metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

{6,6′-Dimeth­­oxy-2,2′-[4-bromo-o-phenyl­enebis(nitrilo­methyl­­idyne)]diphenolato}nickel(II) methanol solvate

aDepartment of Chemistry, Zhengzhou University, Zhengzhou 450001, People's Republic of China, and bCollege of Physical Science and Engineering, Zhengzhou University, Zhengzhou 450001, People's Republic of China
*Correspondence e-mail: lizx@zzu.edu.cn

(Received 6 January 2009; accepted 16 January 2009; online 23 January 2009)

In the title compound, [Ni(C22H17BrN2O4)]·CH3OH, the NiII ion is in a slightly distorted square-planar geometry involving an N2O2 atom set of the tetra­dentate Schiff base ligand. The asymmetric unit contains one nickel complex and one methanol solvent mol­ecule. The dihedral angle between the aromatic ring planes of the central aromatic ring and other two aromatic rings are 10.8 (3) and 6.0 (2)°. The crystal structure is stabilized by inter­molecular C—H⋯O and C—H⋯Br and by intra­molecular O—H⋯O hydrogen bonds.

Related literature

For Schiff base complexes in coordination chemistry, inorganic biochemistry, catalysis and optical materials, see: Aurangzeb et al. (1994[Aurangzeb, N., Hulme, C. E., McAuliffe, C. A., Pritchard, R. G., Watkinson, M., Bermejo, M. R. & Sousa, A. (1994). J. Chem. Soc. Chem. Commun. pp. 2193-2195.]); Fun & Kia (2008[Fun, H.-K. & Kia, R. (2008). Acta Cryst. E64, m1116-m1117.]); Hulme et al. (1997[Hulme, C. E., Watkinson, M., Haynes, M., Pritchard, R. G., McAuliffe, C. A., Jaiboon, N., Beagley, B., Sousa, A., Bermejo, M. R. & Fondo, M. (1997). J. Chem. Soc. Dalton Trans. pp. 1805-1814.]); Li et al. (2008[Li, C.-H., Huang, K.-L., Dou, J.-M., Chi, Y.-N., Xu, Y.-Q., Shen, L., Wang, D.-Q. & Hu, C.-W. (2008). CrystEngComm, 8, 3141-3143.]); Fei & Fang (2008[Fei, L. & Fang, Z. (2008). Acta Cryst. E64, m406.]); Xia et al. (2007[Xia, H.-T., Liu, Y.-F., Yang, S.-P. & Wang, D.-Q. (2007). Acta Cryst. E63, o40-o41.]); Zhang & Janiak (2001[Zhang, C. & Janiak, C. (2001). Acta Cryst. C57, 719-720.]).

[Scheme 1]

Experimental

Crystal data
  • [Ni(C22H17BrN2O4)]·CH4O

  • Mr = 544.04

  • Triclinic, [P \overline 1]

  • a = 7.4991 (12) Å

  • b = 11.8367 (18) Å

  • c = 12.5428 (19) Å

  • α = 105.042 (2)°

  • β = 96.971 (3)°

  • γ = 95.932 (3)°

  • V = 1056.6 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 2.85 mm−1

  • T = 295 (2) K

  • 0.12 × 0.08 × 0.04 mm

Data collection
  • Bruker SMART 1K CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.726, Tmax = 0.895

  • 5680 measured reflections

  • 4086 independent reflections

  • 3123 reflections with I > 2σ(I)

  • Rint = 0.018

Refinement
  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.161

  • S = 1.14

  • 4086 reflections

  • 291 parameters

  • H-atom parameters constrained

  • Δρmax = 0.67 e Å−3

  • Δρmin = −0.61 e Å−3

Table 1
Selected geometric parameters (Å, °)

N2—Ni1 1.862 (3)
N3—Ni1 1.851 (3)
O1—Ni1 1.841 (3)
O2—Ni1 1.840 (3)
O2—Ni1—O1 84.82 (12)
O2—Ni1—N3 93.97 (14)
O1—Ni1—N2 94.73 (14)
N3—Ni1—N2 86.59 (15)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O5—H5′⋯O1 0.82 2.15 2.952 (4) 165
C15—H15⋯O5i 0.93 2.37 3.203 (5) 149
C23—H23B⋯Br1ii 0.96 2.84 3.556 (6) 132
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) x, y+1, z+1.

Data collection: SMART (Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The synthesis and structural investigation of Schiff base complexes have attracted much attention due to their interesting structures and wide potential applications. They play an important role in the development of coordination chemistry as well as inorganic biochemistry, catalysis and optical materials (Aurangzeb et al., 1994; Fun & Kia, 2008; Hulme et al., 1997; Li et al., 2008; Fei & Fang, 2008; Zhang & Janiak, 2001). Here, the synthesis and crystal structure of the title complex (I) are reported.

The molecular structure of title compound is showing in Fig. 1. The dihedral angles between the aromatic ring planes of the middle aromatic ring and other two aromatic rings are 10.8 (3)° and 6.0 (2)°, respectively. The crystal structure, is stabilized by intermolecular C—H···O and C—H···Br and intramolecular O—H···O hydrogen bonds.

Related literature top

For Schiff base complexes in coordination chemistry, inorganic biochemistry, catalysis and optical

materials, see: Aurangzeb et al. (1994); Fun & Kia (2008); Hulme et al. (1997); Li et al. (2008); Fei & Fang (2008); Xia et al. (2007); Zhang & Janiak (2001).

Experimental top

6,6'-Dimethoxy-2,2'-[-4-bromo-o-phenylenebis (nitrilomethylidyne)]diphenol was synthesized according to modified reported methods (Xia, et al., 2007). A mixture of NiCl2.6H2O (1 mmol, 237.7 mg), 6,6'-Dimethoxy-2,2'-[-4-bromo-o-phenylenebis (nitrilomethylidyne)]diphenol (1 mmol, 455.3 mg) in 40 ml methanol and 20 ml water was refluxed for forty minutes. Crystals suitable for X-ray diffraction analysis were obtained by slow evaporation at room temperature for three weeks.

Refinement top

All H atoms were placed in geometrically calculated positions with C—H = 0.96 Å for methyl H atoms, C—H = 0.93 Å for aromatic H atoms and were refined isotropic with Uiso(H) = 1.2Ueq(C) of parent atom using a riding model. H atoms of methanol were constrained to idealized geometries, with C—H = 0.96 Å for methyl H atoms, O—H = 0.82 Å, and with Uiso(H) = 1.2Ueq(C) and 1.5Ueq(O).

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of complex (I), showing 30% probability displacement ellipsoids and the atom-numbering scheme.
[Figure 2] Fig. 2. The crystal packing of title compound, viewed along the a axis. Hydrogen bonds are shown as dashed lines.
{6,6'-Dimethoxy-2,2'-[4-bromo-o- phenylenebis(nitrilomethylidyne)]diphenolato}nickel(II) methanol solvate top
Crystal data top
[Ni(C22H17BrN2O4)]·CH4OZ = 2
Mr = 544.04F(000) = 552
Triclinic, P1Dx = 1.710 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.4991 (12) ÅCell parameters from 4086 reflections
b = 11.8367 (18) Åθ = 1.7–26.0°
c = 12.5428 (19) ŵ = 2.85 mm1
α = 105.042 (2)°T = 295 K
β = 96.971 (3)°Block, brown
γ = 95.932 (3)°0.12 × 0.08 × 0.04 mm
V = 1056.6 (3) Å3
Data collection top
Bruker SMART 1K CCD area-detector
diffractometer
4086 independent reflections
Radiation source: fine-focus sealed tube3123 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.018
ϕ and ω scansθmax = 26.0°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 99
Tmin = 0.726, Tmax = 0.895k = 1412
5680 measured reflectionsl = 1315
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.161H-atom parameters constrained
S = 1.14 w = 1/[σ2(Fo2) + (0.0951P)2 + 0.0167P]
where P = (Fo2 + 2Fc2)/3
4086 reflections(Δ/σ)max = 0.003
291 parametersΔρmax = 0.67 e Å3
0 restraintsΔρmin = 0.61 e Å3
Crystal data top
[Ni(C22H17BrN2O4)]·CH4Oγ = 95.932 (3)°
Mr = 544.04V = 1056.6 (3) Å3
Triclinic, P1Z = 2
a = 7.4991 (12) ÅMo Kα radiation
b = 11.8367 (18) ŵ = 2.85 mm1
c = 12.5428 (19) ÅT = 295 K
α = 105.042 (2)°0.12 × 0.08 × 0.04 mm
β = 96.971 (3)°
Data collection top
Bruker SMART 1K CCD area-detector
diffractometer
4086 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
3123 reflections with I > 2σ(I)
Tmin = 0.726, Tmax = 0.895Rint = 0.018
5680 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0440 restraints
wR(F2) = 0.161H-atom parameters constrained
S = 1.14Δρmax = 0.67 e Å3
4086 reflectionsΔρmin = 0.61 e Å3
291 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C30.8652 (7)0.0691 (4)0.3998 (4)0.0510 (12)
H30.88690.00850.39120.061*
C40.7842 (7)0.1013 (4)0.3070 (4)0.0471 (11)
C50.7428 (6)0.2142 (4)0.3178 (4)0.0443 (10)
H50.68760.23630.25730.053*
C60.7873 (5)0.2926 (4)0.4224 (3)0.0357 (9)
C10.8774 (6)0.2549 (4)0.5093 (3)0.0370 (9)
C71.0169 (6)0.3214 (4)0.6961 (4)0.0393 (10)
H71.03570.24350.68880.047*
C81.0843 (6)0.4041 (4)0.7991 (4)0.0413 (10)
C91.1868 (7)0.3673 (5)0.8839 (4)0.0521 (12)
H91.20060.28790.87170.063*
C101.2639 (7)0.4443 (5)0.9811 (4)0.0569 (13)
H101.32770.41761.03580.068*
C111.2491 (7)0.5644 (5)1.0008 (4)0.0552 (13)
H111.30350.61741.06830.066*
C121.1539 (7)0.6045 (4)0.9200 (4)0.0477 (11)
C131.0650 (6)0.5251 (4)0.8169 (3)0.0397 (10)
C141.2135 (11)0.8037 (5)1.0330 (5)0.093 (2)
H14B1.34190.80151.04510.139*
H14A1.16050.78421.09300.139*
H14C1.19180.88151.03040.139*
C150.6634 (5)0.4582 (4)0.3866 (3)0.0368 (9)
H150.61450.40890.31620.044*
C160.6301 (5)0.5774 (4)0.4112 (3)0.0371 (9)
C170.5302 (6)0.6144 (5)0.3271 (4)0.0489 (11)
H170.48330.56010.25880.059*
C180.5021 (7)0.7289 (5)0.3451 (4)0.0517 (12)
H180.43820.75270.28830.062*
C190.5680 (6)0.8118 (4)0.4482 (4)0.0503 (12)
H190.54830.89000.45910.060*
C200.6611 (6)0.7783 (4)0.5328 (4)0.0395 (10)
C210.6960 (5)0.6590 (4)0.5160 (3)0.0343 (9)
C220.7016 (8)0.9703 (4)0.6604 (4)0.0581 (13)
H22A0.75801.01110.73540.087*
H22B0.57370.97440.65320.087*
H22C0.75361.00670.60910.087*
C230.7099 (11)0.8110 (6)0.8879 (5)0.087 (2)
H23A0.84010.82050.89840.131*
H23B0.66870.81310.95780.131*
H23C0.66850.87390.86070.131*
C20.9109 (5)0.1459 (3)0.4982 (3)0.0303 (8)
H20.96580.12380.55880.036*
N20.7574 (4)0.4124 (3)0.4553 (3)0.0349 (8)
N30.9301 (4)0.3451 (3)0.6101 (3)0.0343 (7)
O10.7893 (4)0.6322 (2)0.5995 (2)0.0385 (7)
O20.9756 (4)0.5679 (3)0.7446 (2)0.0416 (7)
O31.1343 (6)0.7207 (3)0.9303 (3)0.0678 (11)
O40.7307 (5)0.8499 (3)0.6360 (3)0.0501 (8)
O50.6410 (5)0.7031 (3)0.8107 (3)0.0665 (10)
H5'0.68960.69660.75460.100*
Ni10.86214 (7)0.48899 (4)0.60223 (4)0.03314 (19)
Br10.73229 (10)0.01370 (5)0.16760 (5)0.0796 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C30.053 (3)0.038 (2)0.064 (3)0.013 (2)0.013 (2)0.013 (2)
C40.060 (3)0.037 (2)0.036 (2)0.004 (2)0.003 (2)0.0015 (19)
C50.051 (3)0.042 (2)0.036 (2)0.006 (2)0.004 (2)0.0065 (19)
C60.034 (2)0.033 (2)0.037 (2)0.0021 (16)0.0070 (18)0.0065 (18)
C10.033 (2)0.038 (2)0.039 (2)0.0048 (17)0.0081 (18)0.0082 (19)
C70.038 (2)0.040 (2)0.044 (2)0.0129 (18)0.0070 (19)0.0136 (19)
C80.039 (2)0.049 (3)0.036 (2)0.0110 (19)0.0031 (19)0.013 (2)
C90.064 (3)0.059 (3)0.042 (3)0.022 (2)0.007 (2)0.023 (2)
C100.059 (3)0.069 (4)0.045 (3)0.023 (3)0.006 (2)0.021 (3)
C110.052 (3)0.066 (3)0.040 (3)0.004 (2)0.008 (2)0.009 (2)
C120.052 (3)0.049 (3)0.039 (2)0.006 (2)0.002 (2)0.012 (2)
C130.039 (2)0.046 (2)0.037 (2)0.0074 (18)0.0071 (18)0.0149 (19)
C140.146 (7)0.053 (4)0.055 (4)0.014 (4)0.031 (4)0.006 (3)
C150.033 (2)0.042 (2)0.034 (2)0.0010 (17)0.0043 (17)0.0092 (18)
C160.029 (2)0.046 (2)0.038 (2)0.0049 (17)0.0049 (17)0.0158 (19)
C170.044 (3)0.062 (3)0.043 (3)0.009 (2)0.001 (2)0.020 (2)
C180.049 (3)0.066 (3)0.046 (3)0.018 (2)0.005 (2)0.028 (2)
C190.049 (3)0.048 (3)0.063 (3)0.015 (2)0.008 (2)0.029 (2)
C200.037 (2)0.045 (2)0.041 (2)0.0072 (18)0.0078 (19)0.019 (2)
C210.028 (2)0.040 (2)0.037 (2)0.0026 (16)0.0065 (17)0.0145 (18)
C220.074 (3)0.036 (3)0.066 (3)0.018 (2)0.012 (3)0.014 (2)
C230.119 (6)0.074 (4)0.051 (3)0.021 (4)0.015 (4)0.005 (3)
C20.034 (2)0.0273 (19)0.0283 (19)0.0080 (15)0.0012 (16)0.0056 (16)
N20.0321 (17)0.0362 (18)0.0341 (18)0.0026 (14)0.0040 (15)0.0070 (15)
N30.0323 (17)0.0354 (18)0.0341 (18)0.0054 (14)0.0072 (14)0.0067 (15)
O10.0466 (17)0.0355 (15)0.0317 (15)0.0087 (13)0.0023 (13)0.0092 (12)
O20.0493 (17)0.0393 (16)0.0346 (15)0.0074 (13)0.0034 (13)0.0116 (13)
O30.100 (3)0.044 (2)0.045 (2)0.0022 (19)0.017 (2)0.0069 (16)
O40.066 (2)0.0355 (16)0.0469 (19)0.0123 (15)0.0009 (16)0.0103 (14)
O50.069 (3)0.073 (3)0.048 (2)0.007 (2)0.0067 (18)0.0035 (18)
Ni10.0361 (3)0.0314 (3)0.0302 (3)0.0051 (2)0.0022 (2)0.0068 (2)
Br10.1203 (6)0.0507 (4)0.0512 (4)0.0185 (3)0.0019 (3)0.0107 (3)
Geometric parameters (Å, º) top
C3—C21.310 (6)C15—N21.307 (5)
C3—C41.406 (7)C15—C161.419 (6)
C3—H30.9300C15—H150.9300
C4—C51.380 (7)C16—C171.408 (6)
C4—Br11.885 (4)C16—C211.411 (6)
C5—C61.376 (6)C17—C181.358 (7)
C5—H50.9300C17—H170.9300
C6—C11.406 (6)C18—C191.401 (7)
C6—N21.419 (5)C18—H180.9300
C1—C21.316 (6)C19—C201.366 (6)
C1—N31.409 (5)C19—H190.9300
C7—N31.301 (5)C20—O41.357 (5)
C7—C81.402 (6)C20—C211.429 (6)
C7—H70.9300C21—O11.315 (5)
C8—C131.417 (6)C22—O41.423 (5)
C8—C91.423 (6)C22—H22A0.9600
C9—C101.339 (7)C22—H22B0.9600
C9—H90.9300C22—H22C0.9600
C10—C111.397 (7)C23—O51.392 (7)
C10—H100.9300C23—H23A0.9600
C11—C121.381 (6)C23—H23B0.9600
C11—H110.9300C23—H23C0.9600
C12—O31.373 (6)C2—H20.9300
C12—C131.425 (6)N2—Ni11.862 (3)
C13—O21.299 (5)N3—Ni11.851 (3)
C14—O31.419 (6)O1—Ni11.841 (3)
C14—H14B0.9600O2—Ni11.840 (3)
C14—H14A0.9600O5—H5'0.8200
C14—H14C0.9600
C2—C3—C4121.5 (4)C18—C17—C16120.4 (4)
C2—C3—H3119.3C18—C17—H17119.8
C4—C3—H3119.3C16—C17—H17119.8
C5—C4—C3120.8 (4)C17—C18—C19120.9 (4)
C5—C4—Br1120.8 (4)C17—C18—H18119.6
C3—C4—Br1118.4 (4)C19—C18—H18119.6
C6—C5—C4116.7 (4)C20—C19—C18120.4 (4)
C6—C5—H5121.6C20—C19—H19119.8
C4—C5—H5121.6C18—C19—H19119.8
C5—C6—C1118.7 (4)O4—C20—C19125.8 (4)
C5—C6—N2127.6 (4)O4—C20—C21114.0 (4)
C1—C6—N2113.7 (3)C19—C20—C21120.2 (4)
C2—C1—C6123.6 (4)O1—C21—C16123.9 (4)
C2—C1—N3122.6 (4)O1—C21—C20117.6 (4)
C6—C1—N3113.9 (4)C16—C21—C20118.5 (4)
N3—C7—C8125.1 (4)O4—C22—H22A109.5
N3—C7—H7117.4O4—C22—H22B109.5
C8—C7—H7117.4H22A—C22—H22B109.5
C7—C8—C13121.2 (4)O4—C22—H22C109.5
C7—C8—C9119.1 (4)H22A—C22—H22C109.5
C13—C8—C9119.5 (4)H22B—C22—H22C109.5
C10—C9—C8121.5 (5)O5—C23—H23A109.5
C10—C9—H9119.3O5—C23—H23B109.5
C8—C9—H9119.3H23A—C23—H23B109.5
C9—C10—C11120.5 (4)O5—C23—H23C109.5
C9—C10—H10119.7H23A—C23—H23C109.5
C11—C10—H10119.7H23B—C23—H23C109.5
C12—C11—C10120.0 (5)C3—C2—C1118.5 (4)
C12—C11—H11120.0C3—C2—H2120.7
C10—C11—H11120.0C1—C2—H2120.7
O3—C12—C11124.5 (4)C15—N2—C6121.1 (3)
O3—C12—C13114.2 (4)C15—N2—Ni1126.4 (3)
C11—C12—C13121.3 (5)C6—N2—Ni1112.5 (3)
O2—C13—C8124.3 (4)C7—N3—C1119.6 (4)
O2—C13—C12118.5 (4)C7—N3—Ni1127.2 (3)
C8—C13—C12117.2 (4)C1—N3—Ni1113.2 (3)
O3—C14—H14B109.5C21—O1—Ni1127.9 (3)
O3—C14—H14A109.5C13—O2—Ni1128.0 (3)
H14B—C14—H14A109.5C12—O3—C14116.9 (4)
O3—C14—H14C109.5C20—O4—C22117.9 (4)
H14B—C14—H14C109.5C23—O5—H5'109.5
H14A—C14—H14C109.5O2—Ni1—O184.82 (12)
N2—C15—C16125.1 (4)O2—Ni1—N393.97 (14)
N2—C15—H15117.5O1—Ni1—N3177.54 (13)
C16—C15—H15117.5O2—Ni1—N2177.07 (14)
C17—C16—C21119.7 (4)O1—Ni1—N294.73 (14)
C17—C16—C15118.3 (4)N3—Ni1—N286.59 (15)
C21—C16—C15122.0 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5···O10.822.152.952 (4)165
C15—H15···O5i0.932.373.203 (5)149
C23—H23B···Br1ii0.962.843.556 (6)133
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y+1, z+1.

Experimental details

Crystal data
Chemical formula[Ni(C22H17BrN2O4)]·CH4O
Mr544.04
Crystal system, space groupTriclinic, P1
Temperature (K)295
a, b, c (Å)7.4991 (12), 11.8367 (18), 12.5428 (19)
α, β, γ (°)105.042 (2), 96.971 (3), 95.932 (3)
V3)1056.6 (3)
Z2
Radiation typeMo Kα
µ (mm1)2.85
Crystal size (mm)0.12 × 0.08 × 0.04
Data collection
DiffractometerBruker SMART 1K CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2000)
Tmin, Tmax0.726, 0.895
No. of measured, independent and
observed [I > 2σ(I)] reflections
5680, 4086, 3123
Rint0.018
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.161, 1.14
No. of reflections4086
No. of parameters291
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.67, 0.61

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXTL (Sheldrick, 2008).

Selected geometric parameters (Å, º) top
N2—Ni11.862 (3)O1—Ni11.841 (3)
N3—Ni11.851 (3)O2—Ni11.840 (3)
O2—Ni1—O184.82 (12)O1—Ni1—N294.73 (14)
O2—Ni1—N393.97 (14)N3—Ni1—N286.59 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5'···O10.82002.15102.952 (4)164.84
C15—H15···O5i0.93002.36733.203 (5)149.35
C23—H23B···Br1ii0.96002.83693.556 (6)132.47
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y+1, z+1.
 

Acknowledgements

This work was supported by the Natural Science Foundation of China (grant No. 50873093).

References

First citationAurangzeb, N., Hulme, C. E., McAuliffe, C. A., Pritchard, R. G., Watkinson, M., Bermejo, M. R. & Sousa, A. (1994). J. Chem. Soc. Chem. Commun. pp. 2193–2195.  CrossRef Web of Science Google Scholar
First citationBruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFun, H.-K. & Kia, R. (2008). Acta Cryst. E64, m1116–m1117.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHulme, C. E., Watkinson, M., Haynes, M., Pritchard, R. G., McAuliffe, C. A., Jaiboon, N., Beagley, B., Sousa, A., Bermejo, M. R. & Fondo, M. (1997). J. Chem. Soc. Dalton Trans. pp. 1805–1814.  CSD CrossRef Web of Science Google Scholar
First citationLi, C.-H., Huang, K.-L., Dou, J.-M., Chi, Y.-N., Xu, Y.-Q., Shen, L., Wang, D.-Q. & Hu, C.-W. (2008). CrystEngComm, 8, 3141–3143.  CAS Google Scholar
First citationFei, L. & Fang, Z. (2008). Acta Cryst. E64, m406.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationXia, H.-T., Liu, Y.-F., Yang, S.-P. & Wang, D.-Q. (2007). Acta Cryst. E63, o40–o41.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationZhang, C. & Janiak, C. (2001). Acta Cryst. C57, 719–720.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds