metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

[6-(4-Bromo­phen­yl)-2,2′-bi­pyridine-κ2N,N′](tri­cyclo­hexyl­phosphine-κP)copper(I) tetra­fluoridoborate

aSchool of Environmental and Chemical Engineering, Nanchang University, Nanchang 330031, People's Republic of China
*Correspondence e-mail: jeff_xg@sohu.com

(Received 14 January 2010; accepted 24 January 2010; online 30 January 2010)

In the title compound, [Cu(C16H11BrN2)(C18H33P)]BF4, the CuI atom is three-coordinated in a distorted trigonal configuration by two N atoms from the 6-(4-bromo­phen­yl)-2,2′-bipyridine ligand and a P atom from the tricyclo­hexyl­phosphine ligand. In addition, a weak anion⋯CuI inter­action with a nearest F⋯Cu separation of 2.696 (5) Å is found.

Related literature

For the rich photophysical properties of opper(I) complexes with diimine and phosphine ligands and their potential applications in organic light-emitting diodes (OLEDs), see: Miller et al. (1999[Miller, M. T., Gantzel, P. K. & Karpishin, T. B. (1999). J. Am. Chem. Soc. 121, 4292-4293.]); Zhang et al. (2006[Zhang, Q., Zhou, Q., Cheng, Y., Wang, L., Ma, D., Jing, X. & Wang, F. (2006). Adv. Funct. Mater. 16, 1203-1208.]). For related structures, see: Wang et al. (2010[Wang, Z.-W., Cao, Q.-Y., Haung, X., Lin, S. & Gao, X.-C. (2010). Inorg. Chim. Acta, 363, 15-19.]). For a similar weak anion⋯Cu(I) inter­action, see: Mao et al. (2003[Mao, Z., Chao, H.-Y., Hui, Z., Che, C.-M., Fu, W.-F., Cheung, K.-K. & Zhu, N. (2003). Chem. Eur. J. 9, 2885-2997.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu(C16H11BrN2)(C18H33P)]BF4

  • Mr = 741.94

  • Monoclinic, P 21 /n

  • a = 9.8950 (8) Å

  • b = 20.2114 (17) Å

  • c = 17.3317 (14) Å

  • β = 93.010 (1)°

  • V = 3461.4 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.88 mm−1

  • T = 293 K

  • 0.45 × 0.30 × 0.20 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.514, Tmax = 0.687

  • 26011 measured reflections

  • 8150 independent reflections

  • 4532 reflections with I > 2σ(I)

  • Rint = 0.043

Refinement
  • R[F2 > 2σ(F2)] = 0.051

  • wR(F2) = 0.151

  • S = 1.02

  • 8150 reflections

  • 398 parameters

  • H-atom parameters constrained

  • Δρmax = 0.36 e Å−3

  • Δρmin = −0.70 e Å−3

Data collection: SMART (Bruker, 1998[Bruker (1998). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1998[Bruker (1998). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Copper(I) complexes with diimine and phosphine ligands have attracted much attention for their rich photophysical properties and potential applications in organic light-emitting diodes (OLEDs) (Miller et al., 1999; Zhang et al., 2006). These complexes are generally four-coordinate. With bulky phosphine ligands such as tricyclohexylphosphine, three-coordinate complexes have been reported (Wang et al., 2010). We reported here a new three-coordinated copper(I) complex of the title compound, (I).

Compound (I)

The crystal structure of (I) is depicted in Fig. 1. The copper(I) atom is three-coordinated in distorted trigonal configurations by two N atoms from 6-(4-bromo)phenyl-2,2'-bipyridine and a P atom from tricyclohexylphosphine. The coordination angles around the copper(I) atom are 80.029 (11) ° (N1—Cu1—N2), 131.74 (8) ° (N1—Cu1—P1) and 129.43 (7) ° (P1—Cu1—N2) respectively. The Cu—P (2.1811 (9) Å) and Cu—N (2.038 (3) and 2.080 (3) Å) distances are within the normal ranges for related complexes (Wang et al., 2010). In addition, weak anion···Cu(I) interaction is founded, as evidenced by the nearest F···Cu separation of 2.696 (5) Å (Cu1—F1) in the title compound. Similar weak anion···Cu(I) interaction was also reported by Mao et al. (2003).

Related literature top

For the rich photophysical properties of opper(I) complexes with diimine and phosphine ligands and their potential applications in organic light-emitting diodes (OLEDs), see: Miller et al. (1999); Zhang et al. (2006). For related structures, see: Wang et al. (2010). For a similar weak anion···Cu(I) interaction, see: Mao et al. (2003).

Experimental top

The ligand 6-(4-bromo)phenyl-2,2'-bipyridine (L) was prepared by literature method (Wang et al., 2010). A mixture of [Cu(CH3CN)4]BF4 (100 mg, 0.32 mmol) and L (99 mg, 0.32 mmol) in dichloromethane (20 ml) was stirred under nitrogen atmosphere at room temperature for 2 h. Then tricyclohexylphosphine (89 mg, 0.32 mmol) was added kept stirring for 2 h. The solvents were removed and the solid residue was afforded. Yellow single crystals suitable for X-ray diffraction were obtained from the solution of dichloromethane by vapor diffusion with diethyl ether (yield: 82%). Analysis calculated for [Cu(C16H11N2Br)(C18H33P)].(BF4): C 53.38, H 5.93 N 3.77%; Found: C 53.92, H 5.63, 3.57%.

Refinement top

All H atoms were positioned geomertrically and treated as riding (C—H = 0.97 Å for cyclohexyl and C—H = 0.93 Å otherwise) with Uiso(H) = 1.2 Ueq(C) of the carrier atom.

Structure description top

Copper(I) complexes with diimine and phosphine ligands have attracted much attention for their rich photophysical properties and potential applications in organic light-emitting diodes (OLEDs) (Miller et al., 1999; Zhang et al., 2006). These complexes are generally four-coordinate. With bulky phosphine ligands such as tricyclohexylphosphine, three-coordinate complexes have been reported (Wang et al., 2010). We reported here a new three-coordinated copper(I) complex of the title compound, (I).

Compound (I)

The crystal structure of (I) is depicted in Fig. 1. The copper(I) atom is three-coordinated in distorted trigonal configurations by two N atoms from 6-(4-bromo)phenyl-2,2'-bipyridine and a P atom from tricyclohexylphosphine. The coordination angles around the copper(I) atom are 80.029 (11) ° (N1—Cu1—N2), 131.74 (8) ° (N1—Cu1—P1) and 129.43 (7) ° (P1—Cu1—N2) respectively. The Cu—P (2.1811 (9) Å) and Cu—N (2.038 (3) and 2.080 (3) Å) distances are within the normal ranges for related complexes (Wang et al., 2010). In addition, weak anion···Cu(I) interaction is founded, as evidenced by the nearest F···Cu separation of 2.696 (5) Å (Cu1—F1) in the title compound. Similar weak anion···Cu(I) interaction was also reported by Mao et al. (2003).

For the rich photophysical properties of opper(I) complexes with diimine and phosphine ligands and their potential applications in organic light-emitting diodes (OLEDs), see: Miller et al. (1999); Zhang et al. (2006). For related structures, see: Wang et al. (2010). For a similar weak anion···Cu(I) interaction, see: Mao et al. (2003).

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. : The molecular structure of compound (I). Displacement ellipsoids are drawn at the 30% probability level, and all hydrogen atoms are omitted for clarity.
[6-(4-Bromophenyl)-2,2'-bipyridine- κ2N,N'](tricyclohexylphosphine-κP)copper(I) tetrafluoridoborate top
Crystal data top
[Cu(C16H11BrN2)(C18H33P)]BF4F(000) = 1528
Mr = 741.94Dx = 1.424 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 892 reflections
a = 9.8950 (8) Åθ = 2.2–25.8°
b = 20.2114 (17) ŵ = 1.88 mm1
c = 17.3317 (14) ÅT = 293 K
β = 93.010 (1)°Block, yellow
V = 3461.4 (5) Å30.45 × 0.30 × 0.20 mm
Z = 4
Data collection top
Bruker SMART CCD area-detector
diffractometer
8150 independent reflections
Radiation source: fine-focus sealed tube4532 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.043
phi and ω scansθmax = 28.3°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 1313
Tmin = 0.514, Tmax = 0.687k = 2626
26011 measured reflectionsl = 2321
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.051Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.151H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.059P)2 + 1.0457P]
where P = (Fo2 + 2Fc2)/3
8150 reflections(Δ/σ)max = 0.012
398 parametersΔρmax = 0.36 e Å3
0 restraintsΔρmin = 0.70 e Å3
Crystal data top
[Cu(C16H11BrN2)(C18H33P)]BF4V = 3461.4 (5) Å3
Mr = 741.94Z = 4
Monoclinic, P21/nMo Kα radiation
a = 9.8950 (8) ŵ = 1.88 mm1
b = 20.2114 (17) ÅT = 293 K
c = 17.3317 (14) Å0.45 × 0.30 × 0.20 mm
β = 93.010 (1)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
8150 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
4532 reflections with I > 2σ(I)
Tmin = 0.514, Tmax = 0.687Rint = 0.043
26011 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0510 restraints
wR(F2) = 0.151H-atom parameters constrained
S = 1.02Δρmax = 0.36 e Å3
8150 reflectionsΔρmin = 0.70 e Å3
398 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.68710 (4)0.11177 (2)0.13751 (2)0.05341 (15)
P10.77547 (9)0.19570 (4)0.20113 (5)0.0467 (2)
Br10.78459 (6)0.00217 (4)0.49674 (3)0.1190 (3)
N20.4943 (3)0.07131 (12)0.14102 (15)0.0469 (6)
N10.6442 (3)0.09700 (14)0.02248 (16)0.0542 (7)
C10.8915 (5)0.24251 (19)0.1413 (3)0.0848 (14)
H1A0.96640.23410.17920.102*
C20.9125 (5)0.3136 (2)0.1498 (3)0.0845 (13)
H2A0.94890.32180.20200.101*
H2B0.82480.33500.14460.101*
C31.0017 (6)0.3458 (2)0.0961 (4)0.117 (2)
H3A0.94930.38050.07000.140*
H3B1.07300.36750.12720.140*
C41.0649 (6)0.3095 (3)0.0385 (3)0.118 (2)
H4A1.16140.31760.04540.142*
H4B1.03550.32860.01100.142*
C51.0469 (5)0.2393 (3)0.0321 (3)0.0971 (16)
H5A1.13550.21890.03820.117*
H5B1.01200.22980.02010.117*
C60.9594 (6)0.2066 (2)0.0848 (3)0.1063 (19)
H6A0.89060.18340.05350.128*
H6B1.01350.17310.11210.128*
C70.6381 (3)0.25423 (16)0.22294 (19)0.0517 (8)
H7A0.67890.29520.24350.062*
C80.5519 (4)0.2706 (2)0.1495 (2)0.0724 (11)
H8A0.60810.29200.11270.087*
H8B0.51740.22990.12630.087*
C130.8643 (3)0.17867 (16)0.29569 (18)0.0515 (8)
H13A0.79830.15510.32570.062*
C240.4262 (4)0.07942 (15)0.07240 (19)0.0509 (8)
C280.4265 (3)0.05544 (15)0.2040 (2)0.0510 (8)
C290.5105 (4)0.04185 (16)0.27528 (19)0.0510 (8)
C230.5110 (4)0.09002 (15)0.00546 (19)0.0517 (8)
C330.7185 (4)0.00015 (19)0.3355 (2)0.0668 (10)
H33A0.80250.02000.33180.080*
F20.8170 (3)0.09236 (13)0.17853 (19)0.1044 (9)
C190.7271 (4)0.10229 (19)0.0355 (2)0.0651 (10)
H19A0.81960.10550.02370.078*
C340.6373 (4)0.01317 (17)0.2707 (2)0.0583 (9)
H34A0.66800.00250.22240.070*
C220.4591 (4)0.09145 (17)0.0705 (2)0.0631 (10)
H22A0.36640.08780.08170.076*
C270.2865 (4)0.05087 (18)0.1998 (2)0.0635 (10)
H27A0.24030.04090.24370.076*
C320.6723 (5)0.0178 (2)0.4065 (2)0.0713 (11)
C120.5487 (4)0.22462 (19)0.2837 (2)0.0649 (10)
H12A0.51640.18160.26630.078*
H12B0.60240.21840.33160.078*
C180.9811 (4)0.1305 (2)0.2887 (2)0.0670 (10)
H18A0.94920.09160.26060.080*
H18B1.05080.15110.25960.080*
C140.9064 (5)0.23832 (19)0.3445 (2)0.0720 (11)
H14A0.97280.26390.31810.086*
H14B0.82820.26630.35120.086*
C300.4678 (4)0.05694 (17)0.3477 (2)0.0625 (10)
H30A0.38260.07550.35200.075*
C171.0409 (5)0.1100 (2)0.3669 (2)0.0748 (11)
H17A1.11910.08200.36020.090*
H17B0.97470.08430.39340.090*
C260.2172 (4)0.06113 (19)0.1308 (2)0.0696 (11)
H26A0.12320.05880.12770.084*
C200.6821 (5)0.10323 (18)0.1120 (2)0.0718 (11)
H20A0.74270.10710.15100.086*
F10.8562 (3)0.00766 (13)0.12988 (18)0.1024 (9)
B10.9142 (5)0.0521 (3)0.1505 (3)0.0689 (12)
C150.9660 (6)0.2171 (2)0.4231 (2)0.0899 (15)
H15A0.99730.25590.45190.108*
H15B0.89630.19600.45180.108*
C310.5477 (5)0.04533 (19)0.4138 (2)0.0697 (11)
H31A0.51740.05600.46210.084*
C250.2863 (4)0.07504 (19)0.0657 (2)0.0656 (10)
H25A0.24000.08130.01820.079*
C210.5465 (5)0.09833 (18)0.1291 (2)0.0731 (12)
H21A0.51310.09960.18030.088*
F41.0131 (3)0.04289 (16)0.20553 (19)0.1233 (11)
C110.4289 (4)0.2684 (2)0.2986 (3)0.0807 (12)
H11A0.46090.30920.32270.097*
H11B0.37150.24620.33420.097*
F30.9654 (4)0.07998 (18)0.08765 (19)0.1367 (12)
C161.0830 (5)0.1695 (2)0.4158 (3)0.0908 (14)
H16A1.11480.15480.46680.109*
H16B1.15690.19220.39250.109*
C100.3467 (5)0.2845 (3)0.2250 (3)0.1079 (19)
H10A0.30590.24430.20390.130*
H10B0.27450.31480.23650.130*
C90.4344 (5)0.3154 (3)0.1659 (3)0.0993 (16)
H9A0.46860.35760.18500.119*
H9B0.38050.32340.11840.119*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0505 (3)0.0598 (3)0.0497 (3)0.0065 (2)0.00034 (18)0.00971 (18)
P10.0461 (5)0.0488 (5)0.0448 (5)0.0027 (4)0.0008 (4)0.0016 (4)
Br10.1016 (5)0.1800 (6)0.0738 (4)0.0118 (4)0.0103 (3)0.0430 (3)
N20.0463 (16)0.0445 (14)0.0495 (16)0.0020 (12)0.0010 (13)0.0071 (11)
N10.0588 (19)0.0575 (17)0.0464 (15)0.0013 (14)0.0040 (14)0.0103 (12)
C10.104 (4)0.055 (2)0.100 (3)0.006 (2)0.050 (3)0.005 (2)
C20.103 (4)0.061 (2)0.091 (3)0.020 (2)0.021 (3)0.004 (2)
C30.128 (5)0.071 (3)0.158 (6)0.007 (3)0.062 (4)0.027 (3)
C40.131 (5)0.112 (4)0.117 (4)0.028 (4)0.056 (4)0.021 (3)
C50.106 (4)0.097 (4)0.092 (3)0.006 (3)0.043 (3)0.017 (3)
C60.131 (5)0.083 (3)0.111 (4)0.030 (3)0.065 (4)0.021 (3)
C70.048 (2)0.0499 (18)0.0562 (19)0.0000 (15)0.0035 (15)0.0059 (15)
C80.066 (3)0.086 (3)0.064 (2)0.014 (2)0.009 (2)0.004 (2)
C130.053 (2)0.0535 (19)0.0472 (19)0.0032 (16)0.0035 (15)0.0024 (14)
C240.052 (2)0.0411 (17)0.058 (2)0.0029 (15)0.0029 (16)0.0088 (14)
C280.051 (2)0.0431 (18)0.060 (2)0.0009 (15)0.0083 (16)0.0058 (15)
C290.053 (2)0.0465 (18)0.054 (2)0.0054 (16)0.0124 (16)0.0032 (14)
C230.059 (2)0.0389 (17)0.056 (2)0.0003 (15)0.0055 (17)0.0051 (14)
C330.059 (2)0.074 (3)0.068 (3)0.0010 (19)0.008 (2)0.0142 (19)
F20.0653 (16)0.0881 (17)0.160 (3)0.0037 (14)0.0074 (17)0.0175 (17)
C190.069 (3)0.072 (2)0.054 (2)0.0079 (19)0.0067 (19)0.0102 (17)
C340.057 (2)0.061 (2)0.058 (2)0.0032 (18)0.0107 (18)0.0006 (16)
C220.074 (3)0.057 (2)0.056 (2)0.0006 (18)0.0167 (19)0.0014 (16)
C270.053 (2)0.066 (2)0.073 (3)0.0020 (18)0.014 (2)0.0090 (18)
C320.078 (3)0.078 (3)0.059 (2)0.014 (2)0.001 (2)0.0165 (19)
C120.063 (2)0.064 (2)0.069 (2)0.0038 (19)0.0127 (19)0.0100 (18)
C180.063 (3)0.078 (3)0.059 (2)0.012 (2)0.0071 (19)0.0004 (18)
C140.092 (3)0.061 (2)0.061 (2)0.001 (2)0.022 (2)0.0081 (18)
C300.065 (2)0.061 (2)0.063 (2)0.0029 (18)0.0165 (19)0.0004 (17)
C170.069 (3)0.088 (3)0.067 (3)0.019 (2)0.006 (2)0.009 (2)
C260.045 (2)0.073 (3)0.091 (3)0.0029 (19)0.003 (2)0.006 (2)
C200.101 (4)0.061 (2)0.054 (2)0.008 (2)0.012 (2)0.0045 (17)
F10.104 (2)0.0866 (17)0.118 (2)0.0332 (15)0.0251 (17)0.0238 (15)
B10.051 (3)0.076 (3)0.081 (3)0.007 (2)0.009 (2)0.000 (2)
C150.133 (4)0.078 (3)0.055 (2)0.000 (3)0.028 (3)0.004 (2)
C310.087 (3)0.071 (2)0.052 (2)0.008 (2)0.014 (2)0.0030 (18)
C250.055 (2)0.063 (2)0.077 (3)0.0020 (18)0.0142 (19)0.0041 (19)
C210.117 (4)0.054 (2)0.046 (2)0.001 (2)0.012 (2)0.0041 (16)
F40.099 (2)0.130 (2)0.135 (3)0.0346 (19)0.0452 (19)0.0268 (19)
C110.062 (3)0.095 (3)0.085 (3)0.009 (2)0.012 (2)0.024 (2)
F30.137 (3)0.155 (3)0.121 (3)0.051 (2)0.036 (2)0.024 (2)
C160.083 (3)0.108 (4)0.077 (3)0.010 (3)0.032 (2)0.016 (3)
C100.059 (3)0.156 (5)0.108 (4)0.033 (3)0.009 (3)0.044 (4)
C90.086 (4)0.121 (4)0.087 (3)0.047 (3)0.027 (3)0.014 (3)
Geometric parameters (Å, º) top
Cu1—N12.038 (3)F2—B11.368 (5)
Cu1—N22.080 (3)C19—C201.376 (5)
Cu1—P12.1811 (9)C19—H19A0.9300
P1—C11.848 (4)C34—H34A0.9300
P1—C131.851 (3)C22—C211.375 (6)
P1—C71.855 (3)C22—H22A0.9300
Br1—C321.896 (4)C27—C261.362 (5)
N2—C241.346 (4)C27—H27A0.9300
N2—C281.349 (4)C32—C311.365 (6)
N1—C191.335 (4)C12—C111.512 (5)
N1—C231.342 (4)C12—H12A0.9700
C1—C61.416 (5)C12—H12B0.9700
C1—C21.457 (5)C18—C171.507 (5)
C1—H1A0.9800C18—H18A0.9700
C2—C31.468 (6)C18—H18B0.9700
C2—H2A0.9700C14—C151.518 (5)
C2—H2B0.9700C14—H14A0.9700
C3—C41.412 (7)C14—H14B0.9700
C3—H3A0.9700C30—C311.377 (6)
C3—H3B0.9700C30—H30A0.9300
C4—C51.434 (7)C17—C161.519 (6)
C4—H4A0.9700C17—H17A0.9700
C4—H4B0.9700C17—H17B0.9700
C5—C61.451 (6)C26—C251.380 (5)
C5—H5A0.9700C26—H26A0.9300
C5—H5B0.9700C20—C211.362 (6)
C6—H6A0.9700C20—H20A0.9300
C6—H6B0.9700F1—B11.376 (5)
C7—C121.532 (5)B1—F41.343 (6)
C7—C81.531 (5)B1—F31.349 (5)
C7—H7A0.9800C15—C161.515 (7)
C8—C91.512 (6)C15—H15A0.9700
C8—H8A0.9700C15—H15B0.9700
C8—H8B0.9700C31—H31A0.9300
C13—C141.519 (5)C25—H25A0.9300
C13—C181.520 (5)C21—H21A0.9300
C13—H13A0.9800C11—C101.512 (7)
C24—C251.385 (5)C11—H11A0.9700
C24—C231.483 (5)C11—H11B0.9700
C28—C271.386 (5)C16—H16A0.9700
C28—C291.479 (5)C16—H16B0.9700
C29—C301.379 (5)C10—C91.513 (7)
C29—C341.388 (5)C10—H10A0.9700
C23—C221.389 (5)C10—H10B0.9700
C33—C341.372 (5)C9—H9A0.9700
C33—C321.382 (6)C9—H9B0.9700
C33—H33A0.9300
N1—Cu1—N280.02 (11)C29—C34—H34A119.2
N1—Cu1—P1131.74 (8)C21—C22—C23119.1 (4)
N2—Cu1—P1129.43 (7)C21—C22—H22A120.4
C1—P1—C13108.2 (2)C23—C22—H22A120.4
C1—P1—C7105.74 (18)C26—C27—C28119.5 (4)
C13—P1—C7104.91 (15)C26—C27—H27A120.3
C1—P1—Cu1111.03 (15)C28—C27—H27A120.3
C13—P1—Cu1117.53 (11)C31—C32—C33122.0 (4)
C7—P1—Cu1108.68 (11)C31—C32—Br1119.0 (3)
C24—N2—C28119.8 (3)C33—C32—Br1119.0 (3)
C24—N2—Cu1110.1 (2)C11—C12—C7112.0 (3)
C28—N2—Cu1127.8 (2)C11—C12—H12A109.2
C19—N1—C23118.5 (3)C7—C12—H12A109.2
C19—N1—Cu1128.3 (3)C11—C12—H12B109.2
C23—N1—Cu1112.5 (2)C7—C12—H12B109.2
C6—C1—C2120.3 (4)H12A—C12—H12B107.9
C6—C1—P1117.2 (3)C17—C18—C13111.7 (3)
C2—C1—P1122.5 (3)C17—C18—H18A109.3
C6—C1—H1A90.3C13—C18—H18A109.3
C2—C1—H1A90.3C17—C18—H18B109.3
P1—C1—H1A90.3C13—C18—H18B109.3
C1—C2—C3117.5 (4)H18A—C18—H18B107.9
C1—C2—H2A107.9C15—C14—C13111.0 (3)
C3—C2—H2A107.9C15—C14—H14A109.4
C1—C2—H2B107.9C13—C14—H14A109.4
C3—C2—H2B107.9C15—C14—H14B109.4
H2A—C2—H2B107.2C13—C14—H14B109.4
C4—C3—C2121.4 (4)H14A—C14—H14B108.0
C4—C3—H3A107.0C31—C30—C29122.0 (4)
C2—C3—H3A107.0C31—C30—H30A119.0
C4—C3—H3B107.0C29—C30—H30A119.0
C2—C3—H3B107.0C18—C17—C16111.5 (3)
H3A—C3—H3B106.7C18—C17—H17A109.3
C3—C4—C5120.8 (4)C16—C17—H17A109.3
C3—C4—H4A107.1C18—C17—H17B109.3
C5—C4—H4A107.1C16—C17—H17B109.3
C3—C4—H4B107.1H17A—C17—H17B108.0
C5—C4—H4B107.1C27—C26—C25120.0 (4)
H4A—C4—H4B106.8C27—C26—H26A120.0
C4—C5—C6118.5 (4)C25—C26—H26A120.0
C4—C5—H5A107.7C21—C20—C19118.3 (4)
C6—C5—H5A107.7C21—C20—H20A120.9
C4—C5—H5B107.7C19—C20—H20A120.9
C6—C5—H5B107.7F4—B1—F3109.9 (4)
H5A—C5—H5B107.1F4—B1—F2109.3 (4)
C1—C6—C5121.6 (4)F3—B1—F2109.8 (4)
C1—C6—H6A106.9F4—B1—F1110.0 (4)
C5—C6—H6A106.9F3—B1—F1109.0 (4)
C1—C6—H6B106.9F2—B1—F1108.8 (4)
C5—C6—H6B106.9C16—C15—C14111.5 (4)
H6A—C6—H6B106.7C16—C15—H15A109.3
C12—C7—C8109.8 (3)C14—C15—H15A109.3
C12—C7—P1110.3 (2)C16—C15—H15B109.3
C8—C7—P1110.5 (2)C14—C15—H15B109.3
C12—C7—H7A108.7H15A—C15—H15B108.0
C8—C7—H7A108.7C32—C31—C30118.3 (4)
P1—C7—H7A108.7C32—C31—H31A120.8
C9—C8—C7111.9 (3)C30—C31—H31A120.8
C9—C8—H8A109.2C26—C25—C24118.7 (4)
C7—C8—H8A109.2C26—C25—H25A120.6
C9—C8—H8B109.2C24—C25—H25A120.6
C7—C8—H8B109.2C20—C21—C22119.8 (4)
H8A—C8—H8B107.9C20—C21—H21A120.1
C14—C13—C18111.4 (3)C22—C21—H21A120.1
C14—C13—P1116.7 (2)C12—C11—C10111.9 (3)
C18—C13—P1112.1 (2)C12—C11—H11A109.2
C14—C13—H13A105.1C10—C11—H11A109.2
C18—C13—H13A105.1C12—C11—H11B109.2
P1—C13—H13A105.1C10—C11—H11B109.2
N2—C24—C25121.2 (3)H11A—C11—H11B107.9
N2—C24—C23115.5 (3)C15—C16—C17111.2 (4)
C25—C24—C23123.2 (3)C15—C16—H16A109.4
N2—C28—C27120.7 (3)C17—C16—H16A109.4
N2—C28—C29116.0 (3)C15—C16—H16B109.4
C27—C28—C29123.2 (3)C17—C16—H16B109.4
C30—C29—C34117.7 (3)H16A—C16—H16B108.0
C30—C29—C28122.3 (3)C9—C10—C11111.0 (4)
C34—C29—C28120.0 (3)C9—C10—H10A109.4
N1—C23—C22121.1 (3)C11—C10—H10A109.4
N1—C23—C24115.6 (3)C9—C10—H10B109.4
C22—C23—C24123.3 (3)C11—C10—H10B109.4
C34—C33—C32118.2 (4)H10A—C10—H10B108.0
C34—C33—H33A120.9C10—C9—C8110.7 (4)
C32—C33—H33A120.9C10—C9—H9A109.5
N1—C19—C20123.1 (4)C8—C9—H9A109.5
N1—C19—H19A118.5C10—C9—H9B109.5
C20—C19—H19A118.5C8—C9—H9B109.5
C33—C34—C29121.7 (3)H9A—C9—H9B108.1
C33—C34—H34A119.2
N1—Cu1—P1—C129.0 (2)N2—C28—C29—C30147.1 (3)
N2—Cu1—P1—C1144.6 (2)C27—C28—C29—C3034.5 (5)
N1—Cu1—P1—C13154.23 (16)N2—C28—C29—C3432.6 (4)
N2—Cu1—P1—C1390.12 (16)C27—C28—C29—C34145.7 (3)
N1—Cu1—P1—C786.93 (16)C19—N1—C23—C223.1 (5)
N2—Cu1—P1—C728.73 (15)Cu1—N1—C23—C22168.3 (3)
N1—Cu1—N2—C2422.3 (2)C19—N1—C23—C24175.6 (3)
P1—Cu1—N2—C24114.66 (19)Cu1—N1—C23—C2413.0 (3)
N1—Cu1—N2—C28175.3 (3)N2—C24—C23—N16.6 (4)
P1—Cu1—N2—C2847.8 (3)C25—C24—C23—N1176.2 (3)
N2—Cu1—N1—C19170.5 (3)N2—C24—C23—C22172.1 (3)
P1—Cu1—N1—C1954.4 (3)C25—C24—C23—C225.1 (5)
N2—Cu1—N1—C2319.1 (2)C23—N1—C19—C202.3 (5)
P1—Cu1—N1—C23115.9 (2)Cu1—N1—C19—C20167.5 (3)
C13—P1—C1—C6100.5 (5)C32—C33—C34—C291.5 (5)
C7—P1—C1—C6147.6 (4)C30—C29—C34—C330.1 (5)
Cu1—P1—C1—C629.9 (5)C28—C29—C34—C33179.6 (3)
C13—P1—C1—C280.5 (5)N1—C23—C22—C211.8 (5)
C7—P1—C1—C231.5 (5)C24—C23—C22—C21176.8 (3)
Cu1—P1—C1—C2149.2 (4)N2—C28—C27—C261.4 (5)
C6—C1—C2—C32.2 (8)C29—C28—C27—C26176.9 (3)
P1—C1—C2—C3176.8 (4)C34—C33—C32—C312.2 (6)
C1—C2—C3—C40.1 (9)C34—C33—C32—Br1178.5 (3)
C2—C3—C4—C51.8 (10)C8—C7—C12—C1153.4 (4)
C3—C4—C5—C61.6 (10)P1—C7—C12—C11175.5 (3)
C2—C1—C6—C52.5 (9)C14—C13—C18—C1754.7 (4)
P1—C1—C6—C5176.6 (5)P1—C13—C18—C17172.4 (3)
C4—C5—C6—C10.6 (9)C18—C13—C14—C1554.7 (5)
C1—P1—C7—C12170.3 (3)P1—C13—C14—C15174.7 (3)
C13—P1—C7—C1256.1 (3)C34—C29—C30—C311.0 (5)
Cu1—P1—C7—C1270.4 (3)C28—C29—C30—C31178.7 (3)
C1—P1—C7—C868.0 (3)C13—C18—C17—C1654.7 (5)
C13—P1—C7—C8177.7 (3)C28—C27—C26—C250.9 (6)
Cu1—P1—C7—C851.2 (3)N1—C19—C20—C210.2 (6)
C12—C7—C8—C955.1 (5)C13—C14—C15—C1655.3 (5)
P1—C7—C8—C9177.0 (3)C33—C32—C31—C301.4 (6)
C1—P1—C13—C1462.4 (3)Br1—C32—C31—C30179.4 (3)
C7—P1—C13—C1450.2 (3)C29—C30—C31—C320.3 (6)
Cu1—P1—C13—C14171.0 (3)C27—C26—C25—C241.2 (6)
C1—P1—C13—C1867.9 (3)N2—C24—C25—C260.9 (5)
C7—P1—C13—C18179.6 (3)C23—C24—C25—C26176.1 (3)
Cu1—P1—C13—C1858.8 (3)C19—C20—C21—C221.2 (6)
C28—N2—C24—C253.3 (5)C23—C22—C21—C200.4 (5)
Cu1—N2—C24—C25160.8 (3)C7—C12—C11—C1054.4 (5)
C28—N2—C24—C23174.0 (3)C14—C15—C16—C1755.4 (5)
Cu1—N2—C24—C2321.9 (3)C18—C17—C16—C1555.0 (5)
C24—N2—C28—C273.5 (5)C12—C11—C10—C955.5 (6)
Cu1—N2—C28—C27157.4 (2)C11—C10—C9—C856.5 (6)
C24—N2—C28—C29174.9 (3)C7—C8—C9—C1057.2 (5)
Cu1—N2—C28—C2924.2 (4)

Experimental details

Crystal data
Chemical formula[Cu(C16H11BrN2)(C18H33P)]BF4
Mr741.94
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)9.8950 (8), 20.2114 (17), 17.3317 (14)
β (°) 93.010 (1)
V3)3461.4 (5)
Z4
Radiation typeMo Kα
µ (mm1)1.88
Crystal size (mm)0.45 × 0.30 × 0.20
Data collection
DiffractometerBruker SMART CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.514, 0.687
No. of measured, independent and
observed [I > 2σ(I)] reflections
26011, 8150, 4532
Rint0.043
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.051, 0.151, 1.02
No. of reflections8150
No. of parameters398
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.36, 0.70

Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 1998), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

 

References

First citationBruker (1998). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationMao, Z., Chao, H.-Y., Hui, Z., Che, C.-M., Fu, W.-F., Cheung, K.-K. & Zhu, N. (2003). Chem. Eur. J. 9, 2885–2997.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationMiller, M. T., Gantzel, P. K. & Karpishin, T. B. (1999). J. Am. Chem. Soc. 121, 4292–4293.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, Z.-W., Cao, Q.-Y., Haung, X., Lin, S. & Gao, X.-C. (2010). Inorg. Chim. Acta, 363, 15–19.  Web of Science CSD CrossRef CAS Google Scholar
First citationZhang, Q., Zhou, Q., Cheng, Y., Wang, L., Ma, D., Jing, X. & Wang, F. (2006). Adv. Funct. Mater. 16, 1203–1208.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds