NA···O1Wi0.87 (2)2.20 (2)2.974 (3)148 (2)
N2—HN2···O15Ai0.80 (2)2.41 (3)3.01 (2)133 (2)
N2—HN2···O16i0.80 (2)1.96 (2)2.693 (2)152 (2)
N3—H3NA···O10i0.87 (3)2.44 (3)3.166 (2)141 (2)
N3—H3NA···O16i0.87 (3)2.03 (3)2.790 (3)146 (3)
N3—H3NB···O5ii0.77 (2)2.24 (2)3.004 (3)173 (2)
N5—H5N···O7iii0.84 (2)2.37 (2)3.007 (3)133 (2)
N5—H5N···O9Aiii0.84 (2)1.94 (3)2.698 (17)150 (2)
N4—H4NA···O2iii0.88 (2)2.20 (2)2.933 (3)141 (2)
N4—H4NB···S1iv0.84 (3)2.63 (3)3.457 (2)170 (2)
N6—H6NA···O6iii0.82 (3)2.41 (3)3.081 (3)140 (2)
N6—H6NA···O9Aiii0.82 (3)2.05 (5)2.76 (3)145 (3)
N6—H6NB···O11v0.82 (3)2.22 (3)3.034 (3)172 (3)
O1W—H1WA···O80.819 (19)2.27 (2)3.059 (3)163 (3)
O1W—H1WB···O20.80 (2)2.02 (2)2.806 (3)171 (3)
C6—H6B···O2iii0.962.523.347 (3)145
C8—H8···O4vi0.932.473.390 (3)168
C4A—H4A2···O1W0.962.483.430 (7)170
Symmetry codes: (i) x, y1, z; (ii) x, y+1, z; (iii) x, y+1, z+1; (iv) x, y, z+1; (v) x, y1, z+1; (vi) x+1, y+1, z.
 

Acknowledgements

RS thanks the University Grants Commission of India for the award of a minor research project (File No. MRP 2976/2009). HSE thanks the staff of the XRD Application Lab., CSEM, Neuchâtel, for access to the X-ray diffraction equipment.

References

First citationAddison, A. W., Rao, T. N., Reedijk, J. V.-R., Jacobus, V. & Gerrir, C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349–1355.  CSD CrossRef Web of Science Google Scholar
First citationBabb, J. E. V., Burrows, A. D., Harrington, R. W. & Mahon, M. F. (2003). Polyhedron, 22, 673–686.  Web of Science CSD CrossRef CAS Google Scholar
First citationBruker (2007). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationGowda, B. T. & Mahadevappa, D. S. (1977). J. Indian Chem. Soc. 54, 470–473.  CAS Google Scholar
First citationKirkbright, G. F. & Taddia, M. (1978). Anal. Chim. Acta, 100, 145–150.  CrossRef CAS Web of Science Google Scholar
First citationPillai, C. K. S., Nandhi, U. S. & Levinson, W. (1977). Bioinorg. Chem. 7, 151–157.  CrossRef CAS PubMed Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 2| February 2011| Pages m133-m134
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds